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Abstract

Logistic regression with ℓ1 regularization has been pro-
posed as a promising method for feature selection in
classification problems. Several specialized solution
methods have been proposed for ℓ1-regularized logistic
regression problems (LRPs). However, existing meth-
ods do not scale well to large problems that arise in
many practical settings. In this paper we describe an ef-
ficient interior-point method for solving ℓ1-regularized
LRPs. Small problems with up to a thousand or so
features and examples can be solved in seconds on a
PC. A variation on the basic method, that uses a pre-
conditioned conjugate gradient method to compute the
search step, can solve large sparse problems, with a mil-
lion features and examples (e.g., the 20 Newsgroups
data set), in a few tens of minutes, on a PC. Numeri-
cal experiments show that our method outperforms stan-
dard methods for solving convex optimization problems
as well as other methods specifically designed for ℓ1-
regularized LRPs.

Introduction

Logistic regression

Let x ∈ R
n denote a vector of feature variables, and

b ∈ {−1,+1} denote the associated binary output. In the
logistic model, the conditional probability of b, given x, has
the form

Prob(b|x) = 1/(1 + exp
(

−b(wT x + v)
)

).

The parameters of this model are v ∈ R (the intercept) and
w ∈ R

n (the weight vector).
Suppose we are given a set of training or observed exam-

ples, (xi, bi) ∈ R
n × {−1,+1}, i = 1, . . . , m, assumed

to be independent samples from a distribution. The model
parameters w and v can be found by maximum likelihood
estimation from the observed examples. The maximum like-
lihood estimate minimizes the average loss

lavg(v, w) = (1/m)
m

∑

i=1

f(wT ai + vbi),

where ai = bixi ∈ R
n and f is the logistic loss function

defined by f(z) = log(1+exp(−z)). Finding the maximum
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likelihood estimate of v and w is called logistic regression
(LR).

ℓ1-regularized logistic regression

Recently, ℓ1-regularized logistic regression has received
much attention as a promising method for feature selection.
The ℓ1-regularized logistic regression problem (LRP) can be
formulated as

minimize (1/m)
∑

m

i=1 f(wT ai + vbi) + λ‖w‖1, (1)

where ‖ · ‖1 denotes the ℓ1-norm, i.e., ‖w‖1 =
∑

n

i=1 |wi|,
and λ > 0 is the regularization parameter. The problem data
are

A = [a1 · · · am]T ∈ R
m×n, b = [b1 · · · bm]

T ∈ R
m.

The main motivation is that ℓ1-regularized logistic regres-
sion typically yields a sparse vector w, i.e., w typically has
relatively few nonzero coefficients. Recent studies show that
ℓ1-regularized LR can outperform ℓ2-regularized LR, espe-
cially when the number of observations is smaller than the
number of features (Ng 2004).

In the literature, ℓ1-regularized logistic regression has
been used in a variety of applications, such as text cat-
egorization (Genkin, Lewis, & Madigan 2006), graphical
model selection (Wainwright, Ravikumar, & Lafferty 2007),
author identification (Madigan et al. 2005), and gene se-
lection in cancer classification (Shevade & Keerthi 2003;
Cawley & Talbot 2006). In these applications, often the
number of features is very large (exceeding one million).

Related Work

The objective function in the ℓ1-regularized LRP (1) is con-
vex, but not differentiable. Generic methods for nondiffer-
entiable convex problems can be used, such as the ellipsoid
method or subgradient methods (Shor 1985). These methods
are usually very slow in practice, however.

Faster methods are based on transforming the problem to
an equivalent one, with linear inequality constraints,

minimize (1/m)
∑

m

i=1 f(wT ai + vbi) + λ1
T u

subject to −ui ≤ wi ≤ ui, i = 1, . . . , n,
(2)

where the variables are the original ones v ∈ R, w ∈ R
n,

along with u ∈ R
n. Here 1 denotes the vector with all
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components one, so 1
T u is the sum of the components of

u. The reformulated problem (2) is a convex optimiza-
tion problem, with a smooth objective, and linear constraint
functions, so it can be solved by standard convex optimiza-
tion methods such as SQP, augmented Lagrangian, interior-
point, and other methods. High quality solvers that can di-
rectly handle (2) include for example MOSEK (MOSEK
ApS 2002), and NPSOL (Gill et al. 1986). These gen-
eral purpose solvers can solve small and medium scale ℓ1-
regularized LRPs effectively, but do not scale well to large
problems.

Recently, several researchers have developed path-
following methods for ℓ1-regularized LRPs (Park & Hastie
2006; Rosset 2005). When the solution of (1) is extremely
sparse, path-following methods can be very fast. Otherwise,
path-following methods are slow, especially for large-scale
problems. Other recent work on computational methods for
ℓ1-regularized logistic regression includes the iteratively re-
weighted least squares (IRLS) method (Lee et al. 2006;
Lokhorst 1999), a generalized LASSO method (Roth 2004)
that extends the LASSO method proposed by (Osborne,
Presnell, & Turlach 2000) to generalized linear models,
generalized iterative scaling (Goodman 2004), bound op-
timization algorithms (Krishnapuram et al. 2005), on-
line algorithms (Balakrishnan & Madigan 2005; Perkins &
Theiler 2003), coordinate descent methods (Genkin, Lewis,
& Madigan 2006), and the Gauss-Seidel method (Shevade
& Keerthi 2003).

The purpose

The main purpose of this paper is to describe a specialized
interior-point method for solving the ℓ1-regularized logistic
regression problem that is very efficient, for all size prob-
lems. The method can solve with high accuracy large sparse
problems with a million features and examples, in a few tens
of minutes on a PC. Extensive comparison with many exist-
ing methods shows that our method is most efficient for large
problems, and for small and medium problems as well, re-
liably providing very accurate solutions. The efficiency of
the method comes mainly from the use of an effective pre-
conditioner which has very low computational overhead but
accelerates the convergence significantly.

Preliminaries

In this section, we give some preliminaries needed later.

Optimality conditions

A standard result in convex optimization is that a point x
minimizes a convex function f(x) (which is not necessar-
ily differentiable at all points) if and only if 0 ∈ ∂f(x),
where ∂f(x) is the subdifferential of f at x (Shor 1985).
Using subdifferential calculus, we can show that the neces-
sary and sufficient conditions for (v, w) to be optimal for the
ℓ1-regularized LRP (1) are

bT p(v, w) = 0, (3)

(1/m)(AT p(v, w))i ∈

{

{+λ} wi > 0,
{−λ} wi < 0,
[−λ, λ] wi = 0,

(4)

for i = 1, . . . , n. Here, we use the notation

p(v, w)i =
1

1 + exp(wT ai + vbi)
, i = 1, . . . , m.

Let us analyze when a pair of the form (v, 0) is opti-
mal. By plugging (v, 0) into (3) we get v = log(m+/m−),
where m+ is the number of training examples with outcome
1 (called positive) and m− is the number of training exam-
ples with outcome −1 (called negative). We can see from
(4) that if

λ ≥ λmax = ‖(1/m)AT p(log(m+/m−), 0)‖∞, (5)

then the logistic model obtained from ℓ1-regularized LR
has weight zero. Here ‖ · ‖∞ denotes the ℓ∞-norm, i.e.,
‖w‖∞ = max(w1, . . . , wn). The number λmax gives us an
upper bound on the useful range of the regularization param-
eter λ: For any larger value of λ, the logistic model obtained
from ℓ1-regularized LR has weight zero, which has no abil-
ity to classify.

Dual problem

To derive a Lagrange dual of the ℓ1-regularized LRP (1),
we first introduce a new variable z ∈ R

m, as well as new
equality constraints zi = wT ai + vbi, i = 1, . . . , m, to
obtain the equivalent problem

minimize (1/m)
∑

m

i=1 f(zi) + λ‖w‖1

subject to zi = wT ai + vbi, i = 1, . . . , m.

Associating dual variables νi ∈ R with the equality con-
straints, we have the following Lagrange dual of the ℓ1-
regularized LRP (1):

maximize G(ν) = −(1/m)
∑

m

i=1 f∗(−mνi)
subject to ‖AT ν‖∞ ≤ λ, bT ν = 0,

(6)

where f∗ is the conjugate of the logistic loss function f :

f∗(y) =

{

−y log(−y) + (1+y) log(1+y), −1≤y≤0
∞, otherwise,

with the interpretation 0 log 0 = 0.
The dual problem (6) is a convex optimization problem

with variable ν ∈ R
m, and has the form of an ℓ∞-norm

constrained maximum generalized entropy problem. We say
that ν ∈ R

m is dual feasible if it satisfies ‖AT ν‖∞ ≤ λ,
bT ν = 0. Any dual feasible point ν gives a lower bound on
the optimal value p� of the primal ℓ1-regularized LRP (1):
G(ν) ≤ p�. Furthermore, G(ν�) = p�, where ν� is the
optimal solution of (6).

We can relate a primal optimal point (v�, w�) and a dual
optimal point ν� to the optimality condition (3) and (4).
They are related by

ν� = (1/m)p(v�, w�).

Suboptimality bound

We now derive an easily computed bound on the subopti-
mality of a pair (v, w), by constructing a dual feasible point
ν̄ from an arbitrary w. This bound will be incorporated in
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the stopping rule of the interior-point method described in
the next section.

Define v̄ as

v̄ = arg min
v

lavg(v, w), (7)

i.e., v̄ is the optimal intercept for the weight vector w, char-
acterized by bT p(v̄, w) = 0. Note that v̄ is the solution of
an one-dimensional smooth convex optimization problem,
which can be solved very efficiently. Now, we define ν̄ as

ν̄ = (s/m)p(v̄, w), (8)

where s = min
{

mλ/‖AT p(v̄, w)‖∞, 1
}

is a scaling con-

stant. Evidently ν̄ is dual feasible, so G(ν̄) is a lower bound
on p�, the optimal value of the ℓ1-regularized LRP (1).

The difference between the primal objective value of
(v, w), and the associated lower bound G(ν̄), is called the
duality gap, and denoted η(v, w):

η(v, w) = lavg(v, w) + λ‖w‖1 − G(ν̄) (9)

We always have η(v, w) ≥ 0, and the point (v, w) is no more
than η(v, w)-suboptimal. At the optimal point (v�, w�), the
duality gap is zero.

Logarithmic barrier and central path

The logarithmic barrier for the bound constraints −ui ≤
wi ≤ ui of the equivalent problem (2) is

Φ(w, u) = −
n

∑

i=1

log(ui + wi) −
n

∑

i=1

log(ui − wi),

defined on {(w, u) ∈ R
n × R

n | |wi| < ui, i = 1, . . . , n}.
The logarithmic barrier function is smooth and convex. We
augment the weighted objective function of (2) by the loga-
rithmic barrier, to obtain

φt(v, w, u) = tlavg(v, w) + tλ1
T u + Φ(w, u), (10)

where t > 0 is a parameter. This function is smooth, strictly
convex, and bounded below, and so has a unique minimizer
which we denote (v�(t), w�(t), u�(t)). This defines a curve
in R×R

n×R
n, parameterized by t, called the central path.

With the point (v�(t), w�(t), u�(t)) we associate

ν�(t) = (1/m)p(v�(t), w�(t)), (11)

which can be shown to be dual feasible. Indeed, it coin-
cides with the dual feasible point ν̄ constructed from w�(t)
using (8). As a standard result in convex optimization,
(v�(t), w�(t)) is no more than 2n/t-suboptimal (Boyd &
Vandenberghe 2004, §11).

Our Method

In a primal interior-point method, we compute a sequence
of points on the central path, for an increasing sequence of
values of t, using Newton’s method to minimize φt(v, w, u),
starting from the previously computed central point. Using
our method for cheaply computing a dual feasible point and
associated duality gap for any (v, w), we can construct a
custom interior-point method that updates t at each iteration.

INTERIOR-POINT METHOD FOR ℓ1-REGULARIZED LR.

given tolerance ǫ > 0, parameters α ∈ (0, 1/2), β ∈ (0, 1)

Initialize. t := 1/λ, v := log(m+/m−), w := 0, u := 1.

repeat
1. Compute search direction. Solve the Newton system

∇2φt(v, w, u)

[

∆v
∆w
∆u

]

= −∇φt(v, w, u).

2. Backtracking line search.
Find the smallest integer k ≥ 0 that satisfies

φt(v + βk∆v, w + βk∆w, u + βk∆u)

≤ φt(v, w, u) + αβk∇φt(v, w, u)T

[

∆v
∆w
∆u

]

.

3. Update. (v, w, u) := (v, w, u) + βk(∆v,∆w,∆u).
4. Set v := v̄, the optimal value of the intercept, as in (7).
5. Construct dual feasible point ν from (8).
6. Evaluate duality gap η from (9).
7. quit if η ≤ ǫ.
8. Update t.

The choice v = log(m+/m−) is the optimal value of v
when w = 0 and u = 1, and the choice t = 1/λ minimizes
‖(1/t)∇φt(log(m+/m−), 0,1)‖2. Typical values for the
line search parameters are α = 0.01, β = 0.5. The choice of
the initial values and the parameters does not greatly affect
performance.

Update rule

The update rule we propose is

t :=

{

max
{

μmin{t̂, t}, t
}

, s ≥ smin

t, s < smin

(12)

where t̂ = 2n/η and s = βk is the step length chosen in
the line search. Here μ > 1 and smin ∈ (0, 1] are algorithm
parameters; we have found good performance with μ = 2
and smin = 0.5.

To explain the update rule (12), we first give an interpre-
tation of t̂. If (v, w, u) is on the central path, the duality gap

is η = 2n/t. Thus t̂ is the value of t for which the associated
central point has the same duality gap as the current point.
We use the step length s as a crude measure of proximity to
the central path, so we increase t by a factor μ when the cur-
rent point is near the central path (s ≥ smin and t̂ ≈ t). (See
the longer version of the paper (Koh, Kim, & Boyd 2006)
for more on the update rule and convergence of the result-
ing interior-point method.) Compared with standard update
rules, the update rule is quite robust and works well when
combined with the PCG algorithm we will describe soon.

Computing the search direction

The Newton system can be written as
⎡

⎣

tbT D0b tbT D0A 0
tAT D0b tAT D0A + D1 D2

0 D2 D1

⎤

⎦

[

∆v
∆w
∆u

]

= −

[

g1

g2

g3

]

,

(13)

567



where

D0 = diag

(

f ′′(wT a1 + vb1)

m
, . . . ,

f ′′(wT am + vbm)

m

)

,

D1 = diag

(

2(u2
1 + w2

1)

(u2
1 − w2

1)
2
, . . . ,

2(u2
n

+ w2
n
)

(u2
n
− w2

n
)2

)

,

D2 = diag

(

−4u1w1

(u2
1 − w2

1)
2
, . . . ,

−4unwn

(u2
n
− w2

n
)2

)

,

g1 = −(t/m)bT (1 − plog(v, w)) ∈ R,

g2 = −(t/m)AT (1 − plog(v, w)) + q(w, u) ∈ R
n,

g3 = tλ1 − q(u,w) ∈ R
n.

Here, we use diag(z1, . . . , zm) to denote the diagonal ma-
trix with diagonal entries z1, . . . , zm, where zi ∈ R, i =
1, . . . , m. We also use the notation

q(w, u)i = 2wi/(u2
i − w2

i ), i = 1, . . . , n.

The computational effort per iteration is dominated by
step 1, the search direction computation. The Newton sys-
tem can be solved by direct methods (e.g., the Cholesky fac-
torization) and iterative methods (e.g., conjugate gradients).
Direct methods are effective for small and medium dense
problems. For large problems, however, direct methods are
not computationally practical, and iterative methods are far
more efficient. In using an iterative method to compute the
search direction, we need to find a search direction which is
good enough in terms of the trade-off of the computational
complexity versus the convergence rate it provides.

Direct methods We first eliminate ∆u from (13) to obtain
the reduced Newton system

[

tbT D0b tbT D0A
tAT D0b tAT D0A + D3

] [

∆v
∆w

]

= −

[

g1

g4

]

,

(14)
where D3 = D1 − D2D

−1
1 D2 and g4 = g2 − D2D

−1
1 g3.

Once this reduced system is solved, ∆u can be recovered as
∆u = −D−1

1 (g3 + D2∆w). When m < n, i.e., there are
fewer examples than features, the matrix in (14) is a diagonal
matrix plus a rank m+1 matrix, so we can use the Sherman-
Morrison-Woodbury (SMW) formula to solve the reduced
Newton system (14). We start by eliminating ∆w from (14)
to obtain

(tbT D0b − t2bT D0AS−1AT D0b)∆v

= −g1 + tbT D0AS−1g4,

where S = tAT D0A + D3. By the SMW formula, the
inverse of S is given by

S−1 = D−1
3 −D−1

3 AT
(

(1/t)D−1
0 + AD−1

3 AT
)−1

AD−1
3 .

We can now calculate ∆v via Cholesky factorization of the
matrix

(

(1/t)D−1
0 + AD−1

3 AT
)

and two backsubstitutions
(Boyd & Vandenberghe 2004, App. C). Once we compute
∆v, we can compute the other components of the search
direction as

∆w = −S−1(g4+tAT D0b∆v), ∆u = −D−1
1 (g3+D2∆w).

The number of flops needed to compute the search direc-
tion using direct methods is O(min(n,m)2 max(n, m)).

Computing search direction via PCG For large prob-
lems, we compute the search direction approximately, us-
ing a preconditioned conjugate gradients (PCG) algorithm,
which uses a symmetric positive definite preconditioner
P ∈ R

2n+1×2n+1 (Demmel 1997, §6.6). To describe the
preconditioner, we note that the Hessian can be written as
H = t∇2lavg(v, w) + ∇2Φ(w, u). The preconditioner ap-
proximates the Hessian of tlavg at (v, w) with its diagonal
entries, while retaining the Hessian of the logarithmic bar-
rier:

P = diag
(

t∇2lavg(v, w)
)

+ ∇2Φ(w, u)

=

[

d0 0 0
0 D3 D2

0 D2 D1

]

,

where d0 = tbT D0b and D3 = diag(tAT D0A) + D1.
The PCG algorithm needs a good initial search direction

and an effective termination rule.

• Initial point. There are many choices for the initial search
direction, such as negative gradient, 0, or the search di-
rection found in the previous iteration of the method. The
previous search direction appears to have a small advan-
tage over the negative gradient and 0.

• Termination rule. The PCG algorithm terminates when
the cumulative number of PCG iterations exceeds the
given limit Npcg or we compute a point with relative tol-
erance less than ǫpcg. We propose to change the relative
tolerance adaptively as

ǫpcg = min {0.1, ξη/‖g‖2} ,

where g is the gradient and η is the duality gap at the
current iterate. Here, ξ is an algorithm parameter. We
have found that ξ = 0.3 works well for a wide range of
problems. That is, we solve the Newton system with low
accuracy (but never worse than 10%) at early iterations,
and solve it more accurately as the duality gap decreases.
Since the convergence of the PCG algorithm is usually
very fast, there is no significant effect of Npcg on the over-
all performance, as long as the limit is set to a large value.

Each iteration of the PCG algorithm involves a handful
of inner products, the matrix-vector product Hp and a solve
step with P in computing P−1r, where p ∈ R

2n+1 and
r ∈ R

2n+1. We can compute Hp in the PCG algorithm
using

Hp =

⎡

⎣

bT u
AT u + D1p2

D2p2 + D1p3

⎤

⎦ ,

where u = tD0(bp1 + Ap2) ∈ R
m and p = (p1, p2, p3).

The cost of computing Hp is O(s) flops when A is sparse
with s nonzero elements. (We assume s ≥ n, which holds
if each example has at least one nonzero feature.) We can
compute P−1r with r = (r1, r2, r3) as

P−1r =

⎡

⎣

r1/d0

(D1D3 − D2
2)

−1(D1r2 − D2r3)
(D1D3 − D2

2)
−1(−D2r2 + D3r3)

⎤

⎦ .
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The computational cost is O(n) flops. In short, the com-
putational effort of each iteration of the PCG algorithm is
dominated by the matrix-vector product Hp.

The computational effort of the interior-point method that
uses the PCG algorithm to compute the search direction is
the product of the total number of PCG steps required over
all iterations and the cost of a PCG step. In extensive test-
ing, we found the method to be very efficient, requiring a
total number of PCG steps ranging between a few hundred
(for medium size problems) and several thousand (for large
problems).

Numerical Experiments

In this section we compare the performance of our method
and three existing methods for ℓ1-regularized LR, on various
types of data sets. Our method is implemented in Matlab and
C, and the C implementation, which is more efficient than
Matlab implementation (especially for sparse problems),
is available online (www.stanford.edu/∼boyd/l1

logreg).

Experimental setup

Existing methods In our comparison study, we consid-
ered three existing methods: MOSEK (MOSEK ApS 2002),
BBR (Genkin, Lewis, & Madigan 2006), and IRLS (Lee
et al. 2006). MOSEK is a high quality implementation of
interior-point method for convex optimization, whose effi-
ciency over other standard solvers has been confirmed by
a recent benchmark study available at http://plato.
asu.edu/ftp/dimacs sdp.html. BBR is a Gauss-
Seidel type first-order method that scales to large problems
and has been used in practical applications such as gene clas-
sification and text classification (Setakis, Stirnadel, & Bald-
ing 2006). IRLS is a recently developed method that out-
performs many other existing methods including the gen-
eralized Lasso (Roth 2004) and iterative scaling methods
(Goodman 2004; Perkins & Theiler 2003). For these rea-
sons, we believe that our comparison results shown below
are fairly extensive.

Data sets For comparison, various types of data includ-
ing small, medium and large, dense and sparse data sets
were taken from the UCI benchmark repository and other
sources: leukemia cancer gene expression data (Golub et al.
1999), colon tumor gene expression data (Alon et al. 1999),
ionosphere data and spambase data (Newman et al. 1998),
and 20 Newsgroup data (Lang 1995). We processed the 20
Newsgroup data in a way similar to (Keerthi & DeCoste
2005). The positive class consists of the 10 groups with
names of form sci.*, comp.*, and misc.forsale, and the neg-
ative class consists of the other 10 groups. We used McCal-
lum’s Rainbow program (McCallum 1996) to tokenize the
(text) data set with options specifying trigrams, skip mes-
sage headers, no stoplist, and drop terms occurring fewer
than two times.

We also generated 21 data sets, with the number of fea-
tures n varying from one hundred to ten millions, and m =
0.1n examples. Each example has an equal number of pos-
itive and negative examples. Features of positive (negative)

Data n m Type

Leukemia 7129 38 dense
Colon 2000 62 dense
Ionosphere 34 351 dense
Spambase 57 4061 dense

Internet Ads. 1430 2359 sparse
20 Newsgroups 777811 11314 sparse

Rand 1 100 10 sparse
Rand 2 180 18 sparse
Rand 3 320 32 sparse
· · · · · · · · · · · ·
Rand 19 3162280 316228 sparse
Rand 20 5623420 562342 sparse
Rand 21 10000000 1000000 sparse

Table 1: Dense and sparse data sets used in comparison.

examples are independent and identically distributed, drawn
from a normal distribution N (1, 1) (N (−1, 1)), with an av-
erage number of nonzero features per example 30. The data
sets were standardized to make each column of A have zero
mean and unit variance. Table 1 summarizes the statistics of
the data sets used in comparison.

Stopping criteria MOSEK uses the duality gap as the stop-
ping criterion like our method. The original implementation
of IRLS does not have a stopping criterion, so we modified
the code to use the suboptimality bound described above as
the stopping criterion. For a given tolerance value, MOSEK,
(modified) IRLS, and our method terminate with the same
provable bound on the suboptimality (duality gap < 10−8),
so the three methods give solutions with a similar accuracy.
The stopping criterion of BBR is based on the fractional im-
provement. Since we could not modify the C implemen-
tation of BBR, we used the original stopping criterion with
tolerance 10−10. For each data set, the solution computed
by BBR is far less accurate than those by the other exist-
ing methods and our method with modest tolerance (duality
gap).

Regularization parameters The choice of the regulariza-
tion parameter greatly affects the runtime of the methods.
For each data set, we considered two values of the regular-
ization parameter λ: 0.1λmax and 0.001λmax. (For most
standardized problems, the interval [0.001λmax, 0.1λmax]
covers the range of practical interest.)

Comparison details To compute the search direction, our
method uses direct methods for dense problems and the PCG
algorithm for sparse problems. MOSEK and BBR are imple-
mented in C or Fortran, and IRLS is implemented in Matlab.
To ensure fair comparison with IRLS, we use the Matlab
implementation of our method denoted IPM (M), and we
compare the C implementation denoted IPM (C) with the
other two methods.

Computational environment For small and medium
problems, the existing methods and our method were run
on a 3.2GHz Pentium IV, 1GB RAM under Linux. For large
problems, the methods were run on AMD Opteron 254, 8GB
RAM under Linux.
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Data λ IPM (C) MOSEK BBR IPM (M) IRLS

Leuk- λ1 0.62 9.63 36.2 1.19 1.64
emia λ2 0.57 22.41 64.5 1.10 4.72

Colon λ1 0.25 33.6 9.23 0.46 0.80
λ2 0.28 139.7 57.3 0.53 4.18

Iono- λ1 0.02 0.19 0.25 0.06 0.06
sphere λ2 0.03 0.47 1.73 0.07 0.32

Spam- λ1 0.66 6.64 3.05 1.11 1.28
base λ2 0.72 20.4 264 1.20 4.53

Internt λ1 0.30 85.3 165 3.08 40.2
Ads. λ2 1.46 103.1 4310 14.5 -

Table 2: Runtime (in seconds) of the C and Matlab imple-
mentation of our method, MOSEK, BBR, IRLS on bench-
mark data sets with two regularization parameters: λ1 =
10−1λmax and λ2 = 10−3λmax.

λ/λmax PCG iterations Time (sec)

0.5 558 134

0.1 1036 256

0.05 2090 501

Table 3: Performance of our method on the 20 Newsgroups
data set for 3 values of λ.

Experimental results

Benchmark problems Table 2 summarizes the compar-
ison results for the five benchmark problems. (Here ‘−’
means that the tolerance is not achieved in five hours.) The
C implementation of our method is far superior to BBR and
MOSEK for the problems. The Matlab implementation is a
few times faster than IRLS for the smaller value of λ. For
λ = 10−1λmax, there was no significant difference in the
performance of the Matlab implementation and IRLS. The
comparison results clearly show that our method is more ef-
ficient than the existing methods for the benchmark prob-
lems. Moreover, its performance is not sensitive to the reg-
ularization parameter, unlike the existing methods.

A large sparse problem Our method could solve the ℓ1-
regularized LRP for the 20 Newsgroups data set efficiently.
The runtime depends on the value of the regularization pa-
rameter. Table 3 summarizes the performance. No existing
method could solve the problems in 10 hours.

Randomly generated problems To examine the effect of
problem size on the performance of our method and the three
existing methods (MOSEK, IRLS, and BBR), we used the 21
randomly generated data sets. with λ = 0.1λmax.

Figure 1 summarizes the scalability comparison results.
Our method (IPM) is more efficient than the existing meth-
ods for small problems, and far more efficient for medium
and large problems. By fitting an exponent to the data over
the range from n = 320 to the largest problem success-
fully solved by each method, we find that the interior-point
method scales almost linearly as O(n1.3), i.e., the runtime
increases almost linearly with problem size. The empirical
complexities of BBR, MOSEK and IRLS are O(n2), O(n3)
and O(n3.4) respectively.
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Figure 1: Runtime of our method and the three exist-
ing methods, for (standardized) randomly generated sparse
problems, with the regularization parameter λ = 0.1λmax.

Comparison summary

In summary, the comparison results above show that our
method is far more efficient than existing specialized meth-
ods for ℓ1-regularized logistic regression, not only for small
and medium problems but also for large problems, provid-
ing very accurate solutions reliably. For sparse problems, the
empirical complexity of our method is almost linear in the
problem size (i.e., the number of features). The complexity
of the existing methods is more than quadratic, and so the
exiting methods become quickly inefficient as the problem
size grows.

Conclusions

In this paper we have described a specialized method for
solving ℓ1-regularized LRP, which scales well to large prob-
lems that arise in practical applications. The method can
be extended to other problems that involve ℓ1 regularization,
such as ℓ1-regularized least squares problems. The most im-
portant part in the generalization is to find a preconditioner
that gives a good trade-off between the computational com-
plexity and the accelerated convergence it provides.
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