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Abstract: It is becoming common to collect data from multiple functional magnetic resonance imaging (fMRI)
paradigms on a single individual. The data from these experiments are typically analyzed separately and sometimes
directly subtracted from one another on a voxel-by-voxel basis. These comparative approaches, although useful, do
not directly attempt to examine potential commonalities between tasks and between voxels. To remedy this we
propose a method to extract maximally spatially independent maps for each task that are “coupled” together by a
shared loading parameter. We first compute an activation map for each task and each individual as “features,”
which are then used to perform joint independent component analysis (jICA) on the group data. We demonstrate
our approach on a data set derived from healthy controls and schizophrenia patients, each of which carried out an
auditory oddball task and a Sternberg working memory task. Our analysis approach revealed two interesting
findings in the data that were missed with traditional analyses. First, consistent with our hypotheses, schizophrenia
patients demonstrate “decreased” connectivity in a joint network including portions of regions implicated in two
prevalent models of schizophrenia. A second finding is that for the voxels identified by the jICA analysis, the
correlation between the two tasks was significantly higher in patients than in controls. This finding suggests that
schizophrenia patients activate “more similarly” for both tasks than do controls. A possible synthesis of both
findings is that patients are activating less, but also activating with a less-unique set of regions for these very
different tasks. Both of the findings described support the claim that examination of joint activation across multiple
tasks can enable new questions to be posed about fMRI data. Our approach can also be applied to data using more
than two tasks. It thus provides a way to integrate and probe brain networks using a variety of tasks and may
increase our understanding of coordinated brain networks and the impact of pathology upon them. Hum Brain
Mapp 27:598–610, 2006. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

A typical functional magnetic resonance imaging (fMRI)
experiment involves scanning participants during the per-
formance of multiple tasks. These data are usually analyzed
separately to detect differential activation of the two tasks
[Derbyshire et al., 1998; Liu et al., 2004] or to activate ro-
bustly a desired set of regions [Hirsch et al., 2000]. Using
such approaches, questions can be addressed about differ-
ential activation in the same voxels. These designs do not
directly examine the joint (shared) information between dif-
ferent tasks and different voxels, however, even though it
makes intuitive sense that fMRI activation in different tasks
for the same individual will contain some shared informa-
tion. Because the brain is a highly interconnected organ, it is
reasonable to expect that functional changes in one area may
result in or be related to modulations of brain activity in
distant regions [Mesulam, 1998]. Computing such interrela-
tionships is difficult in practice, however, due to the need to
examine the relationship between tens of thousands of vox-
els.

There are multiple applications that may benefit from
tools that enable the examination of joint information be-
tween tasks. For example, it may be useful to examine tasks
(or conditions) that are theoretically related but probe
slightly different aspects of a particular functional domain
(such as cognition or sensory processing). Such work may
reveal, for example, different regions in the two tasks that
are subsets of the main effect of each task but are activated
by the tasks similarly. This would then provide new evi-
dence of a link between these regions, which could be
probed further by additional experiments. Another ap-
proach, one that is demonstrated in this article, is to use
tasks that probe very different functional domains, each of
which may be modulated by, e.g., an underlying disorder
such as schizophrenia. We expect patients with schizophre-
nia to share a common, widespread deficit resulting in acti-
vation differences that transcend individual cognitive do-
mains. This viewpoint is supported by the schizophrenia
literature showing differences in almost every type of cog-
nitive or sensory task studied [Bullmore et al., 1999; Calhoun
et al., 2004b; Laurens et al., 2003; Manoach et al., 2000;
Schroder et al., 1999]. In this context, the use of tasks that
probe different functional domains is advantageous, and
joint analyses of these data may even help us to unify better
the diversity of findings present in previous work.

Existing tools for examining joint information include re-
gion-based approaches such as structural equation modeling
or dynamic causal modeling [Friston et al., 2003; McIntosh
and Gonzalez-Lima, 1994]. For example, although it is most
common to use structural equation modeling (SEM) to ex-
amine the relationship between different regions, these
types of approaches can also be used to look at the correla-
tional structure between regions activated by different tasks
[Rajah and McIntosh, 2005] or between functional and struc-
tural variables [Meyer-Lindenberg et al., 2004]. However,
these approaches do not provide an examination of the full
set of brain voxels. A natural set of tools that avoid this

problem include those that transform data matrices into a
smaller set of modes or components. Such approaches in-
clude those based upon singular value decomposition [Fris-
ton et al., 1996; McIntosh et al., 1996] as well as more
recently, independent component analysis [ICA; McKeown
et al., 1998].

ICA is a statistical and computational technique for re-
vealing hidden factors that underlie sets of random vari-
ables, measurements, or signals [Hyvarinen et al., 2001]. The
ICA model assumes that the data are linear mixtures of
statistically independent sources and attempts to decom-
pose the data into maximally independent components and
their mixing coefficients (also called loading parameters).
The ICA method is being increasingly utilized for fMRI data
analysis to reveal hidden structure in the spatial and tem-
poral dimensions of these data [Calhoun et al., 2003; Mc-
Keown et al., 2003]. In contrast to a first-level ICA approach
(i.e., analysis of the preprocessing fMRI time series data for
each task and each subject separately), we instead introduce
the idea of a second-level (group), feature-based analysis of
the fMRI activation maps (the “features”) generated from a
first-level analysis. We propose a method that enables the
decomposition of activation maps generated from two tasks
into joint, maximally spatially independent components.

As a simple example, the approach we propose is to
decompose the features into a set of “independent” building
blocks or basis functions that are contributed to by the
individual participants in a common manner. As an example
of this application, consider the example of a cardboard
cutout of a smiley face presented in Figure 1a in which each
participant is associated with a light bulb of a certain watt-
age that illuminates various parts of a face (the parts that are
illuminated [yellow] are determined by the “task”). The
tasks result in the illumination of the right eye, the nose, and
the smile (Task 1) or the left eye and the smile (Task 2) with
an intensity determined by the participant-specific light
bulb. The light bulbs have different wattages (so, e.g., the
smiley faces corresponding to Participant 1 are illuminated
by a 60-watt bulb and the smiley faces corresponding to
Participant N are illuminated by a 40-watt bulb). If we carry
out a joint ICA of these images by stacking the two task
images side-by-side to form a row for each participant, then
stacking the participant rows on top of one another and
extracting spatially independent components (each of which
has a Task 1 part and a Task 2 part), we would likely find
one of the joint components as shown in Figure 1b (the Task
1 part is shown on the left and the Task 2 part is shown on
the right), which has all the illuminated parts of the face
represented in the component and the wattages reflected in
the loadings (mixing coefficients). This then enables us to
extract (potentially) different regions in two tasks, whose
amplitude is “coupled.” If, on the other hand, we carried out
ICA separately on the two tasks, we would have two sets of
sources and loadings but it would not be clear how the two
analyses related to one another.

Although this is an overly simplified example, it provides
some intuition about the approach. Specifically, the corre-
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sponding analogy for the brain is that the different parts of
the face (right [R] eye � nose � smile or left [L] eye � smile)
reflect (potentially) different neural circuits activated by the
two tasks and the light bulb wattage (used in both tasks)
reflects the common or shared contribution for a given par-
ticipant (which can also be used to examine a systematic
difference between two groups). In our implementation
(presented below), smiley faces correspond to statistical
parametric mapping (SPM) activation maps produced for a
given task. Another aspect of the ICA decomposition is that
joint components are by definition correlated to one another
(due to the linear mixing requirement). The value of the
mixing coefficient thus provides a relative measure of func-
tional connectivity between detected regions at the group
level.

We demonstrate our method on a data set consisting of
two participant groups (schizophrenia patients and healthy
controls) matched for age and gender, all of whom were
scanned on two fMRI paradigms (the auditory oddball task
[Kiehl et al., 2001] and the Sternberg working memory task
[Manoach et al., 1997]). Both tasks have been found to show
activation differences in schizophrenia patients. The audi-
tory oddball evoked response is one of the most robust
findings in electrophysiology and the associated fMRI in-
volvement reveals robust differences in patients with schizo-
phrenia by activating regions involved in target detection or
attentional orienting [Kiehl and Liddle, 2001]. Working
memory is also compromised in schizophrenia, and fMRI
activation differences have been identified for the Sternberg
working memory task [Manoach et al., 1999, 2000].

The proposed method offers a technique to examine (po-
tentially different) regions in the two tasks, which co-vary
between participants. We take a different approach to our
previous work, which focused on using temporal lobe dif-
ferences in spatially independent synchronous activity to
classify schizophrenia patients and controls using a single
fMRI task [Calhoun et al., 2004b]. The goal of the current
study is not classification of patient groups, but rather the
identification of a common network, jointly revealed by the
data from two tasks, which is differentially involved in
patients versus controls.

Schizophrenia is likely to be associated with disconnection
[Andreasen et al., 1999; Lim et al., 1999; Pearlson, 1997;
Stevens et al., 1998] and involves heteromodal association
cortical regions, different portions of which are activated by
the auditory oddball and Sternberg tasks. It is reasonable to
expect that if schizophrenia is impacting a diffuse set of
regions that are coordinated in the healthy brain and unco-
ordinated in the schizophrenic brain, then two tasks that
activate different portions of this network would be related
to one another (in both controls and patients, although to
different degrees). We thus hypothesized that a small num-
ber of joint components would capture differences between
the patients and controls and reveal a joint network present
in both groups. We expected this network to show decreased
activation (i.e., diminished functional connectivity) in pa-
tients. We also expected to find other regions that were more

active in patients, perhaps contributing to (or due to) inef-
ficiencies in cortical processing.

Theory

Our goal is to examine activation across multiple tasks,
collected on the same participants, in a unified analytic
framework by modeling potential coupling between the dif-
ferent fMRI task data (the features). In our case, the features
are the SPM “contrast” images (i.e., the estimated regression
parameters) generated from the two tasks. We assume that a
given feature can be represented as a set of (subject-wise)
linearly mixed, spatially independent maps. This is similar
to the assumption commonly used for ICA of fMRI [Mc-
Keown and Sejnowski, 1998]; however, because in this case
we use features generated from a fitted hemodynamic
model, the results are biased heavily toward the modeled
fMRI activity. We additionally model data from multiple
tasks as having a shared dependence, mediated through the
mixing coefficients.

Consider the general matter of estimating common pa-
rameters from multiple data sources. First, let X(1) and X(2)

be two data sets (e.g., X(1) are data from fMRI Task 1 and X(2)

are data from fMRI Task 2). An effective way to fuse this
data is to form the joint statistical likelihood and estimate
parameters and hidden variables in that setting, rather than
combining the parameters estimated separately on each data
set. This has the advantage of efficiently using the informa-
tion presented by all the data and can thus provide more
accurate estimation of shared parameters [Hallouli et al.,
2002; Webster et al., 1998]. In our joint ICA (jICA) frame-
work, these shared parameters are coefficients of images that
have high intensity on distinct coordinates (distinct brain
regions), and they provide a way to assess the coupling
among those regions.

Shared Participant Weights

To illustrate the above point, consider the case that there
are C component sources, which individuals possess with
certain loading coefficients Ai,c for individual i and compo-
nent c (thus we have that A is a shared parameter). Addi-
tionally, it is modeled that there are distinct source compo-
nent outcomes for two tasks, which are realized as Sc

�1�and
Sc

�2�. The model for the image response measured at voxel v
thus is described with a pair of mixing equations:

xi,v
(1) � �

c�1

C

aicSc,v
(1) and xi,v

(2) � �
c�1

C

aicSc,v
(2) (1)

where xi,v
(t) is the feature data from task t, aic is the shared

mixing coefficient for component c, and Sc,v
(r) is the spatial

component for task t. We thus utilize a shared mixing coef-
ficient, aic, to model the coupling between the tasks and refer
to this approach as jICA.

Alternatively, if we for the moment assume we have only
one source for each task and write the unmixing equations
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for the two tasks s(1) � wx(1) and s(2) � wx(2) (where w � 1/a),
we can write the likelihood functions p(x(1); w) and p(x(2); w)
[Kay, 1993]. If we were to run ICA on each task separately,
we maximize these two likelihood functions in separate ICA
analyses [Cardoso, 1997]. This would result in two sets of

optimal unmixing coefficients, w*1 � arg
max
w1

log p(x(1); w1)

and w*2 � arg
max
w2

log p(x(2); w2), one for each task. To
interpret both results together, w*1 and w*2 would then have to
be combined somehow as they are computed independently
of one another. However, if we utilize a data fusion ap-
proach we determine a single optimal unmixing coefficient

that maximizes the joint likelihood function, w* � arg
max

w
log p(x(1), x(2); w). It makes intuitive sense not to compute
the parameters independently, because the activation maps
from the two tasks are coming from the same participant.
We thus have a single w* that fuses together the joint source
(or alternatively, the basis vector common to the two tasks).
The main advantage of this approach is that maximizing the
joint likelihood function provides a different (and more
reasonable) solution from one that does not utilize the joint
statistics.

One may use existing ICA analysis algorithms to carry out
a joint analysis by forming the overall data matrix
X � [X(1), X(2)], stacking one beside the other (see Fig. 2), and
likewise forming S � [S(1), S(2)] in which each of the original
image component rows Sc

(1)and Sc
(2)are placed adjacent to

form a total combined row of length 2V (the number of
voxels in two images). Additional numbers of tasks may be
handled similarly. The identification of components with
shared loading parameters and the comparison of the asso-
ciated maps is a key means to identify coupling between
brain image components of different tasks.

For comparison purposes, we now briefly review fMRI
group analysis carried out on the spatiotemporal fMRI data.
In a spatial ICA analysis of group fMRI data, there are
essentially two ways of staking the data, in the vertical
(time) or horizontal (space) directions. Vertical stacking of

fMRI data (i.e., assuming common intragroup sources but
unique time courses/weights) was proposed in Calhoun et
al., [2001] (this approach also introduces a back-reconstruc-
tion step to generate source maps and time courses for
individual subjects [Calhoun, 2004; Group ICA of fMRI
Toolbox, online resource http://icatb.sourgeforge.net])
whereas horizontal stacking (i.e. assuming shared time
courses/weights, but unique components) was proposed in
Svensen et al. [2002] and both were compared in Schmithorst
and Holland [2004]. Alternative approaches assuming both
shared and unique components [Lukic et al., 2002], cluster-
ing single-subject results [Esposito et al., 2005], or stacking
into a cube via tensorial methods [Beckmann and Smith,
2005] have also been proposed. All of the approaches just
mentioned utilize the entire multisubject spatiotemporal
data set from a single task in various ways. In contrast, our
second-level approach involves first selecting a single sum-
mary image (in our example a task-related activation map
generated by SPM2) for each of two tasks and then stacking
the task data side-by-side, thereby assuming a common
mixing matrix. Additional approaches are also possible, for
example, stacking the data vertically. Vertical stacking, how-
ever, imposes the rather strong assumption that there exists

Figure 1.
A simple example of multitask or joint independent component
analysis (ICA). Two “tasks” (left) have different portions of the
smiley face that are illuminated, but share a common aspect (the
light bulb wattage). Selected “watt-related” source on the right
indicates the regions that are illuminated in each task and provides
the shared mixing coefficients that reflect the wattage of the bulbs.

Figure 2.
Model in which loading parameters are shared for the hidden
feature/source: The feature matrix is organized by placing the
features (statistic parametric mapping (SPM) maps) from the two
tasks side by side. This matrix is then modeled as separate task
source images that share common mixing matrix parameters.

Figure 3.
Auditory oddball (AOD)/Sternberg (SB) paradigms: AOD (a) and
SB (b) event-related fMRI tasks.
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a common “source” map for both tasks. Because we already
know that both tasks activate very different brain regions,
this approach was not deemed appropriate for the current
work.

SUBJECTS AND METHODS

Participants

Participants were recruited via advertisements, presenta-
tions at local universities, and by word-of-mouth. Fifteen
healthy participants and fifteen outpatients with chronic
schizophrenia, currently in complete or partial remission,
provided written, informed, IRB-approved consent at Hart-
ford Hospital and were compensated for their participation.
Before inclusion in the study, healthy participants were
screened to ensure they were free from Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM-IV) Axis I or Axis
II psychopathology, assessed using the Structured Clinical
Interview for DSM-IV [SCID; Spitzer et al., 1996], and were
interviewed to determine that there was no history of psy-
chosis in any first-degree relatives. Patients met criteria for
schizophrenia in the DSM-IV based on a structured clinical
interview and review of the case file [First et al., 1995]. All
but one patient with schizophrenia were stabilized on atyp-
ical antipsychotic medications. There were equal numbers of
males (n � 12/12) and females (n � 3/3) in the patient and
control groups and all but two participants in each group
were right-handed. There were no significant between-
group differences in age (patients, 37 � 11 years, range,
19–56 years; controls, 38 � 11 years, range, 21–56 years). All
participants had normal hearing (assessed by self-report)
and were able to carry out both tasks successfully during
practice before the scanning session.

Tasks

Auditory oddball

The auditory oddball (AOD) tasks consist of detecting an
infrequent sound within a series of regular and different
sounds. The tasks consisted of two runs of auditory stimuli
presented to each participant by a computer stimulus pre-
sentation system (VAPP) via insert earphones embedded
within 30-dB sound-attenuating MR-compatible head-
phones. The standard stimulus was a 500-Hz tone, the target
stimulus was a 1,000-Hz tone, and the novel stimuli con-
sisted of nonrepeating random digital noises (e.g., tone
sweeps, whistles; Fig. 3). The target and novel stimuli each
occurred with a probability of 0.10; the standard stimuli
occurred with a probability of 0.80. The stimulus duration
was 200 ms with a 1,000-, 1,500-, or 2,000-msec interstimulus
interval (ISI). All stimuli were presented at approximately 80
dB above the standard threshold of hearing. All participants
reported that they could hear the stimuli and discriminate
them from the background scanner noise. The intervals be-
tween stimuli of interest (i.e., target and novel stimuli) were
allocated in a pseudorandom manner to ensure that these
stimuli had equal probability of occurring at 0, 1/3, and 2/3

after the beginning of a 1,500-ms image acquisition period.
Because of this, the hemodynamic response to each type of
stimulus of interest was sampled uniformly at 500-ms inter-
vals. Before entry into the scanning room, each participant
carried out a practice block of 10 trials to ensure understand-
ing of the instructions. The participants were instructed to
respond as quickly and accurately as possible with their
right index finger every time they heard the target stimulus
and not to respond to the nontarget stimuli or the novel
stimuli. An MRI-compatible fiber optic response device
(Lightwave Medical, Vancouver, BC, Canada) was used to
acquire behavioral responses for both tasks. The stimulus
paradigm data acquisition techniques and stimulus-related
activation found previously are described more fully else-
where [Kiehl and Liddle, 2001; Kiehl et al., 2005].

Sternberg working memory

The Sternberg working memory task (SB) consisted of a
modified form of the Sternberg Item Recognition Para-
digm [Manoach et al., 1997; Sternberg, 1966] that required
subjects to memorize a list of alphabetic letters (conso-
nants only), maintain the list in memory for several sec-
onds, and then decide whether a probe letter was or was
not a member of the memorized list. During each encod-
ing phase, subjects were given a list of four, five, or six
consonants, which were displayed sequentially for 1.5 s
each with a 1-sec ISI. After a 9-s delay period, subjects saw
a sequential series of probe letters (onscreen for 2.5 s with
a 500-ms ISI) and were instructed to press a button with
their dominant-hand index fingers for letters in the mem-
orized list (targets) and to press a different button with
their middle fingers for other letters (foils). The probes
(targets) consisted of 4(2), 4(2), and 5(2 or 3) total probes
(corresponding to the encoding of four, five, or six con-
sonants, respectively). The total number of sets (consist-
ing of an encode and probe condition) occurring over the
7-min run was four, five, and four, respectively. There
was also a practice condition containing blocks of all
possible memory loads. Before entering the MR scanner,
all subjects were given complete task instructions and the
practice condition. Practice and instructions were re-
peated as necessary until subjects achieved a high rate of
correct responses on at least the blocks with lower mem-
ory loads.

Imaging Parameters

Scans were acquired at the Olin Neuropsychiatry Re-
search Center at the Institute of Living on a 3T dedicated
head scanner (Siemens Allegra; Siemens, Erlagen, Germany)
equipped with 40mT/m gradients and a standard quadra-
ture head coil. The functional scans were acquired using
gradient-echo echo planar imaging (EPI) with the following
parameters: repeat time (TR) � 1.50 sec (AOD)/1.86 s (SB),
echo time (TE) � 27 ms, field of view � 24 cm, acquisition
matrix � 64 � 64, flip angle � 70 degrees, voxel size � 3.75
� 3.75 � 4 mm, slice thickness � 4 (AOD)/3 (SB) mm, gap
� 1 mm, 29 (AOD)/36 (SB) slices, ascending acquisition. Six
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dummy scans were carried out at the beginning to allow for
longitudinal equilibrium, after which the paradigm was au-
tomatically triggered to start by the scanner.

Data Analysis

Preprocessing

Data were preprocessed using the software package SPM2
(http://www.fil.ion.ucl.ac.uk/spm/). Images were realigned
using INRIalign, a motion correction algorithm unbiased by
local signal changes [Freire and Mangin, 2001; Freire et al.,
2002]. Data were spatially normalized into the standard Mon-
treal Neurological Institute (MNI) space [Friston et al., 1995],
spatially smoothed with a 12 mm3 full width at half-maximum
(FWHM) Gaussian kernel. The data, originally 3.4 � 3.4 � 4.5
mm3, were slightly subsampled to 3 mm3, resulting in 53 � 63
� 46 voxels. For display, even slices 8–38 are presented.

GLM analysis

Data for each subject were analyzed by multiple regres-
sion incorporating regressors for the novel, target, and stan-
dard (AOD) for the encode and recognition (SB) stimuli and
their temporal derivatives plus an intercept term. Regressors
were created by modeling the stimuli as delta functions
convolved with the default SPM2 hemodynamic response
function (HRF). Only correct responses were modeled. The
contrasts used in the jICA analysis included the AOD target-
related contrast and the SB recognition-related contrast. The
amplitude estimates from the first level analysis were cor-
rected for amplitude bias due to spatially varying latencies
[Calhoun et al., 2004c].

Joint ICA analysis

The algorithm for the jICA analysis proceeds with the
following steps:

1. Feature selection: SPM contrast images for the AOD
target stimuli and the SB recognition stimuli were gen-
erated using the SPM2 software.

2. Feature normalization: To ensure similar consideration
for both tasks, the features for the AOD and SB were
normalized to have the same average sum-of-squares;
the average sum-of-squares for each task was com-
puted across all subjects and all voxels.

3. Feature matrix composition: In-brain voxels were ana-
lyzed and the two feature data sets were organized into
a matrix as in Figure 2.

4. Dimensionality estimation: We used the minimum de-
scription length (MDL) [Calhoun et al., 2001; Rissanen,
1983] criteria to estimate the dimensionality of the fea-
ture matrix.

5. Dimensionality reduction: PCA was used to reduce the
dimensionality of the data down to the estimated di-
mensionality (from step 4).

6. Spatial ICA decomposition: The extended-infomax al-
gorithm [Bell and Sejnowski, 1995; Lee et al., 1999] was

used to decompose the reduced feature matrix to max-
imally independent component images and subject-
specific mixing (loading) parameters.

7. Component selection: The eight resulting ICA mixing
coefficients (columns of the shared contribution matrix
in Fig. 2), each of which represents the relative degree
to which an individual participant contributes to the
joint component, were tested. We divided the partici-
pants into patients and controls, and tested within each
component for a significant difference between patients
and controls using a two-sample t-test. Only significant
components were subsequently interpreted.

8. Component display: Joint components were re-con-
verted into 3D images. The jICA analysis produces a set
of different regions for each task (for clarity we call
these jICA-AOD and jICA-SB regions).

Simulations

We examined the behavior of our algorithm by creating a
hybrid data set in which a known source is mixed and added
to actual SPM contrast images generated from the auditory
oddball and Sternberg tasks. This data is then unmixed
using the algorithm described in the previous section. Be-
cause the superimposed sources have a known pattern, it is
straightforward to extract them from the unmixed data.
Such an approach enables us to evaluate the performance of
the jICA algorithm under a variety of contrast-to-noise
(CNR) conditions, using data that has a complex structure
(because it is partially composed of actual data). This is done
by varying the amplitude of the known source. We can then
evaluate the solution and different models by comparing the
known unmixed sources to the ground truth using a mea-
sure such as correlation or Kullback-Leibler divergence be-
tween the known “truth” and the estimated joint sources
[Calhoun et al., 2004a].

Figure 4a shows the generation of a hybrid-data experi-
ment in which a known source (a 21 � 21 half-cycle sinu-
soid) was added to different parts of a single slice of audi-
tory oddball and Sternberg data from 30 healthy individuals
after multiplication by a random number drawn from a
uniform distribution (the mixing parameter) with half of the
individuals (the patients) having a mean shifted down by 0.5
from the other half of the individuals (the controls). The
ranges used were [1.5–0.5] and [0–1], respectively. We gen-
erated hybrid data sets under a variety of CNRs (computed
as the maximum value of the known source divided by the
standard deviation of the fMRI data at the same voxel) by
scaling the known source relative to the fMRI data. These
data were then entered into a jICA analysis and the compo-
nent that showed a significant difference between “groups”
was examined.

Analysis of Patient and Control fMRI Data

For comparison with the jICA results, we carried out a
standard random-effects analysis within SPM2 by comput-
ing voxel-wise t-tests between the patient and control con-
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trast images for each task [Holmes and Friston, 1998; Woods,
1996]. We then carried out a jICA analysis of the fMRI data
from healthy controls and patients with schizophrenia. After
the jICA analysis, we further examined the multitask data
using a task-by-task histogram analysis. Voxels that were
significant in the jICA analysis for either of the two tasks
were used to generate a joint histogram of the AOD and SB
fMRI data. These histograms were examined in individuals
and as group averages.

RESULTS

Simulations

Results for a hybrid data set under a lower CNR situation
(CNR � 0.5), comparable to the size of the signals found in
our data, and a higher CNR situation (CNR � 1), are shown
in Figure 4. The component that showed the largest group
difference is displayed, with the AOD part of the joint source
on the left, the SB part of the joint source in the middle, and

the correlation of the loading parameter with the ground
truth on the right (patients are coded in cyan, controls in
yellow). In both cases, the correct joint component was
found and the controls showed a lower mean than the
patients did (as expected). The jICA analysis thus selects out
the coupled source into a separate component and enables
us to visualize where in each data set the coupling occurs, as
well as the loading parameters.

Behavioral Data

For the AOD task, performance and significances for
whether controls and patients differed, was as follows: re-
action time, controls 431.1 � 102.2 ms and patients 522.3
� 162.6 ms ( P � 0.01); accuracy for target detection, controls
99.6 � 0.01% and patients 97.7 � 0.05% (P � 0.2). For the SB
task performances were as follows: accuracy, controls 97.6%
and patients 80.6% (P � 0.0001) and reaction time, controls
875.7 � 140.3 ms and patients 1,067.5 � 281.2 ms (P
� 0.0001).

GLM Analysis

Translation and rotation corrections for each participant
did not exceed half a voxel (i.e., 2 mm) or 2.0 degrees,
respectively. We also qualitatively examined each statistical
map to ensure there were no obvious motion artifacts (i.e.,
edge artifacts were not apparent, the pattern of activity
looked in general like what was expected). There was no
significant difference in movement between patients and
controls. For comparison, both tasks were also analyzed
using a standard random-effects analysis by entering the
features into a voxel-wise one-sample t-test. Patients and
controls analyzed separately (P � 0.0005, corrected for mul-
tiple comparisons using the false discovery rate [FDR;
Genovese et al., 2002]) are shown in Figure 5 and differences
between patients and controls (assessed with a two-sample
voxel-wise t-test; P � 0.05, FDR corrected) are shown for the
AOD and the SB tasks in Figure 6. Results are largely con-
sistent with previous findings for both tasks [Kiehl and
Liddle, 2001; Kiehl et al., 2005; Manoach et al., 1999, 2000].

Joint ICA Analysis

Results from the jICA analysis of both tasks are pre-
sented in Figure 7. Based upon the MDL criteria, eight
components were estimated from the data. Only one com-
ponent demonstrated significantly (P � 0.00044) different
loadings in patients and controls (loading for controls was
higher than that for patients), which we interpret as a
difference in the degree/magnitude of functional connec-
tivity in the two groups. Different spatial locations were
identified for the two tasks. For display, AOD and SB
sources were converted to empirical Z-values and thresh-
olded at �Z� � 3.5. The AOD tasks showed only regions
with controls versus patient increases (including temporal
lobe structures and cerebellum) and the SB task showed
some regions with control versus patient increases (basal
ganglia and cerebellum) and others with control versus

Figure 4.
Hybrid data generation and simulation results. Generation of hy-
brid data is depicted in Figure 4. b, c: Results from a lower and
higher noise environment. The source that revealed the greatest
difference between the two groups is shown for the auditory
oddball (AOD) part of the joint source (left of Fig. 4b, c) and the
Sternberg (SB) part of the joint source (middle of Fig. 4b, c). Mixing
coefficient vs. the ground truth values are shown on the far right
of Figure 4b, c.
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patient decreases (visual cortex and occipitotemporal re-
gions). Talairach coordinates for the AOD and SB jICA
analyses are presented in Table I.

We can also examine more directly the relationship
between the AOD and SB regions by going back to the
SPM contrast images (i.e., the data that was input to the
jICA analysis) and examining those regions that are con-
tributing significantly to the jICA results. To examine the
joint task activity in more detail, a joint histogram was
computed as follows. Voxels surviving the threshold for
the AOD part of the joint source were sorted in descend-
ing order by the component voxel values (the same was
done for voxels in the SB part of the joint source). This
procedure resulted in two sets of voxel coordinates. His-
tograms were then generated by pairing these two voxel
sets. For example, the first point for Individual 1 is the
voxel value for the AOD fMRI activation data (at the
position that is maximum in the AOD part of the jICA
source) versus the voxel value for the SB fMRI activation
data (at the position that is maximum in the SB part of the
jICA source). These pairings were used to generate single-
subject 2D histograms of AOD fMRI signal (as estimated
by the SPM contrast image) versus SB fMRI signal (as

estimated by the SPM contrast image). The histogram
image for each participant is shown in Figure 8a. In
addition, we computed the within-group average of the
histograms, and subtracted the control group average
from the patient group average (shown in Fig. 8b with
orange areas larger in controls and blue areas larger in
patients). For the voxels included, the 2-D histogram can
be considered an estimate of the joint distribution func-
tion for the two tasks (e.g., p(fsb, faod), where fsb,aod indicates
the fMRI signal amplitude for the AOD or SB tasks, re-
spectively). We also computed the marginal estimated
distributions p(fsb) � ¥aod p(fsb, faod) and p(faod) � ¥sb

p(fsb, faod) (Fig. 8c,d).
In general, more AOD task voxels were active in the

controls and the SB task showed an increased kurtosis for

Figure 5.
Auditory oddball (AOD)/Sternberg (SB) group analyses. AOD
target statistical parametric mapping (SPM) maps (left) and SB
recognition SPM maps (right) for controls (top) and patients
(bottom). Controls and patients both activated expected regions
for both tasks, with patient activation being qualitatively less than
controls.

Figure 6.
Auditory oddball (AOD)/Sternberg (SB) group difference maps.
Difference maps (controls minus patients) for the AOD (left) and
SB (right) tasks. Patients demonstrated less activation in a variety
of regions for the AOD tasks (consistent with previous findings)
and demonstrated increased left DLPFC and decreased basal gan-
glia activation (also consistent with previous findings).

Figure 7.
Auditory oddball (AOD)/Sternberg (SB) joint independent com-
ponent analysis (jICA). Only one component demonstrated a
significant difference between patients and controls. The joint
source map for the AOD (left) and SB (middle) tasks is presented
along with the loading parameters for patients and controls (far
right).
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the patients (the number of voxels that were increased
or decreased was greater). Upon further examination,
these two “tails” were found to be driven by the blue
regions in Figure 7 (which were negative in controls and
positive in patients) and by the cerebellum and basal
ganglia (which were positive in controls and negative in
patients).

A final analysis was carried out after inspection of the
histogram differences between the patients and controls.
The correlation between the two tasks looked systematically
different between the two. We thus fit a regression line to the
voxels from the two tasks. Results are presented in Figure 9
and demonstrate, as seen from the histograms in Figure 8,

significantly more correlation between the two tasks in the
patients (P � 0.000085).

DISCUSSION

We have demonstrated an approach for analyzing fMRI
data from two tasks in a unified analytic framework using
jICA. We also introduce the analysis of features generated
from a subject-specific fMRI analysis. We utilize a well-
established approach, SPM2, for generating fMRI activation
maps, which are then decomposed into independent maps
with shared loading parameters using jICA. This first-level

TABLE I. Talairach coordinates for auditory oddball and Sternberg joint independent component analysis (jICA)

Area Brodmann area L/R volume (cc) L/R random effects: Max T (x, y, z)

Auditory oddball
Positive

Cerebellum 2.3/0.6 9.5 (0, 	44, 2)/8.3 (3, 	44, 2)
Inferior frontal gyrus 47, *, 10, 45 3.3/0.5 8.8 (	53, 17, 	6)/5.1 (53, 17, 	6)
Superior temporal gyrus 38, 22, 41, *, 42, 21, 13, 29 11.0/10.8 8.8 (	53, 14, 	6)/7.8 (56, 	20, 9)
Parahippocampal gyrus 30, *, 27, 37 1.8/0.9 8.2 (	6, 	44, 2)/6.8 (6, 	41, 0)
Transverse temporal gyrus 41, 42 1.5/1.9 7.2 (	62, 	14, 9)/7.9 (56, 	17, 9)
Superior frontal gyrus 6 2.9/1.2 7.5 (0, 6, 66)/7.1 (3, 1, 69)
Postcentral gyrus 40, 43, *, 2 1.0/1.7 6.2 (	62, 	17, 15)/6.4 (59, 	23, 15)
Insula 40, 13, 29 0.3/2.4 4.7 (	45, 11, 	3)/6.3 (53, 	20, 15)
Precentral gyrus 13, 43, 6, 44 0.2/0.6 5.3 (	59, 	8, 9)/6.0 (50, 	14, 12)
Middle temporal gyrus 21, 22 1.2/0.1 6.0 (	62, 0, 	5)/4.7 (59, 	3, 	5)
Medial frontal gyrus 6, 8, 32 0.8/0.1 5.9 (0, 3, 63)/5.1 (3, 3, 63)
Thalamus 2.5/2.1 5.8 (	6, 	35, 2)/5.3 (6, 	35, 2)
Lingual gyrus 18, 19, 17, * 5.7/2.2 5.6 (	3, 	52, 0)/4.9 (6, 	85, 	11)
Fusiform gyrus 37, 18, 19, 20 3.9/1.0 5.5 (	33, 	51, 	20)/4.4 (30, 	68, 	19)
Inferior parietal lobule 40 0.0/0.5 ns/5.4 (59, 	31, 21)
Inferior occipital gyrus 18, 17 0.4/0.1 5.1 (	24, 	88, 	13)/3.7 (9, 	91, 	8)
Caudate Caudate head, Caudate body 0.5/0.6 4.5 (	3, 0, 3)/4.4 (9, 1, 11)
Cuneus 17, 19, 30, 18, 23, *, 7 3.6/1.0 4.3 (0, 	81, 10)/4.2 (3, 	84, 7)
Precuneus 7, 19 0.7/0.0 4.2 (	6, 	77, 40)/ns
Middle frontal gyrus 10, * 0.4/0.0 4.2 (	42, 52, 	3)/ns
Cingulate gyrus 32 0.6/0.0 4.0 (0, 16, 38)/ns

Sternberg
Positive

Cerebellum — 0.4/0.1 5.9 (	3, 	44, 2)/4.8 (3, 	41, 2)
Caudate — 1.5/0.1 5.3 (	6, 9, 5)/3.6 (3, 1, 11)
Inferior frontal gyrus 47, 46 0.6/0.0 5.0 (	48, 23, 	11)/3.6 (48, 44, 12)
Precentral gyrus 4, 6 0.7/1.0 4.1 (	65, 4, 16)/4.4 (30, 	23, 67)
Superior frontal gyrus 6 0.0/0.1 ns/4.2 (27, 0, 64)

Negative
Cuneus 18, 17, 19, * 5.1/6.0 5.6 (	15, 	98, 13)/5.4 (18, 	98, 21)
Middle occipital gyrus 18, 19 1.7/2.3 5.5 (	18, 	98, 13)/5.3 (21, 	98, 19)
Parahippocampal gyrus 30, 37, 36, 19, amygdala 0.3/0.6 5.0 (	6, 	44, 2)/4.0 (36, 	38, 	8)
Lingual gyrus 17, 18 0.1/1.1 3.7 (	15, 	87, 4)/4.7 (12, 	93, 2)
Middle frontal gyrus 6, 11 0.0/0.5 ns/4.5 (27, 3, 61)
Superior temporal gyrus 22, 38, 41, 29, 42, * 2.1/0.1 4.3 (	50, 	38, 7)/3.6 (45, 	41, 5)
Middle temporal gyrus 22, *, 21, 39 1.3/0.1 4.3 (	50, 	40, 10)/3.6 (48, 	41, 5)
Inferior parietal lobule 40 0.0/0.8 3.6 (	50, 	59, 47)/4.1 (65, 	33, 32)
Superior occipital gyrus 19 0.2/0.0 4.1 (	33, 	86, 29)/ns
Fusiform gyrus 37, 20 0.0/0.6 ns/4.0 (39, 	38, 	8)

Voxels above the threshold for Figure 7 were converted from Montreal Neurological Institute (MNI) to Talairach coordinates and entered
into a database to provide anatomic and functional labels for the left (L) and right (R) hemispheres. Both auditory oddball and Sternberg
voxels are reported. The volume of activated voxels in each area is provided in cubic centimeters (cc). Within each area, the maximum T
value and its coordinates are provided.
NS, not significant.
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filtering effectively biases the results toward the modeled
hemodynamic fMRI signal and is thus a reasonable way to
begin to examine joint coupling between tasks. Using SPM
to generate the features and then carrying out ICA is con-
ceptually similar to assuming each subject has a fixed (mod-
eled) hemodynamic time course (except for amplitude dif-
ferences, which are modeled in the mixing matrix and vary
for each participant).

Our novel data analytic approach revealed two interesting
findings in the data that were missed with traditional anal-
yses. First, consistent with our hypotheses, schizophrenia
patients demonstrate decreased functional connectivity in
the joint network identified using the jICA approach. This
network includes regions in temporal lobe, cerebellum, thal-
amus, basal ganglia, and lateral frontal regions, and these
findings are consistent with both the cognitive dysmetria
[Andreasen et al., 1998] and frontotemporal disconnection
[Liddle et al., 1992] models. The current analysis reveals a
single network, including portions of all of the regions men-
tioned above, which is diminished/attenuated in activation
amplitude. This supports the idea that the pathophysiology
of schizophrenia includes impaired brain connectivity [Fris-
ton, 1999]. Contrary to our hypotheses, a component that
was more active in patients than in controls was not re-
vealed by the jICA analysis. Our findings thus argue against
new, less-efficient areas being recruited by patients due to
impaired connectivity between regions that are normally
utilized. A second finding is that for the voxels identified by
the jICA analysis, the correlation between the two tasks was
significantly higher in patients than in controls. This finding
suggests that schizophrenia patients activate “more simi-
larly” for both tasks than controls. The degree to which a
brain activation map is different from that of another task
may reflect the degree to which performance on a task is
specialized to a certain set of regions. A possible synthesis of

both findings is that patients are activating less, but also
activating with a less-unique set of regions for these very
different tasks. This suggests both a global attenuation of
activity as well as a breakdown of specialized wiring be-
tween cognitive domains. Alternative explanations are also
possible, and methods such as we propose may prove useful
for further study. Nonetheless, both of the findings de-
scribed support the claim that examination of joint activa-
tion across multiple tasks can provide insight into the mis-
connections in schizophrenia. Future studies will need to
address the impact of performance differences between pa-
tients and controls (for example, by matching patients and
controls on behavior as opposed to matching on task diffi-
culty as done in this work) as well as other potential con-
founds common to patient studies, e.g., medication effects.

Identification of multinode networks can provide a useful
tool for understanding the pathophysiology of schizophre-
nia as well as other psychiatric illnesses. This is a different
goal than the useful process of classification using nodes that
are known to be affected, such as the temporal lobe [Cal-
houn et al., 2004b]. In a previous work [Calhoun et al.,
2004b], using solely temporal lobe function, we were able to
correctly classify a new group of patients and controls with
high accuracy using subject specific ICA maps of functional
connectivity during the performance of a single fMRI task.
The current work can be considered a precursor to develop-
ing potentially more sensitive methods for classification uti-
lizing multiple tasks. Using subject-specific selected ICA
features would also be a natural way to utilize the proposed

Figure 9.
Groupwise Sternberg (SB)/auditory oddball (AOD) regression
slope. Fitted regression slope for patients (cyan) and controls
(yellow) for the statistical parametric mapping (SPM) contrast data
from regions that were revealed by the joint independent com-
ponent analysis (jICA) approach. The SB task data was regressed
onto the AOD task data and revealed a significant increase in slope
for patients compared to that in controls.

Figure 8.
Cross-task 2-D histograms. Joint 2-D histograms for voxels iden-
tified in the joint independent component analysis (jICA). Individ-
ual (a) and group average difference (b) histograms (with orange
areas larger in controls and blue areas larger in patients) are
provided along with the marginal histograms for the auditory
oddball (statistical parametric mapping [SPM] contrast image for
“targets”; c) and Sternberg (SPM contrast image for “recall”; d)
data.
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framework, although for the present we have focused upon
a model-based approach at the subject level.

Our proposed method has several advantages. First, our
approach enables the joint analysis of multiple task data in a
unified analytic framework. The framework presented,
demonstrated on two fMRI tasks, is straightforward to use
with two or more tasks or with other feature types such as
gray matter segmentation images [Calhoun et al., 2005].
Secondly, we utilize a feature-based approach, providing a
straightforward way to take advantage of data modeled at
the subject level. These features are then queried for shared
dependence, which is not detectable with a simple voxel-
wise subtractive or conjunctive approach. Finally, the shared
mixing coefficient provides a way to examine individual or
group differences in coupling (which can be considered a
measure of the relative degree of functional connectivity).
Indeed, because we are looking directly at coupled differ-
ences between the two tasks, we need test only a single
parameter (instead of thousands of voxels). Additionally,
although our approach of carrying out ICA at the second
(group) level is useful for a single task, carrying out a joint
analysis improves the estimated sources, because more data
is used in the estimation [Calhoun et al., 2005]. For the
current data set, the significance also is increased when
using the tasks in a joint analysis, providing evidence that
joint task information is contributing to the results. These
results provide additional evidence in support of the utility
of jointly analyzing data from multiple tasks. Although we
demonstrate our methodology on a data set in which vastly
different tasks were used to examine widespread deficits
related to schizophrenia expected to transcend cognitive/
sensory domains, it may also be useful to apply the pro-
posed methods to a set of tasks that are theoretically related
to one another or involve common cognitive/sensory pro-
cesses. The use of an approach that can examine joint infor-
mation across multiple tasks may lead to improved under-
standing of a particular functional domain.

Although the modeling assumptions inherent in ICA
have been explored to some degree for fMRI data [Mc-
Keown and Sejnowski, 1998], this has yet to be explored
for our jICA approach. The main assumptions made are:
(1) independence of the brain networks for both AOD and
SB data, (2) a linear relationship between the subjects and
these networks via the mixing parameters, and (3) the
assumption of a common distribution for the AOD and SB
joint sources. The first assumption has been used previ-
ously [McKeown et al., 1998] with good success with brain
data and despite the fact that brain regions are not func-
tioning independently due to the many brain regions and
the sparsity of the sources, the independence assumption
does seem to have some value. With spatial ICA, the
stability of the results is dependent mainly upon the
number of voxels/samples and thus even for a small
number of individuals, the ICA solution is stable (al-
though the significance testing between groups will of
course suffer if the group sizes are too small). The linear
relationship between subjects restated is that we assume

common networks/sources present in all subjects to (lin-
early) varying degrees. In this study, we test the hypoth-
esis that patients and controls show differing network
strengths, and find one component that is consistent with
this hypothesis. The third assumption of a common joint
distribution for AOD and SB sources is a sensible thing to
do if one is interested in the examination of joint infor-
mation. This assumption also is able to handle the case
where a source may be contributed to by only the AOD
data, in this case the SB part of the joint source would
have insignificant voxel values. The aforementioned as-
sumptions, however, although convenient, are possibly
too limiting in several ways. First, the AOD and SB dis-
tributions may need to be modeled explicitly with differ-
ent marginal distributions. To mitigate this concern in this
initial jICA approach, we normalize the AOD and SB data
and utilize the extended infomax algorithm that adap-
tively models the sources as having either supergaussian
(e.g., a distribution with positive kurtosis) or subgaussian
distribution. This algorithm has shown to be quite robust
to violations of the underlying model for a wide variety of
data types [Lee et al., 1999] and enables some flexibility in
the source distributions. This is confirmed in our own
data because upon examination of the distributions of the
joint sources, we find that the distribution of the AOD and
SB parts of the same source do show some variation (they
have different means, variances, etc.), which is to be ex-
pected for these data. Finally, the linearity of the subject-
wise contribution is an assumption of convenience,
which, although it has worked very well thus far for ICA
of many different data types, we would like to relax in
future work because it is possible that the joint sources
may also show nonlinear relationships.

There are also some additional limitations that should be
mentioned. First, we are carrying out a joint second-level
(group) analysis of features computed from separate first-
level (subject-specific) analyses and thus some of the poten-
tially useful information from the first level is not utilized in
the source separation. Incorporation of a joint first-level
analysis is thus an attractive goal for future work. The
current framework, for practical reasons, assumes that both
voxels and tasks are independent and identically distrib-
uted. Indeed, most ICA models used for fMRI data also
make this assumption and perform quite well despite the
known spatial correlation between voxels, provided appro-
priate data reduction is utilized [Hyvarinen et al., 2001]).
Nonetheless, it can be potentially useful to incorporate some
additional prior information on the voxels (such as spatial
correlation) as well as incorporate different distributions for
different features into the model. Our feature normalization
step, which matches the variance of the two tasks, can po-
tentially be improved by matching higher-order moments
through, e.g., histogram equalization [Hansen et al., 2001].
In addition, the simulations using hybrid data have their
limitations as well, although they demonstrate the utility
and assumptions of the methods we propose and provide a
measure of their performance in various conditions. We
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hope in future work to utilize approaches related to those
that have been used for fMRI to carry out cross-validation
sampling [Strother et al., 2002]. Finally, although we have
demonstrated some evidence supporting the usefulness of
our model, our choice of modeling the shared dependence
between the tasks with the mixing parameters should be
examined in more studies before the true utility of this
assumption will be known.

CONCLUSIONS

We have demonstrated a novel method for examining
joint activation across multiple tasks. This approach has
enabled us to ask novel questions about fMRI data and
revealed several interesting findings in an application to
data collected from healthy controls and patients with
schizophrenia that were missed by a standard analysis ap-
proach. The development of models for jointly analyzing
multitask fMRI data has been largely overlooked and may
be a useful tool for assessing how brain function during
different cognitive probes and in different regions can vary
systematically between tasks.
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