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This study proposes a method based on Dempster-Shafer theory (DST) and fuzzy neural network (FNN) to improve the reliability
of recognizing fatigue driving.Thismethodmeasures driving states usingmultifeature fusion. First, FNN is introduced to obtain the
basic probability assignment (BPA) of each piece of evidence given the lack of a general solution to the definition of BPA function.
Second, a modified algorithm that revises conflict evidence is proposed to reduce unreasonable fusion results when unreliable
information exists. Finally, the recognition result is given according to the combination of revised evidence based on Dempster’s
rule. Experiment results demonstrate that the recognition method proposed in this paper can obtain reasonable results with the
combination of information given by multiple features. The proposed method can also effectively and accurately describe driving
states.

1. Introduction

Fatigue is a common physiological phenomenon that reduces
a driver’s attention and ability to control the vehicle. Fatigue
driving is one of the major causes of road accidents and poses
a significant threat to the safety of drivers and passengers.
Common methods for detecting fatigue driving include
measurements of physiological features, facial features, and
features of driving behavior [1].

Physiological signals related to fatigue consist of elec-
troencephalogram (EEG), electrocardiogram (ECG), elec-
tromyography (EMG), and heart rate variability (HRV) [2–
5]. The results of fatigue recognition by physiological signals
have high accuracy, but this approach has limitations. One
particular limitation is the extraction of signals that are intru-
sive for drivers thereby making them uncomfortable. Non-
contact measurements, such as extracting facial features and
features of driving behavior, are practical and will not affect
normal driving. Existing studies have shown that fatigued
people exhibit certain visual changes in facial features, such as
eye closure, movements in gaze direction, yawning, and head
movements [6–11]. Fatigue may be also reflected in features

of driving behavior, such as lane departure and steeringwheel
movements [12–14]. However, using facial features to evaluate
driving states is not always reliable because extraction of facial
features may be affected by variation of illumination and
driver’s posture. Thus, image processing algorithms cannot
ensure the accuracy of recognition results. The reliability of
methods based on driving behavior is dependent on road and
climate conditions, vehicle types, and driving habits. Thus,
accurate evaluation of driving states is difficult to achieve
with a single feature under a complex environment. Models
based on information fusion have been developed to increase
the accuracy of fatigue recognition [15–17]. Lee and Chung
[15] proposed a dynamic fatigue monitoring system based
on Bayesian network. Deng et al. [17] proposed a fatigue
monitoringmethod based onDempster-Shafer theory (DST).
However, the prior probability needed in Bayesian network
is acquired according to experts’ subjective experience. The
definition of basic probability assignment (BPA) function
in DST has no standard solution because of the nonlinear
characteristics of fatigue features.

DST [18, 19] is an improvement of Bayesian infer-
ence and an effective method for handling imprecise and
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Figure 1: Frames of facial expression video.

uncertain information; DST has been widely used in infor-
mation fusion. However, Dempster’s rule of combination
often obtains unreasonable fusion results when proofs are
in conflict [20]. Generally speaking, there are two main
reasons to cause highly conflicting evidence [21]. One is the
questionable information reliability caused by environmental
disturbance or instrument errors. To solve this problem,
a series of improvement methods have been proposed.
These methods are mostly focused on the modifications of
combination rules and revisions of original evidence. The
modifications of combination rules include Yager’s rule [22],
Qian et al.’s rule [23], Lefevre et al.’s rule [24], and Dezert-
Smarandache theory (DSmT) [25]. The revisions of original
evidence consist of weighted average strategy [26, 27] and
discount strategy [28–31]. Jiang et al. [32] used 𝑍-numbers
[33] to evaluate the fuzziness and reliability of the uncertainty
in sensor data fusion. The other reason is that the given
environment is in an open world, which means the frame of
discernment is incomplete due to lack of knowledge [34].The
information fusion environment of traditional DST is in a
closed world, whichmeans the frame of discernment consists
of all the elements. Deng [21] proposed the generalized
evidence theory (GET) to deal with uncertain information
fusion in the openworld. Jiang et al. [35]measured the weight
of evidence based on Deng entropy [36] to handle conflict.

This study proposed a method based on DST and fuzzy
neural network (FNN) [37] to recognize fatigue driving.
Facial features were adopted as the fatigue parameters of
the proposed method, which were extracted by cameras
mounted in the vehicle. Given the self-learning and self-
adaption abilities of FNN [38], this method was used to
obtain the BPA of evidence. Under the driving environment,
conflict information was mainly caused by environmental
interferences andmeasurement errors. To address this issue, a
modified algorithm is introduced into the method by taking
the credibility of each piece of evidence into consideration.
This algorithm revises original evidence based on discount
strategy to improve the reliability of recognition result.

This study is organized as follows. Measurements of
fatigue features are summarized in Section 2. Section 3 pro-
poses a recognition method characterized by multifeature
fusion. Section 4 discusses the experiments and results. Con-
clusions are given in Section 5.

Table 1: The evaluation criteria of driver’s mental states.

State Score Features

Awake 0

Eyes open properly and close
intermittently and rapidly, active
eyeball movement, head straight,
glance sideways occasionally, etc.

Fatigue 1

Eye closure trend appears, eye
activity decreases, yawning,
squeezing eyes, nod subconsciously,
etc.

Severe fatigue 2
Long time eyes closed, hard to keep
eyes open, blank stare, slow eyeball
movement, head skew, etc.

2. Measurements of Fatigue Features

2.1. States Evaluation Criteria. The change in driver’s mental
states is a continuous process. Driver fatigue is characterized
by various facial features, such as droopy eyelid, eye closure,
change in gaze direction, yawning, and change in head
posture. Using the camera placed on the dashboard, in front
of the driver, we can capture the facial expression video.
Frames in the video that represent several expressions are
shown in Figure 1.

Kimura et al. [39] analyzed the feasibility of using facial
expressions to judge the degree of fatigue and the consistency
of results between the facial features analysis and ratings of
facial expression videos. In this paper, we quantify the driver’s
states into three levels and give corresponding scores for each
level: Awake (0 point), Fatigue (1 point), Severe fatigue (2
points). The evaluation criteria of driver’s states are shown in
Table 1.

Under the vehicle interior environment, extracting fea-
tures accurately and rapidly becomes difficult because of lim-
itations in image processing algorithms and environmental
interferences. To address this issue, this study considers visual
features that can be effectively extracted and measured, like
eye movement and mouth movement.

2.2. Facial Features Extraction. In order to obtain the eye
movement and the moth movement features, we need to
locate eyes and mouth areas first. In this paper, CLM
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Figure 2: Detection results of CLM algorithm.

Figure 3: Eyes and mouth areas.
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Figure 4: Eyelid movement.

(Constrained Local Model) [40] algorithm is adopted to
localize facial landmarks. The facial feature points detected
from several frames are shown in Figure 2.

Eyes and mouth areas can be extracted according to the
coordinates of feature points, as are shown in Figure 3. By
analyzing the relation between feature points, we can acquire
some states evaluation indexes.

Detecting fatigue through eye features, we mainly focus
on the analysis of eyelid and iris movement. Eyelid move-
ment, reflected by eyes’ opening and closing, is one of the
most relevant and also the most visually significant fatigue
features.We use changes in distance between upper and lower
eyelids over a period of time to represent eyelid movement.
Figure 4 shows the eyelid movement in a period of time.

As is shown in Figure 4, 𝑇 is the width of time window
and 𝐿 is the average distance between eyelids. According
to PERCLOS (Percentage of Eyelid Closure) [41], we take
approximate 0.7 L as the threshold to determine whether
the eye is opened, which is denoted with the broken line

Lt
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Ot Rt

Figure 5: Iris features.

in the figure. Thus, we can get the number of blinks,
denoted as 𝑁𝑏, and each eye closing duration, denoted as𝑡𝑖 (𝑖 = 1, 2, . . . , 𝑁𝑏) within a given time window. We choose
PERCLOS (Percentage of Eyelid Closure) and MCD (Max-
imum Closing Duration) as the eyelid movement features
to measure fatigue. PERCLOS and MCD are calculated as
follows:

PERCLOS = 1𝑇
𝑁𝑏∑
𝑖=1

𝑡𝑖,
MCD = max {𝑡1, 𝑡2, . . . , 𝑡𝑁𝑏} .

(1)

Iris movement ismainly reflected in the change of driver’s
gaze direction. To get iris movement features, we use Canny
algorithm [42] andHough transform [43] to locate iris region
and get the center of iris, as is shown in Figure 5.

In Figure 5, 𝐿 𝑡 and 𝑅𝑡 are left and right corner of eye at
time 𝑡. 𝑂𝑡 is the center of iris at time 𝑡, and 𝑂𝑡+1 is the center
of iris at time 𝑡 + 1. The width of time window is 𝑇, and the
pupil rest time is 𝑡𝑖 (1 < 𝑖 < 𝑁). Total number of frames
within the time window is 𝑁𝑓. Features extracted according
to iris movement are AAI (Average Asymmetry of Iris) and



4 Mathematical Problems in Engineering

Hm

Wm

Hm

Wm

Figure 6: Measurement of width and height of the mouth.

PRPT (Percentage of Pupil Rest Time). AAI and PRPT are
calculated as follows:

AAI = 1𝑁𝑓
𝑁𝑓∑
𝑖=1

(󵄨󵄨󵄨󵄨𝑂𝑖𝐿 𝑖󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑂𝑖𝑅𝑖󵄨󵄨󵄨󵄨) ,

PRPT = 1𝑁𝑓
𝑁𝑓∑
𝑖=1

𝑡𝑖, 𝑡𝑖 = {{{
𝑡𝑖 + 1, 󵄨󵄨󵄨󵄨𝑂𝑖𝑂𝑖+1󵄨󵄨󵄨󵄨 ≥ 𝜀,
𝑡𝑖, otherwise,

(2)

where | ⋅ | represents the distance between two points and 𝜀 is
the threshold of iris movement.

Yawning is also one of themost visually significant fatigue
features. The width and height of mouth can be calculated
according to the feature point coordinates in the mouth
region, as is shown in Figure 6. And we use the aspect ratio
to measure the mouth opening, defined as 𝑘 = 𝐻𝑚/𝑊𝑚.

Figure 7 shows themouthmovement reflected by changes
in mouth opening. 𝑇 is the width of time window. When 𝑘 >0.7, it means that mouth is opened. Yawning can be consid-
ered as a process that mouth keeps opening more than three
seconds. The number of yawning is denoted as 𝑁𝑦, and each
mouth open duration is denoted as 𝑡𝑖 (𝑖 = 1, 2, . . . , 𝑁𝑦).

The fatigue indexes extracted from Figure 7 are YF
(Yawning Frequency) and AOT (Average Opening Time).
They can be calculated as follows:

YF = 𝑁𝑦𝑇 ,

AOT = 1𝑁𝑦
𝑁𝑦∑
𝑖=1

𝑡𝑖.
(3)

3. Framework of Multifeature
Fusion Recognition

The recognitionmethod proposed in this paper combines the
advantages of DST and FNN. A single FNN is divided into
several subnetworks. Each subnetwork with nonlinear map-
ping capability is trained to process information from dif-
ferent features to conduct preliminary evaluation of driving
states. The BPA function is defined by normalizing network
output.The problemof highly conflicting evidence fusion can
be solved efficiently by revising conflicting evidence using
discount strategy. The degree of conflict is measured by the
correlation coefficient of evidence to calculate the credibility
of evidence, which is used as discount factor. Evidence
fusion is based on DST. Figure 8 shows the framework of
multifeature fusion fatigue recognition.
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Figure 7: Mouth movement.

3.1. DST. Let Θ = {𝜃1, 𝜃2, . . . , 𝜃𝑛} be a finite set of mutually
exclusive and exhaustive proposition known as the frame of

discernment. Power set 2Θ is the set that includes all subsets
of Θ. BPA is a function defined as 𝑚 : 2Θ → [0, 1], which
satisfies the following condition:

∑
𝐴⊂Θ

𝑚(𝐴) = 1,
𝑚 (𝜙) = 0.

(4)

The value of 𝑚(𝐴) represents the degree of evidential
support of exact set 𝐴. If 𝑚(𝐴) > 0, subset 𝐴 is called focal
element.

Let 𝑚1 and 𝑚2 be two BPAs defined on frame Θ, which
are derived from two independent sources. Focal elements
are 𝐵𝑖 (𝑖 = 1, 2, . . . , 𝑚) and 𝐶𝑗 (𝑗 = 1, 2, . . . , 𝑛). Combined
BPA can be calculated according to Dempster’s rule of
combination:

𝑚(𝐴)

= {{{{{
∑𝐵𝑖∩𝐶𝑗=𝐴𝑚1 (𝐵𝑖)𝑚2 (𝐶𝑗)1 − 𝑘 , 𝐴 ⊆ Θ, 𝐴 ̸= ⌀
0, 𝐴 = ⌀,

(5)

where conflicting factor 𝑘 = ∑𝐵𝑖∩𝐶𝑗=⌀𝑚1(𝐵𝑖)𝑚2(𝐶𝑗). This

equation measures the conflict degree between 𝑚1 and 𝑚2,
and 1/(1 − 𝑘) represents the normalization factor, which is
used to avoid assigning nonzero probability to the empty set.

3.2. Determination of BPA. In multifeature fusion recogni-
tion, each feature is considered as a piece of evidence. Pieces
of evidence are combined according to Dempster’s rule and
new evidence is obtained as basis for recognition. In practical
applications, the definition of BPA function is based on the
characteristics of data. Common approaches include experi-
mental formula, neural network method, fuzzy set method,
and gray correlation analysis [44–47]. Neural network can
conduct generalization, which can play the role of experts in
determining BPA after learning a certain number of training
samples. In this study, BPAs are constructed by normalizing
the output of FNN. BPA function is defined as follows:
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Figure 8: Framework of multifeature fusion fatigue recognition.
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Figure 9: Structure of FNN.

𝑚(𝐴 𝑖) = 𝑦 (𝐴 𝑖)∑𝑛𝑖=1 𝑦 (𝐴 𝑖) , 𝑖 = 1, 2, . . . , 𝑛, (6)

where 𝐴 𝑖 stands for driving state and 𝑦(𝐴 𝑖) corresponds to
the 𝑖th node of output.

3.2.1. Structure of FNN. In order to get driving states from
eyelid movement, iris movement, and mouth movement
features, we design three FNNs with two inputs and three
outputs to present signs of fatigue. As is shown in Table 1,
driving states are classified into three levels: Awake, Fatigue,
and Severe fatigue. So the FNN outputs corresponded to
these three levels. For eyelid movement measurement, the
inputs of FNN are PERCLOS and MCD. For iris movement
measurement, the inputs of FNN are AAI and PRPT. For
mouth movement measurement, the inputs of FNN are YF
and AOT. Structure of FNN is shown in Figure 9. When a
state is identified, the corresponding output node is set to 1;
otherwise, it is set to 0.Normalizing the FNNoutput data over
a period of time and BPA of each piece of evidence can be
obtained by formula (6).

FNN is composed of five layers, namely, input, fuzzy,
fuzzy rules, normalized, and output layer.

The first layer is input layer. Each node in this layer
represents an input variable 𝑥𝑖.

The second layer is fuzzy layer. Each node represents the
value of a linguistic variable. The fuzzy layer calculates the
subjection function of each input variable that belongs to a
fuzzy set that corresponds to the value of a certain linguistic
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Figure 10: Curve of subjection function.

variable. For all the features defined in Section 2, their values
increase alongwith the accumulation of fatigue.Therefore, we
classify the input into three different linguistic variable values,
namely, small, medium, and large. The subjection functions
of different linguistic variables are assigned as follows:

small: 𝜇𝑗𝑖 (𝑥𝑖) = 1
1 + exp [𝜎𝑖𝑗 (𝑥𝑖 − 𝑐𝑖𝑗)] ,

medium: 𝜇𝑗𝑖 (𝑥𝑖) = exp[
[
−(𝑥𝑖 − 𝑐𝑖𝑗)2𝜎2𝑖𝑗 ]

]
,

large: 𝜇𝑗𝑖 (𝑥𝑖) = 1
1 + exp [−𝜎𝑖𝑗 (𝑥𝑖 − 𝑐𝑖𝑗)] ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚𝑖.

(7)

The subjection function of linguistic variable medium is
described by a Gaussian function, where 𝑐𝑖𝑗 and 𝜎𝑖𝑗 represent
the central value and width of the function that belongs to𝑗th fuzzy set of 𝑖th input variable.The subjection functions of
linguistic variables small and large are described by Sigmoid
function, where 𝑐𝑖𝑗 contributes to the right shift of the
subjection function along the horizontal axis and 𝜎𝑖𝑗 adjusts
the shape of function. 𝑛 is the number of input variables and𝑚𝑖 is the fuzzy partitions of 𝑥𝑖. The number of nodes in this
layer is 𝑁2, 𝑁2 = ∑𝑛𝑖=1𝑚𝑖.

The outputs of these functions are normalized to range
from 0 to 1. The curve of subjection function based on
formula (7) is shown in Figure 10.
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Table 2: Fuzzy rules of eyelid movement.

𝑥1 𝑥2 𝑦1 𝑦2 𝑦3
(PERCLOS) (MCD) (Awake) (Fatigue) (Severe fatigue)

Small Small 1 0 0

Small Medium 1 0 0

Medium Small 1 0 0

Medium Medium 1 0 0

Medium Large 0 1 0

Large Medium 0 1 0

Large Large 0 0 1

Table 3: Fuzzy rules of iris movement.

𝑥1 𝑥2 𝑦1 𝑦2 𝑦3
(AAI) (PRPT) (Awake) (Fatigue) (Severe fatigue)

Small Small 1 0 0

Small Medium 1 0 0

Medium Small 1 0 0

Medium Medium 1 0 0

Medium Large 0 1 0

Large Medium 0 1 0

Large Large 0 0 1

The third layer is fuzzy rules layer. Each node represents
one fuzzy rule. By calculating the subjection degree, the
fitness of each rule can be defined as

𝛼𝑗 = 𝜇𝑖11 𝜇𝑖22 ⋅ ⋅ ⋅ 𝜇𝑖𝑛𝑛 , (8)

where 𝑖1 ∈ {1, 2, . . . , 𝑚1}, 𝑖2 ∈ {1, 2, . . . , 𝑚2}, . . . , 𝑖𝑛 ∈ {1, 2,. . . , 𝑚𝑛}, 𝑗 = 1, 2, . . . , 𝑚, 𝑚 = ∏𝑛𝑖=1𝑚𝑖, and 𝑚 is the number
of nodes in this layer, which is equal to the number of fuzzy
rules.

According to the facial expression of fatigue, take eyelid
features as an example, the fuzzy rules can be described as
follows:

If PERCLOS is small, MCD is small, then output is
Awake....
If PERCLOS is medium, MCD is large, the output is
Fatigue.

...
If PERCLOS is large, MCD is large, then output is
Severe fatigue.

The fuzzy rules of eyelid movement, iris movement, and
mouth movement are shown in Tables 2, 3 and 4.

The fourth layer is normalized layer. The normalized
calculation is defined as follows:

𝛼𝑗 = 𝛼𝑗∑𝑚𝑗=1 𝛼𝑗 , 𝑗 = 1, 2, . . . , 𝑚. (9)

Table 4: Fuzzy rules of mouth movement.

𝑥1 𝑥2 𝑦1 𝑦2 𝑦3
(YF) (AOT) (Awake) (Fatigue) (Severe fatigue)

Small Small 1 0 0

Small Medium 1 0 0

Medium Small 1 0 0

Medium Medium 0 1 0

Medium Large 0 1 0

Large Medium 0 1 0

Large Large 0 0 1

The fifth layer is output layer, which is also called
defuzzification layer. Each node in this layer represents an
output variable 𝑦𝑖. The defuzzification is defined as follows:

𝑦𝑖 =
𝑚∑
𝑗=1

𝜔𝑖𝑗𝛼𝑗, 𝑖 = 1, 2, . . . , 𝑟, (10)

where𝜔𝑖𝑗 stands for theweight of FNN,which can be adjusted
through the learning algorithm, and 𝑟 is the number of output
variables.

3.2.2. Learning Algorithm. The error of FNN is defined as
follows:

𝑒 = 12 (𝑦𝑒 − 𝑦𝑖)2 , (11)

where 𝑦𝑖 represents the actual output and 𝑦𝑒 represents the
expected output.

Error back propagation algorithm (BP algorithm) is used
for network parameter adjustment to ensure that the actual
output is close to the expected output. Based onBP algorithm,
the weight of FNN 𝜔𝑖𝑗 can be adjusted as follows:

𝜔𝑖𝑗 (𝑡 + 1) = 𝜔𝑖𝑗 (𝑡) − 𝜂 𝜕𝑒𝜕𝜔𝑖𝑗 ,
𝜕𝑒𝜕𝜔𝑖𝑗 =

𝜕𝑒𝜕𝑦𝑖
𝜕𝑦𝑖𝜕𝜔𝑖𝑗 = − (𝑦𝑒 − 𝑦𝑖) 𝛼𝑗.

(12)

And the subjection function parameters 𝑐𝑖𝑗 and 𝜎𝑖𝑗 can be
adjusted as follows:

𝑐𝑖𝑗 (𝑡 + 1) = 𝑐𝑖𝑗 (𝑡) − 𝜂 𝜕𝑒𝜕𝑐𝑖𝑗 ,
𝜎𝑖𝑗 (𝑡 + 1) = 𝜎𝑖𝑗 (𝑡) − 𝜂 𝜕𝑒𝜕𝜎𝑖𝑗 ,

(13)

where 𝜂 stands for the learning rate, 𝜂 > 0.
3.3. Revision of Evidence. Given the limitation of DST, unrea-
sonable results are often obtained when combining highly
conflicting evidence. Errors in the feature parameters
extracted by camera are inevitable while driving because of
environmental interferences. Therefore, the Dempster’s rule
cannot be used directly when conflict exists.
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Evidence with low reliability should not be negated com-
pletely because the cause of the conflict remains unknown.
Thus, in the modified algorithm of recognition method, the
original pieces of evidence are revised through rational distri-
bution of unreliable evidence before performing information
fusion based on DST.

The discount strategy proposed by Shafer [19] is applied
in this method.The credibility of evidence, which is regarded
as the discount factor, is used to revise the BPAs of original
evidence. Parts of the unreliable credibility are distributed to
set Θ according to the discount rule. The influence on the
result of fusion of conflicting evidence can be reduced by
increasing the uncertainty of evidence.

Discount rule is defined as follows:

𝑚𝑖 (𝐴) = 𝛼𝑖𝑚𝑖 (𝐴) , 𝐴 ̸= Θ,
𝑚𝑖 (Θ) = 1 − ∑𝑚𝑖 (𝐴) . (14)

The key of discount strategy is to measure the credibility
of evidence effectively. Conflicting factor 𝑘 in DST is used
to measure the degree of conflict. The larger the value of 𝑘,
the higher the degree of conflict. However, when pieces of
evidence are highly conflicting, 𝑘 → 1.This result means that
conflicting factor 𝑘 cannot accurately represent the degree of
conflict.

The correlation coefficient of evidence is proposed in this
paper to measure the credibility of evidence.

Let 𝐸1 and 𝐸2 be two pieces of evidence on frame Θ;
BPAs are 𝑚1 and 𝑚2; and focal elements are 𝐴 𝑖 and 𝐵𝑗. The
correlation coefficient between 𝐸1 and 𝐸2 is defined as

sim (𝑚1, 𝑚2) = ∑𝐴𝑖∩𝐵𝑗=𝐴𝑘 𝑚1 (𝐴 𝑖)𝑚2 (𝐵𝑗)
√(∑𝑚21 (𝐴 𝑖)) (∑𝑚22 (𝐵𝑗))

, (15)

where sim (𝑚1, 𝑚2) ∈ [0, 1]. The larger the value of
sim (𝑚1, 𝑚2), the higher the degree of correlation between
pieces of evidence.

For 𝑛 pieces of evidence provided by multiple features,
the correlation coefficient can be expressed as the following
correlation matrix:

𝑆

=
[[[[[[
[

1 sim (𝑚1, 𝑚2) ⋅ ⋅ ⋅ sim (𝑚1, 𝑚𝑛)
sim (𝑚2, 𝑚1) 1 ⋅ ⋅ ⋅ sim (𝑚2, 𝑚𝑛)... ... d

...
sim (𝑚𝑛, 𝑚1) sim (𝑚𝑛, 𝑚2) ⋅ ⋅ ⋅ 1

]]]]]]
]

. (16)

Pieces of evidence with high correlation coefficient can
support each other. Therefore, the degree of one piece of
evidence supported by others can be defined based on the
correlation matrix as follows:

sup (𝑚𝑖) = 1𝑛 − 1
𝑛∑
𝑗=1,𝑗 ̸=𝑖

sim (𝑚𝑖, 𝑚𝑗) , (17)

where support degree sup (𝑚𝑖) represents the reliability of
evidence. The evidence with the highest degree of support
is used as standard evidence. The weight of each piece
of evidence compared with the standard evidence can be
calculated and considered as the credibility of evidence:

𝛼𝑖 = sup (𝑚𝑖)
max1≤𝑖≤𝑛 {sup (𝑚𝑖)} . (18)

The credibility of evidence 𝛼𝑖 is taken as discount factor.
The original pieces of evidence can then be revised according
to the discount rule in formula (14).Thus, the reasonability of
the results increases after combining pieces of evidence using
Dempster’s rule.

3.4. Recognition of Driving States. Driving state is identified
based on the BPA of combined evidence. Assuming that𝐴1, 𝐴2 ⊂ Θ, 𝐴1 and 𝐴2 are defined as follows:

𝑚(𝐴1) = max {𝑚 (𝐴 𝑖) , 𝐴 𝑖 ⊂ Θ} ,
𝑚 (𝐴2) = max {𝑚 (𝐴 𝑖) , 𝐴 𝑖 ⊂ Θ, 𝐴 𝑖 ̸= 𝐴1} . (19)

If 𝐴1 satisfies the following recognition rule:

𝑚(𝐴1) − 𝑚 (𝐴2) > 𝜀1,
𝑚 (𝐴1) > 𝑚 (Θ) ,
𝑚 (𝐴1) > 𝜀2,

(20)

where 𝜀1 and 𝜀2 are two thresholds, then𝐴1 is regarded as the
current driving state. In the method proposed in this study,𝜀1 is set to 0.2 and 𝜀2 is set to 0.6.
4. Experiments

4.1. Data Collection. We carry out the experiment in real
driving and capture the facial expression video. The experi-
ment lasts two hours. The video resolution is 640 × 480 and
the frame rate is 30 fps. The video is divided into several
video segments with equal length. In this paper, we set the
length of each segment and also the time interval of driving
state prediction by FNN to be one minute. In order to get
the standard of state assessment, we ask three people to rate
these video segments based on the features in Table 1 and
the driving states are confirmed if scores by three raters are
the same. If raters have different opinions, the video needs
to be reassessed. We extract 30 frames at equal intervals in
every 10 seconds as test samples and size of all the frames is
adjusted to 437 × 437. Fatigue features are extracted based on
the methods in Section 2. The state evaluations by different
features are obtained using FNN. In one video segment,
BPAs are determined by normalizing the output of FNNs and
the recognition result is obtained by the multifeature fusion
framework based on Section 3. The process of videos and
frames extraction is shown in Figure 11.

Thus, we can compare the driver state assessment perfor-
mance among the recognition results of multifeature fusion,
single feature, and the assessment standard based on scores
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Figure 11: Process of videos and frames extraction.

Figure 12: Frames of fatigue recognition.

Table 5: Fatigue evidence.

Awake Fatigue Severe fatigue

𝑒1 0.1667 0.6666 0.1667

𝑒2 0.8334 0.0833 0.0833

𝑒3 0.1667 0.7500 0.0833

Table 6: Fusion result.

Awake Fatigue Severe fatigue Unknown

𝑒1𝑒2 0.6663 0.2661 0.0666 0

𝑒1𝑒2𝑒3 0.3502 0.6293 0.0175 0

of video segments. The mouth movement feature may be
affected by driver’s talking, so we choose fatigue reflected in
eyes as the single feature for comparison. The eyes feature
is obtained by the combination of eyelid movement and iris
movement parameters.

4.2. Results andAnalysis. In two hours of driving experiment,
we acquire totally 120 video segments. There are 92 segments
showing “Awake,” 21 segments showing “Fatigue,” and 7
segments showing “Severe fatigue.” In one segment where
the driving state is considered as “Fatigue,” several frames of
fatigue recognition are shown in Figure 12.

Inmeasuring PERCLOS,MCD,AAI, PRPT, YF, andAOT,
the width of time windows is set as 10s. The values of eyelid
movement, irismovement, andmouthmovement features are
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Figure 13: Recognition result.

the input of their corresponding FNN. According to formula
(6), three BPAs of fatigue evidence are shown in Table 5,
where 𝑒1 represents the eyelid feature, 𝑒2 represents the iris
feature, and 𝑒3 represents the mouth feature.

The fusion result of DST with revision of evidence is
shown in Table 6.

From Tables 5 and 6, according to the recognition rule
in Section 3.4, the driving state can be identified as “Awake”
based on single feature, while based on multifeature fusion,
the state is identified as “Fatigue.”

For all the video segments, the experiment result is shown
in Figure 13 and Table 7. Figure 13 indicates the changing
process of driving states recognized by multifeature fusion
and single feature.
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Table 7: Comparison of different recognition results.

Total segments

Multifeature fusion Single feature

Recognized Correct Correct Total Recognized Correct Correct Total

segments segments rate correct rate segments segments rate correct rate

Awake 92 93 88 95.65%

89.16%

93 83 90.22%

79.16%Fatigue 21 22 15 71.43% 23 9 40.91%

Severe fatigue 7 5 4 57.14% 4 3 42.86%

The comparison of two different methods is shown in
Table 7. The correct rate by multifeature fusion recognition
is increased comparing to single feature recognition. The
accuracy of fatigue driving recognition is improved using
both eye andmouth features based on themultifeature fusion
framework.

5. Conclusions

This study proposed amethod for recognizing fatigue driving
recognition. This method is based on FNN and DST to
address the complexity of fatigue information. The BPAs
of multiple pieces of evidences based on different visual
features are obtained by FNNs. DST is applied for fusion
of evidence. A modified algorithm with discount strategy is
also used for the revision of conflicting evidence to enhance
the rationality of fusion results. This algorithm adopts the
correlation coefficient of evidence to measure the degree of
conflict. The credibility of evidence, which is measured by
the correlation coefficient, is represented as discount factor
for evidence revision. The results of simulations indicate that
this recognition method can overcome the interference of
unreliable information that originated from environmental
interferences and measurement errors. Therefore, the pro-
posed method can increase the accuracy and robustness of
fatigue driving recognition.
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