
A Method for Making Password-Based

Key Exchange Resilient

to Server Compromise?

Craig Gentry1, Philip MacKenzie2, and Zulfikar Ramzan3

1 Stanford University, Palo Alto, CA, USA, cgentry@cs.stanford.edu
2 Google, Inc., Mountain View, CA, USA, philmac@google.com

3 Symantec, Inc., Redwood City, CA, USA, zulfikar ramzan@symantec.com

Abstract. This paper considers the problem of password-authenticated
key exchange (PAKE) in a client-server setting, where the server authen-
ticates using a stored password file, and it is desirable to maintain some
degree of security even if the server is compromised. A PAKE scheme
is said to be resilient to server compromise if an adversary who com-
promises the server must at least perform an offline dictionary attack to
gain any advantage in impersonating a client. (Of course, offline dictio-
nary attacks should be infeasible in the absence of server compromise.)
One can see that this is the best security possible, since by definition the
password file has enough information to allow one to play the role of the
server, and thus to verify passwords in an offline dictionary attack.
While some previous PAKE schemes have been proven resilient to server
compromise, there was no known general technique to take an arbitrary
PAKE scheme and make it provably resilient to server compromise.
This paper presents a practical technique for doing so which requires
essentially one extra round of communication and one signature com-
putation/verification. We prove security in the universal composability
framework by (1) defining a new functionality for PAKE with resilience
to server compromise, (2) specifying a protocol combining this technique
with a (basic) PAKE functionality, and (3) proving (in the random oracle
model) that this protocol securely realizes the new functionality.

1 Introduction

The Basic Problem. We start by describing the basic problem of setting up
a secure channel between two parties, Alice and Bob, who only share a short
secret password. Neither of them knows a public key corresponding to the other
party, and neither has a certified public key (i.e., a public key whose certificate
can be verified by the other party). If Alice and Bob shared a high-strength
cryptographic key (i.e., a long secret), then this problem could be solved using
standard solutions for setting up a secure channel, such as the protocol of Bel-
lare and Rogaway [5]. However, since Alice and Bob only share a short secret

? This work was carried out while all the authors were at DoCoMo USA Labs.

2

password, they must also be concerned with offline dictionary attacks. An offline
dictionary attack occurs when an attacker obtains some information that can be
used to perform offline verification of password guesses. We will call this pass-
word verification information. For a specific example, consider the following. Say
Alice and Bob share a password π, and say an attacker somehow obtained a hash
of the password h(π), where h is some common cryptographic hash function such
as SHA-1 [41]. Then an attacker could go offline and run through a dictionary
of possible passwords {π1, π2, . . .}, testing each one against h(π). For instance,
to test if πi is the correct password, the attacker computes h(πi) and checks if
h(πi) = h(π). In general, the password verification information obtained by the
attacker may not be as simple as a hash of a password, and an attacker may not
always be able to test all possible passwords against the password verification
information, but if he can test a significant number of passwords, this is still
considered an offline dictionary attack. For some fairly recent demonstrations of
how effective an offline dictionary attack can be, see [40, 44, 50]. So the problem
remains: how do Alice and Bob set up a secure channel? In other words: how
do Alice and Bob bootstrap a short secret (the password) into a long secret (a
cryptographic key) that can be used to provide a secure channel?

A protocol to solve this problem is called a password-authenticated key ex-
change (PAKE) protocol. Informally, a PAKE protocol is secure if the only
feasible way to attack the protocol is to run a trivial online dictionary attack of
simply iteratively guessing passwords and attempting to impersonate one of the
parties. (Note that this type of attack can generally be detected and stopped by
well-known methods.) The problem of designing a secure PAKE protocol was
proposed by Bellovin and Merritt [7] and by Gong et al. [24], and has since
been studied extensively. Below we discuss the many techniques that have been
proposed.

Resilience to Server Compromise. Consider a PAKE protocol run in a
client-server setting, where the client device receives a password input by a user,
but where the server stores a “password file” that contains data that can be
used to authenticate each user. In this scenario it is natural to be concerned
about the security of this password file, since an adversary that compromises
the server could obtain this password file.4 In the case of many existing PAKE
protocols, the consequences of an adversary obtaining the server’s password file
are disastrous, with the adversary obtaining enough information to impersonate
a client. That is why there has been a significant amount of work on making
PAKE schemes “as secure as possible” even if the server gets compromised.
Naturally, if an adversary obtains a server password file, he possesses password
verification information, so he can always mount an offline dictionary attack.
The goal, therefore, in improving resilience to server compromise is to make the
offline dictionary attack the best he can do.

4 From the many recent reports of theft of credit cards and other personal information
from e-commerce servers, it seems that compromise of a server is a real threat.

3

In the remainder of the paper, a symmetric PAKE scheme refers to one in
which the two parties use identical strings corresponding to the same password
(and which, consequently is trivially insecure in the client-server setting when
the server is compromised). An asymmetric PAKE scheme refers to one which is
designed to maintain security (as discussed above) despite a server compromise.
In particular, this implies that the server does not store the plaintext password.

Related Work. Since the PAKE problem was introduced, it has been studied
extensively, and many PAKE protocols have been proposed, e.g., [24, 23, 26, 34,
48, 32]. Many of these protocols have been shown to be insecure [9, 45]. More
recent protocols, e.g., [3, 10, 1, 37, 51, 19], have proofs of security, based on certain
well-known cryptographic assumptions, in the random oracle and/or ideal cipher
models. Other PAKE protocols have been proven secure in the common reference
string (CRS) model, e.g., [31, 18, 29, 14]. Finally the PAKE protocols in [20,
42] were proven secure based on a general assumption (trapdoor permutations)
without any setup assumptions, but with a restriction that concurrent sessions
with the same password are prohibited.

The problem of PAKE with resilience to server compromise has also been
studied extensively, and many protocols have been proposed, e.g., [8, 27, 49,
33].5 Some more recent protocols also have proofs of security based on well-
known cryptographic assumptions, in the random oracle model, e.g., [10, 37,
35]. Although these protocols (along with the protocols of [8, 27]) are based on
symmetric PAKE protocols, and the techniques used to convert the symmet-
ric PAKE protocols into asymmetric PAKE protocols seem somewhat modular,
no modular versions were ever presented, and there were no attempts to prove
(in a modular way) anything about the techniques themselves. Each asymmet-
ric PAKE protocol was presented in its entirety, and was proven secure from
scratch. Note that no protocols for PAKE with resilience to server compromise
have yet been proven secure without relying on random oracles.

Results. We were inspired by the PAK-Z protocol from MacKenzie [36], which
is essentially the PAK protocol from [10] modified using the “Z-method” to
be resilient to server compromise.6 While the Z-method was claimed to be a
general technique, it was only described and analyzed with respect to the PAK
protocol. We first show that the general Z-method does not provide resilience to
server compromise by exhibiting an attack that exploits any instantiation using
discrete-log based signature schemes. Next, we present a new method, called
the Ω-method, that fixes the critical flaw in the Z-method. The Ω-method is
the first general and modular technique that takes any secure symmetric PAKE
scheme as a building block and converts it into one that is resilient to server
compromise. The Ω-method is efficient and practical, essentially adding one

5 There has also been work on protecting the server password file using threshold
techniques, e.g., [17, 28, 16, 30, 38].

6 Previous to PAK-Z, there were PAK-X and PAK-Y protocols, with their own meth-
ods for modifying PAK to be resilient to server compromise.

4

extra round of communication and one signature generation/verification to the
underlying symmetric PAKE scheme.7

We prove security in the universal composability (UC) framework [11] (in
the random oracle model). A symmetric PAKE functionality FpwKE was recently
introduced in [14]. Our original plan was to (1) extend FpwKE into an asym-
metric PAKE functionality FapwKE, and (2) prove that a protocol based on the
Ω-method (which we call the Ω-protocol) securely realizes FapwKE in the FpwKE-
hybrid model. This would imply, by the universal composition theorem [11], that
the Ω-protocol would be secure when instantiated with any secure symmetric
PAKE scheme. For step (1) we added notions of a server setting up a password
record for the client and using that password record for each session, the notion of
stealing the password file, and the notion of explicitly aborting.8 Unfortunately,
step (2) was problematic, since the Ω-method relies on the notion of a protocol
transcript, which does not exist in the symmetric PAKE functionality of [14].
Therefore, we added the notion of a transcript to the symmetric PAKE function-
ality to make a revised symmetric PAKE functionality FrpwKE, and completed
step (2) using the FrpwKE-hybrid model. In Section 4 we discuss why adding this
notion of a transcript is natural and does not have any substantial effect on
whether a protocol securely realizes the functionality.

Applicability. Currently there is only one PAKE protocol that has been shown
to securely realize the symmetric PAKE functionality FpwKE in the UC frame-
work, specifically, the one of Canetti et al. [14]. However, we conjecture that
many of the PAKE protocols cited above that were proven secure in the random
oracle model, but not in the UC framework, could also be proven secure in the
UC framework. Since the Ω-protocol relies on the random oracle model any-
way, it would make sense to combine it with these symmetric PAKE protocols
to achieve (very efficient) asymmetric PAKE protocols. Thus the results of this
paper should have wide applicability.

2 Preliminaries

Symmetric Encryption Schemes. A symmetric encryption scheme E is a pair
(E, D) of algorithms, both running in polynomial time. E takes a symmetric key
k and a message m as input and outputs an encryption c for m; we denote this
c← Ek(m). D takes a ciphertext c and a symmetric key k as input and returns
either a message m such that c is a valid encryption of m, if such an m exists,
and otherwise returns ⊥.

7 As a result of this work, the PAK-Z protocol in the IEEE P1363.2 (Password-based
Public-Key Cryptography) proposed standard has had the Z-method replaced with
the Ω-method to provide resilience to server compromise.

8 We do not consider the notion of explicitly aborting to be necessary for an asymmet-
ric PAKE functionality, but it is very convenient and allows some natural protocols
(including our protocol) to securely realize the functionality. There is more discussion
on this notion in Section 4.

5

We will use specific symmetric encryption schemes based on hash functions
and one-time pads.9 The first scheme is Ek(m) = H(k) ⊕ m, where H() is a
hash function with output that is the same length as m (and assumed to behave
like a random oracle - see below) and where ⊕ is taken as a bit-wise exclusive
OR operation. Note that this encryption scheme is inherently malleable. For
instance, given a ciphertext c of an unknown message m under an unknown
key k, one can construct a ciphertext c′ = c ⊕ 00 · · ·001 of a related message
m′ = m⊕ 00 · · · 001 (i.e., m with the last bit flipped), without determining m.

The second scheme is E′
k(m) = H(k) ⊕m|H ′(m), for a hash function H ′()

(assumed to be one-way and to behave like a random oracle). The second hash
protects against malleability since modifying the one-time pad portion requires
recomputing the hash with the correct message, implying the message has been
determined.

Hash functions. Cryptographic hash functions will be used for key generation
and for producing verification values. Here we assume these functions are ran-
dom oracles [4],10 i.e., they behave like black-box perfectly random functions. In
practice, one would need to verify that the actual hash function used is suitable
to be used as a random oracle. See [4] for a discussion on how to instantiate
random oracles, and see [25] for a discussion on key generation functions.

Signature schemes A signature scheme S is a triple (Gen, Sig, Verify) of al-
gorithms, the first two being probabilistic, and all running in (probabilistic)
polynomial time. GenS takes as input the security parameter (usually denoted
as κ and represented in unary format, i.e., 1κ) and outputs a public-key pair
(pk, sk), i.e., (pk, sk) ← GenS(1κ). Sign takes a message m and a secret key sk

as input and outputs a signature σ for m, i.e., σ ← Sigsk(m). Verify takes a
message m, a public key pk, and a candidate signature σ′ for m as input and
returns the bit b = 1 if σ′ is a valid signature for m for the corresponding private
key, and otherwise returns the bit b = 0. That is, b← Verifypk(m, σ′). Naturally,
if σ ← Sigsk(m), then Verifypk(m, σ) = 1. We require signature schemes that are
existentially unforgeable against chosen message attacks in the sense of [21].

3 The Ω-method

Basic Idea of the Ω-Method. Similar to some previous work [10, 37, 35,
36], the Ω-method constructs an asymmetric PAKE protocol Ω by enhancing a
symmetric PAKE protocol P as follows. First, the server only stores the output
of a one-way function of the password, i.e., a value f(π) that is easy to compute
from the password, but from which the password is difficult to compute. Then
the protocol operates by first running the protocol P using f(π) in place of π,11

9 Proving security using generic encryption schemes is left as an open problem.
10 We stress that whether schemes proven secure in the random oracle model can

be instantiated securely in the real world (i.e., with polynomial-time computable
functions in place of random oracles) is uncertain [13, 12, 43, 22, 6, 39].

11 We always assume a password protocol takes an arbitrary length password string,
and thus would work correctly with f(π) in place of π.

6

and second having the client somehow prove knowledge of a π such that f(π) is
the server’s stored value.

The Ω-method uses the following specific instantiation of this basic idea.12

The server stores a hash of the password H(π) to be used for the protocol P . The
server also stores a public/secret key pair for a secure signature scheme, with
the secret key encrypted using the specific encryption scheme (E′, D′) defined
above in which the key to the encryption scheme is the password. (Recall that
this encryption scheme is a one-time pad concatenated to a cryptographic hash.)
In all, the server stores (H(π), pk, E′

π(sk)). The protocol Ω first runs P (using
H(π)). Once P is finished and has derived a cryptographically strong shared key
K, the server uses a temporary session key K ′ derived from K to securely send
E′

π(sk) to the client, using the specific encryption scheme (E, D) defined above.
(Recall that this encryption scheme is simply a one-time pad.) The client uses
K and π to derive the appropriate keys, performs the necessary decryptions to
obtain sk, and then creates a signature with sk on the transcript of P . In effect,
this proves that the client (the one communicating with the server in protocol
P) knows π. The final output of Ω is another key K ′′ derived from K.

The Ω-method is very similar to the Z-method in [36]. However, the Z-method
specifies that both encryption schemes be simple one-time pads, which, as dis-
cussed previously, are malleable. Because of this, it can be shown that the Z-
method is insecure for certain signature schemes and in particular, for certain
representations of the private key generated in certain signature schemes. In fact,
the Z-method is not known to be secure for any signature scheme. In contrast,
the Ω-method is secure for every signature scheme.

High-level description. A high-level description of the Ω-method is shown
in Figure 1, with some details given here.

Client Part 1: The client computes H(π) and performs its part in the sym-
metric PAKE protocol P using H(π), obtaining a shared cryptographic key K.

Server Part 1: The server performs its part in the symmetric PAKE protocol
P using the value H(π) it had stored, obtaining a shared cryptographic key K.

Server Part 2, Step 1: The server first derives key K ′ = H ′(K) and then
sends EK′(E′

π(sk)) to the client.

Client Part 2: The client receives the value EK′(E′
π(sk)) sent by the server,

computes K ′ = H ′(K), and decrypts using K ′ and π to obtain sk. (If the
decryption fails when checking the hash, the client aborts.) Then the client signs
the transcript of P , using sk, i.e., it computes σ = Sigsk(transcript), and sends
the result σ to the server. The client also derives a session key K ′′ from K (e.g.,
by using a cryptographic hash function K ′′ = H ′′(K)).

12 Note that for security we require that the hash and encryption functions used by
the Ω-method are not used by the underlying symmetric PAKE protocol P .

7

Server Part 2, Step 2: Once it receives the signature σ, the server computes
b = Verifypk(transcript, σ). If b = 1, then the server derives a session key K ′′ =
H ′′(K) and outputs it. Otherwise it aborts.

Client(π) Server(H(π), (pk, E′

π(sk)))

Compute H(π)
Symmetric PAKE: H(π)
� -

Output: K Output: K

Generate keys K′ and Generate keys K′ and
K′′ from K K′′ from K

Let c = E′

π(sk)

sk←D′

π(DK′ (c′))
c′

� c′← EK′(c)

s← Sigsk(transcript)
s

- If ¬Verifypk(transcript, s), abort.

Fig. 1. The Ω-method: Augmenting a PAKE protocol to make it resilient to server
compromise.

The advantage of the Ω-method over the Z-method was discussed above. The
advantage of the Ω-method over other asymmetric PAKE protocols is that it is
modular and general. The Ω-method allows an asymmetric PAKE protocol to
be constructed using any PAKE protocol and any signature scheme, and these
could be chosen based on which cryptographic assumptions are used to prove
their security. For instance, one could choose a PAKE protocol and a signature
scheme that are based on the same cryptographic assumption. Notice also that
as opposed to asymmetric PAKE protocols in which the password is used to
derive the secret key of a signature scheme, e.g., [35], the Ω-method has the
advantage that the secret key does not need to be computed online by the client,
a potentially expensive operation.

As for efficiency, this method adds one extra round of communication along
with a few hash operations, a signature calculation by the client, and a signa-
ture verification by the server, to the PAKE protocol P . The extra round of
communication can often be piggybacked on actual protocol messages, as was
shown for the PAK-Z protocol in [36]. But there is still the extra computation
involved with the signature. Some asymmetric PAKE protocols have been de-
signed specifically to avoid this extra computation. SRP [49] and AMP [33] are
two such protocols, but neither has a proof of security, even in the random oracle
model.

The Z-Method and An Attack. The Z-method [36] looks exactly like the Ω-
method, except that the encryption functions E and E′ are simply one-time pads.
That is, EK′(c) = K ′ ⊕ c and E′

π(sk) = H(π)⊕ sk. One problem with a one-time
pad encryption scheme is that in the absence of an explicit integrity-verification
mechanism, the resulting ciphertext is malleable. This leads to an attack on

8

the PAKE protocol. In particular, suppose that the Z-method is instantiated
using a discrete logarithm based signature scheme (e.g., Schnorr, DSS, El-Gamal,
signature schemes based on bilinear pairings, etc.). In a typical instantiation of
such a scheme, we would have (sk, pk) = (x, y) be the signing and verification
keys respectively, where y = gx and g is a generator for a (multiplicative) group
in which the discrete logarithm problem is believed to be intractable.

Now, consider an active adversary who flips the least significant bit of the
server’s response c′. When the client decrypts, he will either compute that sk =
x+1 (if the least significant bit of x were a 0) or x− 1 (or if the least significant
bit of x were a 1). The client signs the transcript using the computed signing
key. The adversary verifies the signature using yg as the public verification key.
If it verifies correctly, then he deduces that the least significant bit of x was
0; otherwise he deduces that it is 1. The adversary can repeat an analogous
procedure |x| times to determine the remaining bits of x. Since |x| is typically
much smaller than the dictionary of possible passwords, we violate the security
requirements of the protocol.

Evaluation of Security. We wish to prove that the Ω-method can be com-
bined with any (symmetric) PAKE protocol to yield an asymmetric PAKE pro-
tocol. It is often very difficult to prove such general statements. However, by
using the Universal Composability (UC) framework of Canetti [11], this type of
proof, while still very complicated, becomes much easier. We assume the reader
is familiar with the UC framework. We remark that we focus on static adversaries

that cannot corrupt parties during the execution.13 (However, our asymmetric
PAKE functionality includes a notion of an adversary stealing a password file.)

4 Password-based key exchange functionalities

The original symmetric PAKE functionality. We first consider the orig-
inal symmetric PAKE functionality FpwKE from Canetti et al. [14] and presented
in Figure 2.14 The functionality is similar to that of the standard key exchange
functionality FKE given in Canetti [11]. In the FKE functionality, the parties
that start a session receive the same uniformly-distributed session key, except
when one of the parties is corrupted, in which case the adversary has the power
to set the session key. In the FpwKE functionality, each party starting a session
is given a password as input from the environment, and the power to set the
session key for a party is also given to the adversary if it succeeds in guessing
the password used by that party. When the adversary guesses the password, the
party’s session is marked compromised. An additional property of the definition
is that a failed attempt at guessing a party’s password is detected. This results
in the session being marked interrupted and the party receiving an independent
uniformly-distributed session key.

13 Nevertheless, as was shown in [14], this implies the “weak corruption” model of [3]
in which passwords can be adaptively obtained.

14 Note that the variable names in the functionality have been slightly modified for
consistency with protocols that we present later.

9

A session that is neither compromised nor interrupted (and is still in progress)
is considered fresh. Such sessions (between honest parties) conclude with both
parties receiving the same, uniformly-distributed session key if they were given
the same password as input from the environment, and otherwise with the parties
receiving independent uniformly-distributed session keys. In any case, once a
party receives a session key, that session is marked completed.

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter κ. It interacts
with an adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , π, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there is a
record (Pj , Pi, π

′), then store record (Pi, Pj , π) and mark this record fresh.
Upon receiving a query (TestPwd, sid, Pi, π

′) from the adversary S:

If there is a record of the form (Pi, Pj , π) which is fresh, then do: If π = π′,
mark the record compromised and reply to S with “correct guess”. If π 6= π′,
mark the record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, k) from S, where |k| = κ:

If there is a record of the form (Pi, Pj , π), and this is the first NewKey

query for Pi, then:
• If this record is compromised, or either Pi or Pj is corrupted, then output
(sid, k) to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, π

′) with π′ = π, and
a key k′ was sent to Pj , and (Pj , Pi, π) was fresh at the time, then output
(sid, k′) to Pi.
• Any other case: pick new random key k′ (|k′| = κ); send (sid, k′) to Pi.
Either way, mark the record (Pi, Pj , π) as completed.

Fig. 2. The password-based key-exchange functionality FpwKE

Two enhancements to the original symmetric PAKE functionality.

We describe two enhancements, transcripts and explicit authentication, to the
original FpwKE functionality [14].

Transcripts. The main problem with building a secure asymmetric PAKE pro-
tocol using the FpwKE functionality is that there is no way to indicate to the
environment through the FpwKE functionality whether the two sessions (one for
each party) involved in the key exchange are both fresh.15 Note that extending
the functionality with queries that output the state of each session (i.e., fresh

15 This seems critical, since after a password file compromise, it seems the adversary
could compromise both client and server sessions in any symmetric PAKE function-
ality using the information obtained from the password file. (According to the FpwKE

10

or compromised) is ineffective since a real party would not know individually if
its session was fresh or compromised, and thus could not output such an indi-
cation.16 Thus allowing such a query in the ideal world makes it distinguishable
from the real world.

Instead, we extend the functionality in the following way. Once a session
is complete, the adversary may query the functionality with an extra value tr,
which is output to the party as long as it meets the following condition: If either
of the two sessions in the key exchange is not fresh, then the tr values output to
each party must not be equal.

Since the query is not mandatory, any protocol that securely realizes FpwKE

will securely realize the functionality extended in this way. We conjecture some-
thing stronger, in that any protocol that securely realizes FpwKE and in which
each party is fresh and outputs a key if the adversary simply forwards mes-
sages between two parties in a session, and a party is not fresh if the adversary
sends a message not output as the next message by the other party in a ses-
sion, can be modified to securely realize the extended FpwKE functionality, in
which each party outputs the tr value immediately after it outputs a key. The
modification is to simply have each party output its transcript as tr once it has
completed. Assuming the ideal adversary simulates the real protocol by running
a simulated real protocol with the real adversary, the ideal adversary could also
output the transcript of a simulated session, and this obviously would preserve
indistinguishability between the ideal world and real world.

Explicit authentication. Although not critical to building an asymmetric
PAKE functionality, the FpwKE functionality has another limitation in that it
does not allow for some common types of explicit authentication. Specifically, a
protocol that performs explicit authentication and aborts if the authentication
fails, and otherwise sends one more message, will not securely realize the FpwKE

functionality. Intuitively this is because an ideal adversary could not learn from
the functionality whether the explicit authentication should be successful, and
so could only guess whether to send the final message. (This would be easily
distinguishable from the real protocol.) To allow for this type of authentication,
one can add a new “test abort” query that tests whether the authentication
would fail, informs the simulator, and informs the environment that the ses-
sion is aborting in case of an authentication failure. A feature similar to this is
mentioned in [14], in which the ideal adversary is notified if passwords for the
two parties in a session do not match. This is claimed (rightly so) to weaken
the definition, especially since an eavesdropper may not learn this. However, we
are interested only in the case where the eavesdropper does learn this informa-
tion, by noticing whether the protocol aborts or not. Thus in some sense we also

functionality, this would even allow the adversary to set the session keys between
himself and each party to be the same.) As a man-in-the middle, he could simply
forward the remaining messages between client and server sessions to complete the
asymmetric PAKE protocol.

16 A party may know if its session “succeeded” or not, but both fresh and compromised
sessions may be successful.

11

“weaken” the definition of PAKE, but in a way that makes sense and allows some
natural PAKE protocols (secure according to, say, an indistinguishability-based
definition of PAKE) to securely realize the (extended) PAKE functionality. As
above, since the “test abort” query is not mandatory, any protocol that securely
realizes FpwKE will securely realize the functionality extended in this way; i.e.,
this extended functionality does not imply a protocol must have explicit authen-
tication, but only allows for it.

The Revised Symmetric PAKE Functionality. Figure 3 describes our re-
vised symmetric password-based key exchange functionality called FrpwKE that
includes a transcript query as discussed above, but not a test abort query.17 More
specifically, the revised functionality FrpwKE is exactly FpwKE (with a minor word-
ing change in NewKey that has no effect on the FpwKE), but with NewTranscript

queries added. We note that it is possible to prove that a protocol securely
realizing FrpwKE also is secure according to the definition of [3].

Asymmetric PAKE functionalities. Now we discuss our asymmetric PAKE
functionality FapwKE, which is presented in Figure 4. At a high level, this func-
tionality expands on the FpwKE functionality to allow a server to store password
data, and then use this stored password data for authentication instead of a
password received as input from the environment. This functionality also ac-
counts for the possibility that password data may be stolen by the adversary.
As discussed above, this allows the adversary to perform an offline dictionary
attack.18 It also allows the adversary to impersonate the server, but not the
client. In more detail, the changes are as follows.

– The FpwKE functionality was a single-session functionality. However, asym-
metric PAKE requires that a password file be used across multiple sessions,
so we define the FapwKE functionality as a multiple-session functionality.
Note that this cannot be accomplished simply using “composition with joint
state” [15] because the functionality itself requires shared state that needs
to be maintained between sessions.

– In FpwKE, sessions are started by sending NewSession queries to two parties,
including a password in each query. In FapwKE, these queries are replaced with
CltSession and SvrSession queries. The CltSession queries include a password,
but the SvrSession queries do not. The server password is taken from the
password file, which is placed on the server using a StorePWfile query that
includes the password. Note that if the server is corrupted when it receives
this query, then the adversary learns the password. However, a trusted initial

17 The test abort query is omitted since it is not integral to our result. A test abort
query is included in our asymmetric PAKE functionality because it is necessary
there to handle explicit aborting in our Ω-protocol. However, the transcript query
is omitted there because it is not integral to our result.

18 Note that because this functionality accounts for each offline password guess individ-
ually, it seems to require the random oracle model (or some similar idealized model)
to be securely realized.

12

Functionality FrpwKE

The functionality FrpwKE is parameterized by a security parameter κ. It interacts
with an adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , π, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there is a
record (Pj , Pi, π

′), then record (Pi, Pj , π) and mark this record fresh.
Upon receiving a query (TestPwd, sid, Pi, π

′) from the adversary S:

If there is a record of the form (Pi, Pj , π) which is fresh, then do: If π = π′,
mark the record compromised and reply to S with “correct guess”. If π 6= π′,
mark the record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, k) from S, where |k| = κ:

If there is a record of the form (Pi, Pj , π) that is not marked completed,
then:
• If this record is compromised, or either Pi or Pj is corrupted, then output
(sid, k) to player Pi.
• If this record is fresh, and there is a record (Pj , Pi, π

′) with π′ = π, and
a key k′ was sent to Pj , and (Pj , Pi, π) was fresh at the time, then output
(sid, k′) to Pi.
• In any other case, pick a new random key sk ′ of length κ and send
(sid, k′) to Pi.
Either way, mark the record (Pi, Pj , π) as completed.

Upon receiving a query (NewTranscript, sid, Pi, tr) from S:

If there is a record of the form (Pi, Pj , π) that is marked completed, then:
• If (1) there is a record (Pj , Pi, π

′) for which tuple (transcript, sid, tr′′)
was sent to Pj , (2) either (Pi, Pj , π) or (Pj , Pi, π

′) was ever compromised

or interrupted, and (3) tr = tr′′, ignore the query.
• In any other case, send (transcript, sid, tr) to Pi.

Fig. 3. The revised password-based key-exchange functionality FrpwKE

setup between the client and server is generally assumed, so this would not
be a problem.19

– In FapwKE, the adversary may “steal” the server’s password data using a
StealPWfile query. No actual data is sent to the adversary, but after this the
adversary may make queries to test passwords using OfflineTestPwd queries.
These queries are “offline” as they do not correspond to any sessions.
The OfflineTestPwd queries may actually be made either before or after
the StealPWfile query, but queries made before are not answered until the
StealPWfile query is made. Specifically, when a StealPWfile query is made, if
there was a previous OfflineTestPwd query with the correct password, that
password is simply returned to A.

19 If one is concerned about this, then one could possibly change the StorePWfile to
contain some data (perhaps a one-way function of the password), along with a way
to verify passwords against this data. Our work focuses on the issue of password
file compromise, so we did not explore these other issues.

13

We also change the UC framework slightly to allow the queries StealPWfile

and OfflineTestPwd to be accounted for by the environment, similar to the
way Corrupt queries are accounted for.20 Specifically, a StealPWfile query
by the adversary is not allowed until the environment sends a StealPWfile

message to the adversary,21 and similarly, each OfflineTestPwd query by the
adversary is not allowed until the environment sends an OfflineTestPwd mes-
sage to the adversary. It is easy to see that the composition theorem holds
despite these changes.22

– In FapwKE, in addition to TestPwd queries, an adversary can also make an
Impersonate query to compromise a client session without supplying a pass-
word. This will succeed if there has already been a StealPWfile query.

– We add the TestAbort query to FapwKE. The main reason is that our asym-
metric PAKE protocol specifies some verifications, where an instance will
abort if a verification fails. As discussed above, the FpwKE would need an
extension to handle this type of protocol.

– In contrast to FrpwKE, we did not include a transcript query in FapwKE –
primarily because our proofs did not need it. The query could be added, and
our asymmetric PAKE protocol could be modified to output a transcript.

Finally, in FapwKE, we assume that a given sid is unique to a given client/server
pair for which the server stores a password. We also assume that a given (sid, ssid)
pair is unique to a given session between the client and server corresponding to
sid. These assumptions are valid in the UC framework, as discussed in [11].

5 The Ω protocol and its Security

We present the Ω-protocol in the UC framework in Figure 6. It uses the re-
vised password-based key exchange functionality FrpwKE defined in Figure 3 and
the random oracle functionality FRO defined in Figure 5.23 The random oracle
functionality is parameterized by an output length `, and for simplicity, this ar-
gument is implicit (albeit different depending on how the random oracle is being
used). In particular if the arguments are 〈sid, 1〉, 〈sid, 3〉, 〈sid, ssid, 2〉, then the
output length ` = κ. If the arguments are 〈sid, 2〉, then ` = |sk|. Finally, if the
arguments are 〈sid, ssid, 1〉, then ` = |c| (i.e., the size of the ciphertext being
encrypted).

When applying the Ω-method in the UC framework to obtain the protocol
Ω, there were some issues that needed to be addressed.

20 In fact, we could define these queries as Corrupt queries with certain parameters,
which are handled by the functionality in certain specific ways, but we felt it was
more clear to make them separate queries.

21 Technically, this is enforced by the “control function” (see [11]).
22 This is assuming that these messages are based on sid values, and the sid values

used in the original and emulating protocol somehow correspond. This is the case,
but we need to define it explicitly.

23 Note in particular that FrpwKE has no access to FRO, and thus a protocol securely
realizing FrpwKE should have no access to FRO.

14

Functionality FapwKE

The functionality FapwKE is parameterized by a security parameter κ. It interacts
with an adversary S and a set of parties via the following queries:

Password storage and authentication sessions
Upon receiving a query (StorePWfile, sid, Pi, π) from party Pj :

If this is the first StorePWfile query, store password data record (file, Pi, Pj , π) and
mark it uncompromised.

Upon receiving a query (CltSession, sid, ssid, Pj , π) from party Pi:

Send (CltSession, sid, ssid, Pi, Pj) to S, and if this is the first CltSession query for
ssid, store session record (ssid, Pi, Pj , π) and mark it fresh.

Upon receiving a query (SvrSession, sid, ssid) from party Pj :

If there is a password data record (file, Pi, Pj , π), then send
(SvrSession, sid, ssid, Pi, Pj) to S, and if this is the first SvrSession query
for ssid, store session record (ssid, Pj , Pi, π), and mark it fresh.

Stealing password data
Upon receiving a query (StealPWfile, sid) from adversary S:

If there is no password data record, reply to S with “no password file”. Otherwise,
do the following. If the password data record (file, Pi, Pj , π) is marked uncompro-
mised, mark it as compromised. If there is a tuple (offline, π′) stored with π = π′,
send π to S, otherwise reply to S with “password file stolen”.

Upon receiving a query (OfflineTestPwd, sid, π′) from adversary S: If there is
no password data record, or if there is a password data record (file, Pi, Pj , π)
that is marked uncompromised, then store (offline, π′). Otherwise, do: If π = π′,
reply to S with “correct guess”. If π 6= π′, reply with “wrong guess”.

Active session attacks
Upon receiving a query (TestPwd, sid, ssid, P, π′) from adversary S:

If there is a session record of the form (ssid, P, P ′, π) which is fresh, then do:
If π = π′, mark the record compromised and reply to S with “correct guess”.
Otherwise, mark the record interrupted and reply with “wrong guess”.

Upon receiving a query (Impersonate, sid, ssid) from adversary S:

If there is a session record of the form (ssid, Pi, Pj , π) which is fresh, then do: If
there is a password data record (file, Pi, Pj , π) that is marked compromised, mark
the session record compromised and reply to S with “correct guess”, else mark the
session record interrupted and reply with “wrong guess”.

Key Generation and Authentication
Upon receiving a query (NewKey, sid, ssid, P, k) from S, where |k| = κ:

If there is a record of the form (ssid, P, P ′, π) that is not marked completed, then:
• If this record is compromised, or either P or P ′ is corrupted, then output
(sid, ssid, k) to P .
• If this record is fresh, there is a session record (ssid, P ′, P, π′), π′ = π, a key
k′ was sent to P ′, and (ssid, P ′, P, π) was fresh at the time, then let k′′ = k′, else
pick a random key k′′ of length κ. Output (sid, ssid, k′′) to P .
• In any other case, pick a random key k′′ of length κ and output (sid, ssid, k′′)
to P .
Finally, mark the record (ssid, P, P ′, π) as completed.

Upon receiving a query (TestAbort, sid, ssid, P) from S:

If there is a record of the form (ssid, P, P ′, π) that is not marked completed, then:
• If this record is fresh, there is a record (ssid, P ′, P, π′), and π′ = π, let b′ = succ.
• In any other case, let b′ = fail.
Send b′ to S. If b′ = fail, send (abort, sid, ssid) to P , and mark record
(ssid, P, P ′, π) completed.

Fig. 4. The Asymmetric PAKE functionality FapwKE

15

Functionality FRO

The functionality FRO is parameterized by an (implicit) output length `.

Upon receiving query (Hash, sid,msg) from any party P or adversary S:

If a tuple (msg, r) is stored, return r; else, generate r
R
←{0, 1}`. Record

(msg, r) and return r.

Fig. 5. The random oracle functionality FRO

– In the Ω-protocol, one must use (sid, ssid, tr) in place of the transcript of
the symmetric PAKE protocol. This pair (sid, ssid) is unique to a given pair
of client/server instances, and these two instances only generate the same tr

if they are fresh and use the same password. This is exactly what is needed
in the proof of security, in particular, to ensure that a signature produced
by a client cannot be used to impersonate a client in another session.

– We had wanted to use an ideal signature functionality instead of an explicit
signature scheme. However, this does not seem possible, since the Ω-protocol
explicitly encrypts and hashes the signing key, but the ideal signature func-
tionality doesn’t have any notion of a secret key.

– Similarly, it does not seem possible to use an ideal secure channel functional-
ity in place of the symmetric encryptions, because keys are generated using
a hash function. The ideal secure channel functionality does not have any
notion of a secret key.

The following theorem characterizes the security of the Ω protocol and is proven
in the full version of this paper.

Theorem 1. Assume that S is an existentially unforgeable signature scheme.
Then protocol Ω of Figure 6 securely realizes the FapwKE functionality in the
FrpwKE,FRO-hybrid model, in the presence of static-corruption adversaries.

References

1. M. Abdalla and D. Pointcheval. Simple Password-Based Encrypted Key Exchange
Protocols. In RSA Conference, Cryptographer’s Track, pp. 191–208, 2005

2. B. Barak, Y. Lindell, and T. Rabin. Protocol initialization for the frame-
work of universal composability. In Cryptology ePrint Archive, Report 2004/006,
http://eprint.iacr.org/, 2004.

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT, pp. 139–155, 2000.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
CRYPTO, pp. 232–249, 1993.

6. M. Bellare, A. Boldyreva and A. Palacio. An Uninstantiable Random-Oracle-Model
Scheme for a Hybrid-Encryption Problem. In EUROCRYPT, pp. 171–188, 2004.

16

UC Asymmetric PAKE Protocol Ω

Setup: This protocol uses a random oracle functionality FRO and a revised
PAKE functionality FrpwKE, as well as an existentially unforgeable signature
scheme S = (Gen, Sig, Verify).

Password Storage: When Pj is activated using StorePWfile(sid, Pi, w) for the
first time, he does the following. He first sends (Hash, 〈sid, d〉, w) to the FRO

functionality for d ∈ {1, 2}, and receives responses r and kw. He generates a
signature key pair (sk, pk)← Gen(1κ). Next he sends (Hash, 〈sid, 3〉, sk) to the
FRO functionality and receives response hsk . He computes c = (kw ⊕ sk, hsk)
and sets file[sid] = (r, c, pk).

Protocol Steps:

1. When Pj receives input (SvrSession, sid, ssid, Pi), he obtains r from the
tuple stored in file[sid] (aborting if this value is not properly defined),
sends (NewSession, 〈sid, ssid〉, Pj , Pi, r, server) to the FrpwKE functionality,
and awaits a response.

2. When Pi receives input (CltSession, sid, ssid, Pj , w), he sends
(Hash, 〈sid, 1〉, w) to the functionality FRO and obtains the response
r. He then sends (NewSession, 〈sid, ssid〉, Pi, Pj , r, client) to the FrpwKE

functionality and awaits a response.
3. When Pj (who is a server and is awaiting a response from FrpwKE) receives

responses (〈sid, ssid〉, k) and (transcript, 〈sid, ssid〉, tr), he does the follow-
ing. First he sends (Hash, 〈sid, ssid, d〉, k) for d ∈ {1, 2} to receive responses
k′ and k′′ respectively. Then he retrieves c from the tuple file[sid]. He en-
crypts c′ = k′ ⊕ c and sends the message (flow-zero, sid, ssid, c′) to Pi.

4. When Pi (who is a client and is also awaiting a response from FrpwKE)
receives responses (〈sid, ssid〉, k) and (transcript, 〈sid, ssid〉, tr), he sends
(Hash, 〈sid, ssid, d〉, k) for d ∈ {1, 2} to the FRO functionality, and receives
responses k′ and k′′ respectively.

5. When Pi receives a message (flow-zero, sid, ssid, c′) he computes the de-
cryption c = k′⊕c′, and parses c = (c1, c2). He then sends (Hash, 〈sid, 2〉, w)
to the FRO functionality, and receives the response kw. He computes
sk = kw ⊕ c1, sends (Hash, 〈sid, 3〉, sk) to FRO, receives response hsk , and
verifies that hsk = c2. If not, he outputs (abort, 〈sid, ssid〉) and termi-
nates the session. Otherwise he computes s = Sigsk(〈sid, ssid, tr〉), sends
(flow-one, sid, ssid, s) to Pj , outputs (sid, ssid, k′′), and terminates the ses-
sion.

6. When Pj receives a message (flow-one, sid, ssid, s), he checks that
Verifypk(〈sid, ssid, tr〉, s) = 1. If not, he outputs (abort, 〈sid, ssid〉) and ter-
minates the session. Otherwise, he outputs (sid, ssid, k′′), and terminates
the session.

Stealing the password file: When Pj (who is a server) receives a message
(StealPWfile, sid, Pj , Pi), from the adversary A, if file[sid] is defined, Pj sends
it to A.

Fig. 6. The UC Asymmetric PAKE Protocol Using the Ω-method

17

7. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In IEEE Symp. on Research in Security and
Privacy, pp. 72–84, 1992.

8. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password file compromise. In
1st ACM Conf. on Computer and Communications Security, pp. 244–250, 1993.

9. D. Bleichenbacher. Personal communication.
10. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password authentication

and key exchange using Diffie-Hellman. In EUROCRYPT, pp. 156–171, 2000.
11. R. Canetti. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In Cryptology ePrint Archive, Report 2000/067.
http://eprint.iacr.org/, 2005.

12. R. Canetti, O. Goldreich, and S. Halevi. On the random-oracle methodology as ap-
plied to length-restricted signature schemes. In Theory of Cryptography Conference
- TCC, pp. 40–57, 2004.

13. R. Canetti, O. Goldreich and S. Halevi. The random oracle methodology, revisited.
J. ACM, 51(4):557–594, 2004.

14. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally-
composable password-based key exchange. In EUROCRYPT, pp. 404–421, 2005.

15. R. Canetti and T. Rabin. Universal Composition with Joint State In CRYPTO,
pp. 265–281, 2003.

16. M. Di Raimondo and R. Gennaro. Provably Secure Threshold Password Authen-
ticated Key Exchange. In EUROCRYPT, pp. 507–523, 2003.

17. W. Ford and B. S. Kaliski, Jr. Server-assisted generation of a strong secret from a
password. In 5th IEEE International Workshop on Enterprise Security, 2000.

18. R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key
Exchange. In EUROCRYPT, pp. 524–543, 2003.

19. C. Gentry, P. MacKenzie, and Z. Ramzan. Password Authenticated Key Exchange
Using Hidden Smooth Subgroups. In 12th ACM Conf. on Computer and Commu-
nications Security, pp. 299–309, 2005.

20. O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords
Only. In CRYPTO, pp. 408–432, 2001.

21. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal of Computing 17(2):281–
308, April 1988.

22. S. Goldwasser and Y. Tauman Kalai. “On the (In)security of the Fiat-Shamir
Paradigm.” In 44th IEEE Symp. on Foundations of Computer Science (FOCS),
pp. 102–115, 2003.

23. L. Gong. Optimal authentication protocols resistant to password guessing attacks.
In 8th IEEE Computer Security Foundations Workshop, pp. 24–29, 1995.

24. L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly
chosen secrets from guessing attacks. IEEE Journal on Selected Areas in Commu-
nications, 11(5):648–656, June 1993.

25. IEEE Standard 1363-2000, Standard specifications for public key cryptography,
2000.

26. D. Jablon. Strong password-only authenticated key exchange. ACM Computer
Communication Review, ACM SIGCOMM, 26(5):5–20, 1996.

27. D. Jablon. Extended password key exchange protocols immune to dictionary at-
tack. In WETICE’97 Workshop on Enterprise Security, 1997.

28. D. Jablon Password authentication using multiple servers. In Proc. RSA Confer-
ence, Cryptographer’s Track, 2001.

18

29. S. Jiang and G. Gong. Password based key exchange with mutual authentication.
In Workshop on Selected Areas of Cryptography (SAC), 2004.

30. J. Katz, P. MacKenzie, G. Taban, V. Gligor. Two-Server Password-Only Authen-
ticated Key Exchange. In Applied Cryptography and Network Security, 3rd Intl.
Conf. (ACNS 2005), pp. 1–16, 2005.

31. J. Katz, R. Ostrovsky, and M. Yung. Practical password-authenticated key ex-
change provably secure under standard assumptions. In EUROCRYPT, pp. 475–
494, 2001.

32. C. Kaufmann and R. Perlman. PDM: A New Strong Password-Based Protocol. In
10th Usenix Security Symposium, 2001.

33. T. Kwon. Authentication and Key Agreement via Memorable Passwords. In Inter-
net Society Network and Distributed System Security Symposium (NDSS), 2001.

34. S. Lucks. Open key exchange: How to defeat dictionary attacks without encrypting
public keys. In Proc. of the Workshop on Security Protocols, 1997.

35. P. MacKenzie. More Efficient Password-Authenticated Key Exchange. In RSA
Conference, Cryptographer’s Track, pp. 361–377, 2001.

36. P. MacKenzie. The PAK suite: Protocols for password-authenticated key exchange.
DIMACS Technical Report 2002-46, October, 2002.

37. P. MacKenzie, S. Patel, and R. Swaminathan. Password authenticated key ex-
change based on RSA. In ASIACRYPT, pp. 599–613, 2000.

38. P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold Password-
Authenticated Key Exchange. J. Cryptology, 19(1):27–66, 2006.

39. U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology. In Theory
of Cryptography Conference - TCC, pp. 21–39, 2004.

40. A. Narayanan and V. Shmatikov. Fast Dictionary Attacks on Passwords Using
Time-Space Tradeoff. In ACM Conf. on Computer and Communications Security
(CCS), pp. 364–372, 2005.

41. National Institute of Standards and Technology (NIST). Announcing the Secure
Hash Standard, FIPS 180-1, U.S. Department of Commerce, April, 1995.

42. M. Nguyen and S. Vadhan. Simpler Session-Key Generation from Short Random
Passwords. In Theory of Cryptography Conference - TCC, pp. 428–445, 2004.

43. J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-Committing Encryption Case Jesper Buus Nielsen. In CRYPTO,
pp. 111–126, 2002

44. P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In CRYPTO,
pp. 617–630, 2003.

45. S. Patel. Number theoretic attacks on secure password schemes. In IEEE Sympo-
sium on Research in Security and Privacy, pages 236–247, 1997.

46. D. Pointcheval and J. Stern. Security proofs for signature schemes. In EURO-
CRYPT, pp. 387–398, 1996.

47. C. P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO,
pp. 235–251, 1989.

48. M. Steiner, G. Tsudik, and M. Waidner. Refinement and extension of encrypted
key exchange. ACM Operating System Review, 29:22–30, 1995.

49. T. Wu. The secure remote password protocol. In Internet Society Network and
Distributed System Security Symposium (NDSS), pages 97–111, 1998.

50. T. Wu. A real-world analysis of Kerberos password security. In Internet Society
Network and Distributed System Security Symposium (NDSS), February 1999.

51. M. Zhang. New Approaches to Password Authenticated Key Exchange Based on
RSA. In ASIACRYPT, pp. 230–244, 2004.

