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Abstract: Independent component analysis (ICA) is a promising analysis method that is being increas-
ingly applied to fMRI data. A principal advantage of this approach is its applicability to cognitive
paradigms for which detailed models of brain activity are not available. Independent component analysis
has been successfully utilized to analyze single-subject fMRI data sets, and an extension of this work
would be to provide for group inferences. However, unlike univariate methods (e.g., regression analysis,
Kolmogorov–Smirnov statistics), ICA does not naturally generalize to a method suitable for drawing
inferences about groups of subjects. We introduce a novel approach for drawing group inferences using
ICA of fMRI data, and present its application to a simple visual paradigm that alternately stimulates the
left or right visual field. Our group ICA analysis revealed task-related components in left and right visual
cortex, a transiently task-related component in bilateral occipital/parietal cortex, and a non-task-related
component in bilateral visual association cortex. We address issues involved in the use of ICA as an fMRI
analysis method such as: (1) How many components should be calculated? (2) How are these components
to be combined across subjects? (3) How should the final results be thresholded and/or presented? We
show that the methodology we present provides answers to these questions and lay out a process for
making group inferences from fMRI data using independent component analysis. Hum. Brain Mapping 14:
140–151, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Independent component analysis (ICA) is a prom-
ising data analysis method that is being increasingly
applied to fMRI data [Bell and Sejnowski, 1995; McKe-
own et al., 1998b]. Independent component analysis
attempts to separate independent “sources” that have

been mixed together (e.g., separating the voices from
different speakers recorded on a single microphone).
Independent component analysis as applied to fMRI
data can be used to separate either spatially [McKe-
own et al., 1998a] or temporally [Biswal and Ulmer,
1999] independent sources and works well in both
situations when appropriate assumptions are met
[Calhoun et al., 2001b; McKeown and Sejnowski, 1998].

However, there has not yet been an approach pre-
sented for performing an ICA analysis on a group of
subjects. This process is complicated by the different
processing stages involved in the ICA analysis as well
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as the computational burden involved. For example,
when using the general linear model, the investigator
specifies the regressors of interest, and so drawing
inferences about group data comes naturally, because
all individuals in the group share the same regressors.
In ICA, by contrast, different individuals in the group
will have different time courses, and so it is not im-
mediately clear how to draw inferences about group
data using ICA. We present a model that facilitates the
extension of ICA to group studies. We propose per-
forming such an analysis by answering the following
three questions: (1) How many components should be
calculated? (2) How are these components to be com-
bined across subjects? (3) How should the final results
be thresholded and/or presented? We propose an-
swers to each of these questions in the context of this
work. We focus on spatial ICA (i.e., calculation of
spatially independent brain sources mixed by the he-
modynamic response), although our methods can be
applied to temporal ICA as well.

THEORETICAL DEVELOPMENT

A group ICA model

We introduce the model in Figure 1 for discussion of
group ICA. In the data generation block, we assume
that there are a set of statistically independent hemo-

dynamic source locations in the brain (indicated by si

(v) at location v, a continuous number spanning the
image space, for the ith source). The sources

sp~vp! 5 @s1~vp!, s2~vp!, . . . , sN~vp!#
T (1)

have weights that specify the contribution of each
source to each voxel (at locations indicated by vp,
defined on [0, D] for the pth subject, where D is the
size of the image); these weights are multiplied by
each source’s hemodynamic time course. Finally, it is
assumed that each of the N sources are added together
so that a given voxel contains a mixture of the sources,
each of which fluctuates according to its weighted
hemodynamic time course. This linear mixing is rep-
resented by the system, A, and yields

up~vp! 5 @u1~vp!, u2~vp!, . . . , uN~vp!#
T, (2)

which represents N ideal samples of the signals ui (v)
at location v, for the ith source.

The first portion of the data generation block takes
place within the brain. The second portion of the data
generation block involves the fMRI scanner. We as-
sume that K discrete time points were acquired with
the scanner and that there are more time points ac-
quired than there are sources in the brain. The sam-

Figure 1.
Model for the group ICA analysis. The model indicates our as-
sumptions in the data-generation block and our processing
method in the postprocessing block. After spatial normalization
and reduction, single subject data are combined together, followed

by the independent component analysis, and finally individual sub-
ject maps and time courses are reconstructed and a “random
effects” estimation is performed.
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pling of the brain’s hemodynamics with the fMRI
scanner results in

yp~ip! 5 @y1~ip!, y2~ip!, . . . , yK~ip!#
T (3)

where the fMRI data is discretely sampled in space (at
locations indicated by ip 5 1, 2,. . .,V for the pth subject,
where V is the number of voxels).

In the data processing block, we have a transforma-
tion T(.) representing a number of possible prepro-
cessing stages, including slice phase correction, mo-
tion correction, spatial normalization, and smoothing.
Following this stage, the effective spatial sampling for
all subjects is indexed by j 5 1, 2,. . .,M, so that we now
have

yp~j! 5 @y1~j!, y2~j!, . . . , yN~j!#T (4)

To perform the group analysis, we make the assump-
tion that the data collected from individual subjects
are statistically independent observations. Thus, pxy (x,
y) 5 px (x) py (y), where pi(i)|i5x,y is a probability
density function (pdf) of a source from subject i and
pxy (x, y) is the joint pdf for the same source for
subjects x and y. Each subject is thus treated as an
observation of the statistics of the population. Given
this assumption, we will demonstrate that the unmix-
ing matrix produced from the group ICA analysis will
be largely separable across subjects.

The postprocessing block is the primary concern of
this work. The stages of analysis include (a) prepro-
cessing/spatial normalization, (b) data reduction, (c)
estimation of independent components, and (d)
thresholding/presentation of the results. The first
stage (a) in our model involves preprocessing and
spatial normalization of the data into a standard space
[Talairach and Tournoux, 1988] followed by (b) data
reduction. Two reduction steps, one on data from each
subject (F̂1

21. . .F̂M
21) and one on an aggregate data set

(Ĝ21), are used to reduce the computational load of
simply entering all subjects’ data into an ICA analysis
prior to reduction. In the third stage (c), estimation of
independent sources is performed. The fourth stage
(d) involves grouping components across subjects and
thresholding the resulting group ICA images. The rea-
sons for choosing this particular set of stages will
become evident during the discussion of each of the
three questions presented earlier.

How many components should be estimated?

The number of time points of the fMRI data has no
relationship to the number of independent sources. In

this method, we assume that there are more time
points than sources in the fMRI scan, a reasonable
assumption in many fMRI studies due to the large
number of time points often acquired. Typically, prin-
ciple component analysis (PCA) is used to represent
most of the variance of the data (e.g., more that 99%)
within a lower dimensionality [McKeown et al.,
1998b] although other approaches to reduce the data,
such as clustering [Calhoun et al., 2001a], can also be
used. One could also choose to incorporate the data
reduction into the ICA estimation stage directly. We
chose to keep the data reduction as a separate stage
because this seems a more natural way of treating the
data and allows the estimation of the number of com-
ponents.

We propose using standard information theoretic
methods for estimating the number of components
from the aggregate data set. These methods make a
decision based upon the complexity or information
content of the data. The number of sources can be
estimated using the well known Akaike’s information
criterion (AIC) or the minimum description length
(MDL) criterion [Akaike, 1974; Rissanen, 1983]. These
criteria have the following forms:

AIC~N! 5 22V~ML 2 N!+~ûN!

1 2S1 1 NL 1
1
2 ~N 2 1!D (5)

MDL~N! 5 2V~ML 2 N!+~ûN!

1
1
2 S1 1 NL 1

1
2 ~N 2 1!D ln V (6)

where V is the number of voxels, M is the number of
subjects, £ (Q̂N) is the log of the maximum likelihood
estimate of the model parameters (and is estimated
from the data, e.g., fMRI data), ML is the number of
time points following the first reduction stage, and N
is the number of sources. The estimate for the number
of sources is determined from the minima of the above
functions with respect to N. These equations have
been previously derived for a PCA decomposition
resulting in the equation presented below

+~ûN! 5 ln1
~lN 1 1 . . . lLM!1/~LM 2 N!

1
LM 2 N ~lN 1 1 1 · · · 1 lLM!2 (7)

where li represents the ith largest eigenvalue from the
PCA decomposition [Karhunen et al., 1997; Wax and

r Calhoun et al. r

r 142 r



Kailath, 1985]. The expression for £ (Q̂N) is the ratio of
the geometric mean of the LM-N smallest PCA eigen-
values to their arithmetic mean. PCA is an optimal
data reduction approach in that it minimizes the
squared error associated with a lower dimensional set
of orthogonal vectors. In the context of fMRI data, lLM

represents the variance associated with the resultant
best-fit line through the fMRI data (consider a graph
with LM axes, one per time point, and with one point
plotted per voxel). The variance associated with the
next best-fit line (constrained to be orthogonal to the
first line) is represented bylLM21 continuing down
tol1. The number of eigenvalues will be equal to the
number of time points in the fMRI data set, although
many of the smaller eigenvalues will be very close to
zero.

The MDL criterion has the desirable property of
statistical consistency, yielding asymptotically correct
results [Karhunen et al., 1997; Wax and Kailath, 1985].
Although the AIC criterion does not have this theo-
retically desirable property, it may perform better at
lower signal-to-noise ratios [Karhunen et al., 1997].
We thus chose to calculate both estimates and use the
average of the two to determine the number of com-
ponents.

HOW CAN COMPONENTS BE COMBINED
ACROSS SUBJECTS?

We suggest entering all subjects into an ICA analy-
sis and estimating one set of components. This has the
advantage of ordering the components in different
subjects in the same way. This produces a single set of
“group” components that can then be interpreted. The
estimation stage becomes computationally unwieldy
for whole brain data sets, but the computational load
can be decreased considerably by the incorporation of
two data-reduction stages as indicated. The data from
the individual subjects are first reduced in dimension;
these reduced data, from all subjects, are then concat-
enated (see Appendix). This data set is then further
reduced resulting in a matrix that can be used in an
ICA estimation stage.

The ICA maps from individual subjects are back-
reconstructed from the aggregate mixing matrix. A
formal treatment of this process may be found in the
Appendix; here we consider a heuristic case. Consider
data in a voxel sampled at two time points from two
subjects (subject x and subject y), dx 5 [x1 x2] and dy 5
[y1 y2], each of which is a normalized linear mixture of
two hemodynamic sources. If we concatenate these
subjects into a single vector, we have

d 5 @dx dy#
T (8)

Assuming the correct number of sources is two, the
data reduction and ICA analysis result in a mixing
matrix

W 5 F a1 a2

b1 b2
U a3 a4

b3 b4
G 5 @Wx Wy# (9)

and an estimate of the original sources ŝ 5 Wd where
W is partitioned to depict the submatrices correspond-
ing to the original mixed sources. To back-reconstruct
the individual subject maps we multiply the partition
of W corresponding to the desired subject’s data with
the corresponding partition of d (e.g., sx 5 Wxdx).

Because the goal of ICA is to yield independent
components, the rows of ŝ will be approximately sta-
tistically independent. Additionally, data from each
subject is expected to be independent of each other.
Then, we write the expression for ŝ

ŝ 5 F s11 1 s12

s21 1 s22
G (10)

where we have defined s11 5 a1x1 1 a2x2, s21 5 b1x1
1b2x2, s12 5 a3y1 1 a4y2, s22 5 b3y1 1 b4y2, and first
note the statistical independence of s11 and s22 (and s12
and s21). Because the ICA algorithm minimizes the
dependence among the signals (rows of ŝ), the depen-
dence between s11 and s21 (and s12 and s22) will be
minimized by more heavily relying on the data within
that subject, forcing the parameters for each subject to
be primarily determined by that subject’s observa-
tions. Thus, the individual unmixing matrices will be
approximately separable across subjects (partitions)
and the back-reconstructed data will be a function of
primarily the data within subjects rather than across
subjects.

In addition to the spatial maps, this analysis pro-
duces a representative time course, although this time
course is not directly suitable for interpretation be-
cause it is derived from the reduced data sets. The
unreduced fMRI time courses can be reconstructed by
multiplying the dewhitening matrix from the first data
reduction by the corresponding partition of W21 (see
Appendix). These time courses then reflect the hemo-
dynamics of the fMRI experiment and may be in-
spected separately for each subject, or averaged across
subjects to create a group time course.

How should the final results be thresholded?

We can threshold the resulting group ICA maps
using a Z-threshold criterion as suggested for single
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subject analysis [McKeown et al., 1998a]. Although
this is a useful method, we suggest instead recon-
structing single-subject ICA maps from the group ICA
estimation. As the ICA analysis produces estimates of
hemodynamic sources, there is a physiologic meaning
to the results. Thus, it makes sense to calculate the
mean and variance of each component across subjects,
where the variance across subjects can be used as an
estimate of the population variance [Woods, 1996]. A
hypothesis test can then be used to provide a “random
effects” inference: the magnitudes or weights of the
voxels within a set of ICA components are treated as
random variables and a one-sample t test with the null
hypothesis of zero magnitude is performed.

EXPERIMENTS AND METHODS

Simulated experiment

We apply these concepts to simulated data to illus-
trate their use. Two 30-by-30 spatial “sources” and
associated 80-point hemodynamic mixing time
courses were generated (see Fig. 2). Each source was
flattened into a 900-element vector, and the two sub-
sequently mixed by the hemodynamic time courses,
resulting in a 900-by-80 matrix. Zero mean, Gaussian
noise was then added to the mixed sources such that
the contrast-to-noise ratio (CNR) for the largest simu-
lated fMRI “activation” was 3.9, slightly less than half

the CNR for our fMRI experiment. Nine sets of data,
differing only in additive noise, were created to sim-
ulate a group of nine “subjects”. Each individual “sub-
ject” was first reduced from 80 time points to 20 time
points using PCA, and the resulting data sets were
concatenated together into an aggregate data set, re-
sulting in a 900-by-180 matrix. The number of sources
was then estimated from the aggregate data using
AIC/MDL, and the aggregate data was further re-
duced using PCA to the dimension indicated by AIC/
MDL, followed by independent component estima-
tion. This yielded a set of aggregate components and
time courses. The individual time courses and maps
were then reconstructed and thresholded as described
earlier.

A second simulation was performed to determine
how the sources that were back-reconstructed from
the aggregate mixing matrix would compare with
sources that were generated from an ICA analysis
performed separately on each “subject”. To determine
this matrix, we simulated nine “subjects” as before,
except eight of the nine subjects only had one source
embedded within the data. The ninth subject had two
sources (similar to the sources in the previous simu-
lation). Noise was added to each data set as in the
previous simulation. We then performed a group ICA
analysis and calculated individual subjects maps from
the aggregate mixing matrix. Additionally, we per-
formed an ICA analysis on each subject individually

Figure 2.
Simulated hemodynamic mixing
functions (top), and spatial
“sources” (bottom). Two
sources were simulated; source
1 had 3 times the amplitude of
source #2 as can be seen from
the amplitudes of the hemody-
namic mixing functions.
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and generated subjects’ maps for comparison with the
back-reconstructed maps.

fMRI experiment

The Johns Hopkins Institutional Review Board ap-
proved the protocol and all participants provided in-
formed consent. Data from nine normal subjects were
acquired on a Philips 1.5T Scanner. Functional scans
were acquired with an echo planar sequence (64 3 64,
flip angle 5 90, TR 5 1 sec, TE 5 39 msec) over a 6-min
period for a total of 360 time points. Nine slices were
acquired, centered on the occipital pole and the frontal
pole. A visual paradigm was presented in which an 8
Hz reversing black and white checkerboard was pre-
sented intermittently in the left and right visual fields for
30 sec at a time. The paradigm is depicted in Figure 3.

Preprocessing

The images were first corrected for timing differ-
ences between the slices using windowed Fourier in-
terpolation to minimize the dependence upon which
reference slice is used [Calhoun et al., 2000; van de
Moortele et al., 1997]. Next, the data were imported
into the Statistical Parametric Mapping software pack-
age, SPM99 [Worsley and Friston, 1995]. Data were
motion corrected, spatially smoothed with a 6 3 6 3
10 mm Gaussian kernel, and spatially normalized into
the standard space of Talairach and Tournoux [1988].
The data were slightly subsampled to 3 3 3 3 4 mm,
resulting in 53 3 63 3 34 voxels. For display here,
slices 10–25 are presented.

General linear model

Data from each participant were used in a general
linear model (GLM) analysis using SPM99 [Friston et

al., 1996]. Regressors consisted of the two time courses
(left visual field and right visual field) in Figure 3
convolved with an estimate of the hemodynamic re-
sponse function. Data were high-pass (drift removal)
filtered by entering sinusoidal functions into the
model up to a frequency of 1/180s as covariates and
low-pass filtered by smoothing the data temporally
with a Gaussian kernel (4 sec full width at half maxi-
mum). These single-subject maps were thresholded at
p , .00001 [t 5 4.5, degrees of freedom (df) 5 79].
Additionally, a secondary “random effects” analysis
was performed on the individual analyses by entering
the amplitudes of the two regressors into a one-sample
t test. Results from this analysis were thresholded at
p , .001 (t 5 4.5, df 5 8).

ICA

An AIC/MDL estimation on two subjects was per-
formed, which predicted in both subjects fewer than
40 sources. Data from each subject were reduced from
360 time points to 40 time points using PCA. The
results are not very sensitive to the reduction param-
eter; however, the original data should not be overly
reduced to avoid losing important information. Data
from all subjects were then concatenated and this ag-
gregate data set was entered into an AIC/MDL esti-
mation to determine the number of sources existing in
the group data. The aggregate data were then reduced
to this dimension using PCA, followed by an indepen-
dent component estimation using an algorithm which
attempts to minimize mutual information [Bell and
Sejnowski, 1995]. Time courses and spatial maps were
then reconstructed for each subject and the spatial
maps were thresholded at p , .001 (t 5 4.5, df 5 8).

A question that arose was how performing the group
ICA analysis and back-reconstructing individual ICA
maps from the aggregate mixing matrix would affect the
individual mixing matrices. We thus performed a sepa-
rate ICA analysis on each subject for comparison with
the back-reconstructed ICA maps. Data from each sub-
ject were reduced from 360 time points to 22 time points,
a number greater than the intrinsic number of sources
and less than the original dimensionality, using PCA
and entered into an independent component estimation.
Each resultant image was then converted to a Z score
and thresholded at p , .00001 (Z 5 4.23).

RESULTS

Simulated experiment

The number of sources in the simulated data set was
correctly estimated to be two (see Fig. 4a). Group

Figure 3.
Paradigm used for the fMRI experiment. An 8 Hz reversing check-
erboard was presented intermittently in the left and right visual
fields. Subjects were instructed to maintain focus on a central
crosshair during the 6-min experiment.
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results from nine simulated “subjects” are shown in
Figure 5. The group spatial maps (bottom) were
thresholded at p , .001 (t 5 4.5, df 5 8), and match the
actual sources very well. The amplitudes of the time
courses were normalized to one. Note that there is
increased variability in source #2 due to the lower
amplitude of the hemodynamic mixing function. Hav-
ing a hemodynamic mixing function, which is one-
third of that for source #1, is equivalent to an fMRI
activation, which has one-third of the amplitude of
source #1 (refer to Fig. 2).

Results from our second simulation are presented in
Figure 6. ICA spatial maps generated from individual
subjects were very similar to spatial maps back-recon-
structed from the aggregate mixing matrix.

fMRI experiment

Single-subject results from the fMRI experiments
are presented in Figure 7 for the (a) general linear
model, (b) back-reconstructed ICA, and (c) individual
ICA methods for slice 15 of the spatially normalized
data. Results are overlaid onto the normalized EPI
images from the appropriate subjects. The GLM re-
sults are thresholded at p , .00001 (t 5 4.5, df 5 79),
and the ICA results are thresholded at p , .00001 (Z 5
4.23). Twenty-one components were estimated for the
ICA results; two task-related components (depicted in
red and blue, respectively) along with one transiently
task-related component (depicted in green) are pre-
sented in the figure. Note that the GLM maps seem
quite similar to the ICA maps for the task-related

components. The back-reconstructed ICA maps
seem similar to the ICA maps performed on indi-
vidual subjects. Note that there are some differences
between the maps at the chosen threshold, but when
applying a slightly lower threshold (not shown) the
overall similarity of the two sets of ICA maps is
confirmed.

Group maps for both the GLM and ICA analyses are
presented in Figure 8. The number of components was
estimated to be 21 by both MDL and AIC, so the
aggregate data were reduced to this dimension and 21
components were estimated. Both maps are thresh-
olded at p , .001 (t 5 4.5, df 5 8). Group ICA maps
resembled individual subject maps but were consid-
erably smoother (compare to the group maps pro-
duced using SPM99). There were several interesting
components within the data (see Fig. 8c). Separate
components for primary visual areas on the left and
the right visual cortex (depicted in red and blue, re-
spectively) were consistently task-related with respect
to the appropriate stimulus. A large region (depicted
in green) including occipital areas and extending into
parietal areas seemed to be deactivated when the vi-
sual stimuli from either hemi-field was turned off.
This area follows the parieto-occipital sulcus upward
and extends on both sides, including portions of cu-
neous, precuneous, and the lingual gyrus. Addition-
ally, we identified visual association areas (depicted in
white) that were consistently detected across the
group of subject; however, the time courses were not
task- related.

Figure 4.
Results from AIC/MDL source estimation for (a) simulated, and (b) fMRI data. Both the AIC and
MDL methods indicated the correct number of sources (2) for the simulated data set. For the fMRI
data set, both AIC and MDL indicated 21 sources.
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DISCUSSION

We have presented a method for making group
inference maps through the application of indepen-
dent component analysis to fMRI data. We have ap-
plied it to a simple visual paradigm and identified
several distinct visual areas, which were either consis-
tently task-related, transiently task-related, or corre-
lated but non-task-related. Among these, we identified
bilateral occipital/parietal areas, which indicated tran-
sient decreases only when the visual stimuli from
either eye were turned off. The visual areas that were
not task-related may have been detected because of
functional connectivity. This is related to experiments
in which correlations are detected between function-
ally related regions [Biswal et al., 1995] and also agrees
with the fact that bilateral primary auditory cortex
(see Fig. 7) and other areas (not shown) are consis-
tently detected in our ICA studies.

A few comments on the particulars of our method
are in order. It is important to consider how the pre-
processing stages affect the resulting images. The pre-
processing stages performed include timing correc-
tion, motion correction, spatial normalization, and
smoothing. The first three are necessary to attempt to
place the image data from all subjects into the same
point of reference in both time and space. The smooth-
ing is useful as it both reduces the amount of high-
frequency spatial noise as well as desensitizes the
images to errors in the motion correction and normal-
ization. It is straightforward to demonstrate that spa-
tial smoothing will not affect the (spatial) ICA estimate
(i.e., the mixing matrix will be the same though the
source maps will be smoothed) and thus is a reason-
able preprocessing step [Hyvarinen and Oja, 2000].

In Figure 8, it is interesting to note that at the same
threshold, the group ICA maps indicate greater spatial
extent of activation than the group SPM maps for both

Figure 5.
Estimated sources and hemodynamic mixing functions. Results are
thresholded at p . .001 (t 5 4.5, dF 5 8) with the regions that
surpassed the threshold outlined in red. Both sources are cor-

rectly identified. Note that source #2 had a higher degree of
variability (both in the time course and in the spatial map) due to
the lower amplitude of the original source.
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the left and the right visual field stimulation. The SPM
group results were generated by performing a t test on
the amplitudes resulting from a GLM estimation (test-
ed against a null hypothesis of zero amplitude). We
chose such a comparison because testing the ampli-
tudes in a GLM analysis is the more common ap-
proach due to the physiologic meaning of the ampli-
tude estimates [Holmes and Friston, 1998]. However,
we also performed a t test on the individual SPM{t}
maps (not shown), and the resulting maps are very
similar in spatial extent to the depicted GLM results. The
ICA t test also has physiologic meaning, as our initial
assumption was that the ICA maps represent statistically
independent hemodynamic sources in the brain.

We chose to estimate the number of sources present
from the fMRI data itself. Order selection, however, is
not an easy problem, and such methods are often largely
empirical in nature. We chose the number of compo-
nents to provide a good tradeoff between preserving
much of the information in the data while reducing the
size of the data set, thus making the ICA computation

and interpretation less intensive. We have presented one
approach to determine the optimal reduction parameter,
but it should be noted that order selection methods are
still an area of active investigation. The use of our Group
ICA method, however, may improve the statistics used
for order selection methods due to the increase in sample
points. It thus might be more useful to perform such
estimations on group-averaged data.

Starting from the assumption that data from sub-
jects represent independent observations, we have
demonstrated that the aggregate mixing matrix is sep-
arable across subjects. Empirically, we have demon-
strated, both for simulated data and for fMRI data,
that doing an ICA analysis on individual subjects ends
up yielding largely similar results to performing an
aggregate analysis. However, an alternative, which
does not make this assumption yet still provides for
group inference, is recombining an ICA analysis per-
formed on each subject individually (as one would do
for a single-subject analysis). A set of Ni components is
produced for each subject, and the challenge is then to

Figure 6.
Comparison of (a and c) indi-
vidual ICA maps with (b and d)
back-reconstructed ICA maps.
Note that one of the nine “sub-
jects” had two sources, both of
which are successfully detected
by the back-reconstructed ICA
maps and the individual ICA
maps. Eight of the subjects only
had one source, thus the maps
for source #2 are just noise.
Overall, the two methods
yielded similar results.
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determine how to combine these components across
the subject. We have explored methods for performing
this combination automatically and have previously

used a manual combination method [Calhoun et al.,
2001c]. Additionally, one could choose to perform a
group analysis as we have done in this work as well as

Figure 7.
(a) Single subject results for GLM, (b) back-reconstructed ICA,
and (c) individual ICA. A single slice is presented for each of the
nine subjects depicting activation significantly activated when the

right (red) and left (blue) visual fields were stimulated. A tran-
siently task-related component located in the visual cortex is also
depicted on the ICA images (green).

Figure 8.
Random effects group fMRI results for (a) GLM, and (b) ICA, both
thresholded at p , .001 (t 5 4.5, df 5 8). Five components are
presented including task-related components in right visual cortex
(red), left visual cortex (blue); a transiently task-related compo-
nent (TTR, green) in bilateral occipital/parietal cortex; and non-

task-related components in bilateral visual association cortex
(NTRV, white outline) and primary auditory cortex (NTRA, pink).
(c) Time courses for the components are presented. Standard
deviation across the group of nine subjects is indicated for each
time course with dotted lines.
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an individual ICA analysis. The individual back-re-
constructed ICA maps could then be used as a tem-
plate with which to order and combine the ICA maps
from the individual ICA analysis (by calculating the
correlation of the individual maps with the group ICA
maps and sorting them by correlation coefficient). Of
these possibilities, the group method we present in
this work provides the least amount of both compu-
tation time and manual interpretation.

Future studies

There is some evidence that the visual areas de-
tected are related to the task in general, as they are not
detected in ICA analysis of data from experiments in
which a different task is performed (e.g., a visual
perception task) [Calhoun et al., 2001c]. Interpretation
of non-task-related regions is difficult, but may be
possible with carefully designed control tasks and
additional studies of the properties of ICA decompo-
sition of fMRI. Additionally, methods related to hy-
brid ICA might be useful in understanding how to
interpret non-task-related regions [McKeown, 2000].

Registration errors do not seem to be a significant
problem in our experiment, which involved very strik-
ing changes in the left and right visual cortices that
could be easily inspected. However, ICA of paradigms
involving subtler changes or transiently task-related
components may require further investigation into the
effects of these stages.

In conclusion, we have extended independent com-
ponent analysis of fMRI data to provide for group
inferences. Our method has general applicability, is
straightforward to apply, and should be computation-
ally reasonable for many fMRI group studies.
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APPENDIX: DATA REDUCTION AND SINGLE-
SUBJECT PARTITIONING

Data reduction

Let Xi 5 Fi
21Yi be the L-by-V reduced data matrix

from subject i, where Yi is the K-by-V data matrix
(containing the preprocessed and spatially normalized
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data), Fi
21 is the L-by-K reducing matrix (determined

by the PCA decomposition), V is the number of voxels,
K is the number of fMRI time points, and L is the size
of the time dimension following reduction. Note that
all inverses are considered to be psuedoinverses if the
matrix is not square.

The next step is to concatenate the reduced data
from all subjects into a matrix and reduce this matrix
to N (the number of components to be estimated). The
N-by-V reduced, concatenated matrix for the M sub-
jects is

X 5 G 2 1F F1
2 1Y1···

FM
2 1YM

G (A1)

where G21 is an N-by-LM reducing matrix (also de-
termined by a PCA decomposition) and is multiplied
on the right by the LM-by-V concatenated data matrix
for the M subjects.

ICA estimation

Following ICA estimation, we can write X 5 ÂŜ,
where Â is the N-by-N mixing matrix and Ŝ is the
N-by-V component map. Substituting this expression
for X into Equation (A1) and multiplying both sides by
G, we have

GÂŜ 5 F F1
2 1Y1···

FM
2 1YM

G . (A2)

Partitioning

Partitioning the matrix GÂ by subject provides the
following expression

F G1Â1···
GMÂM

G Ŝ 5 F F1
2 1Y1···

FM
2 1YM

G . (A3)

We then write the equation for subject i by working
only with the elements in partition i of the above
matrices such that

GiÂiŜi 5 Fi
2 1Yi. (A4)

The matrix Ŝi in Equation (A4) contains the single
subject maps for subject i and is calculated from

Ŝi 5 ~Gi
2 1Âi!

2 1BiXi. (A5)

Single-subject maps and time courses

We now multiply both sides of Equation (A4) by Fi

and write

Yi 5 FiGiÂiŜi, (A6)

which provides the ICA decomposition of the data
from subject i, contained in the matrix Yi. The N-by-V
matrix Ŝi contains the N source maps and the K-by-N
matrix FiGiÂi is the single subject mixing matrix and
contains the time course for each of the N components.
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