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ABSTRACT

We introduce and test an expression for calculating the variance of a physical field in three
dimensions using only information contained in the two-dimensional projection of the field.
The method is general but assumes statistical isotropy. To test the method we apply it to
numerical simulations of hydrodynamic and magnetohydrodynamic turbulence in molecular
clouds, and demonstrate that it can recover the three-dimensional (3D) normalized density
variance with ∼10 per cent accuracy if the assumption of isotropy is valid. We show that
the assumption of isotropy breaks down at low sonic Mach number if the turbulence is
sub-Alfvénic. Theoretical predictions suggest that the 3D density variance should increase
proportionally to the square of the Mach number of the turbulence. Application of our method
will allow this prediction to be tested observationally and therefore constrain a large body of
analytic models of star formation that rely on it.

Key words: MHD – turbulence – methods: statistical – ISM: clouds – ISM: kinematics and
dynamics – ISM: structure.

1 IN T RO D U C T I O N

It is a fundamental problem in astrophysics that we typically only
have access to two-dimensional (2D) physical fields that have been
integrated or averaged over the line of sight, while the physical fields
of interest are intrinsically three-dimensional (3D). Constraining
3D properties is very difficult, and is limited to structures with a
fairly simple geometry (e.g. Lucy 1974; see Reblinsky 2000 for an
application to galaxy clusters). Molecular clouds have very com-
plex structure that is not suitable for direct inversion from 2D to
3D, but there exist methods for inferring statistical information on
the scaling behaviour of the 3D structure of the density and ve-
locity fields (e.g. Stutzki et al. 1998). Molecular cloud evolution
is driven in large part by the action of turbulence, and recently,
much interest has been directed towards the action of turbulence in
shaping the density field in molecular clouds, in particular towards
the theoretically predicted increase in the variance of the density
field with the Mach number of the turbulence (Padoan, Nordlund
& Jones 1997; Passot & Vázquez-Semadeni 1998). This prediction
plays a key role in analytic models of star formation (Padoan &
Nordlund 2002, 2009; Krumholz & McKee 2005; Elmegreen 2008;
Hennebelle & Chabrier 2008, 2009).

⋆E-mail: brunt@astro.ex.ac.uk

If the density, ρ, is expressed in units of the mean density, ρ0,
the theoretical predictions for the relationship between the density
variance and root mean square (rms) Mach number, M, may be
simply written as:

σ 2
ρ/ρ0

= b2M2, (1)

where b is a constant of proportionality. In the case of isothermal
gas, which is applicable to a good approximation to molecular
clouds, the probability density function (PDF) of the density field is
thought to be lognormal in form (Vázquez-Semadeni 1994). Using
a lognormal form for the density PDF, Padoan & Nordlund (2002)
derive a relation between the variance in the logarithm of the density
field, σ 2

ln (ρ/ρ0), and the rms Mach number, M:

σ 2
ln (ρ/ρ0) = ln (1 + b2M2), (2)

which is equivalent to equation (1). A range of predictions for b

have been proposed, which were recently synthesized into a unified
model by Federrath, Klessen & Schmidt (2008), who propose that
b = 1/3 for solenoidal (divergence-free) forcing and b = 1 for
compressive (curl-free) forcing in 3D.

Given the importance of equation (1) for analytic models of star
formation, it is essential to test it with observational data. Initial ob-
servational tests by Goodman, Pineda & Schnee (2009) did not find
any obvious support for the theoretical predictions. Federrath et al.
(2010) have suggested a reason for this lack of agreement, citing
variations in b caused by different turbulent forcing mechanisms.

C© 2010 The Authors. Journal compilation C© 2010 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
0
3
/3

/1
5
0
7
/1

0
5
0
0
3
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2
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Perhaps more importantly, these observations relied on measuring
the variance in the projected 2D column density rather than in the
3D density field that appears in the theoretical predictions. From
observations, we do not have access to the 3D density and velocity
fields to directly test this prediction, and evaluate its applicability
to molecular clouds and to the predictive star formation models.

In this paper, we derive and test an expression that relates the
observable variance in the 2D column density field to the true 3D
variance of the density field. The method is completely general,
albeit with the assumption of statistical isotropy, and may also be
applied to the projection of other physical fields. In Section 2, we
present the analytical expressions needed to convert the 2D variance
into the 3D variance. In Section 3, we demonstrate the application
of the method to numerical simulations of hydrodynamic and mag-
netohydrodynamic (MHD) turbulence. Our summary is given in
Section 4.

2 THE STATISTICS O F PRO JECTION

F RO M 3 D TO 2 D

2.1 Development of the method

Given a physical field in 3D, we wish to examine how the statistical
properties of a 2D projected field are related to the intrinsic prop-
erties. By doing this, we can then infer intrinsic quantities from the
measurable quantities. We focus here on the variance, measured in
3D and in projected 2D. In our initial derivation, we consider a 3D
field, F 3(x, y, z), which is averaged along the z-axis to produce a
projected field, F 2(x, y), via

F2(x, y) =
1

L

∫ L/2

−L/2
dz F3(x, y, z), (3)

where L is the physical size of the region, assumed cubical, that
contains F3.

We will make use of the 3D Fourier series of F3, obtained over
the interval [−L/2, +L/2], which is

F̃3(k) =
∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2
d3r F3(r) e−2πik·r/L, (4)

where r = (x x̂, y ŷ, z ẑ) and the spatial frequencies are k =
(kx x̂, ky ŷ, kz ẑ), for integer kx, ky and kz. The field F3 can then
be written as

F3(r) =
1

L3

∞
∑

kx=−∞

∞
∑

ky=−∞

∞
∑

kz=−∞

F̃3(kx, ky, kz) e2πik·r/L. (5)

Inserting equation (5) into equation (3),

F2(x, y)

= 1
L4

∫ L/2

−L/2
dz

∞
∑

kx=−∞

∞
∑

ky=−∞

∞
∑

kz=−∞

F̃3(kx, ky, kz) e2πik·r/L, (6)

and computing the z integral first, we find that

F2(x, y) =
1

L3

∞
∑

kx=−∞

∞
∑

ky=−∞

F̃3(kx, ky, kz = 0) e2πik·r/L, (7)

since

1

L

∫ L/2

−L/2
dz e2πikzz/L = 1 for kz = 0, (8)

1

L

∫ L/2

−L/2
dz e2πikzz/L = 0 for kz �= 0. (9)

Since the 2D Fourier series, over the interval [−L/2, +L/2], of F2

is

F̃2(k2) =
∫ L/2

−L/2

∫ L/2

−L/2
d2r2 F2(r2) e−2πik2·r2/L, (10)

where r2 = (x x̂, y ŷ) and k2 = (kx x̂, ky ŷ), and

F2(r2) =
1

L2

∞
∑

kx=−∞

∞
∑

ky=−∞

F̃2(kx, ky) e2πik2·r2/L, (11)

we see that, comparing equation (7) and equation (11):

F̃2(kx, ky) =
1

L
F̃3(kx, ky, kz = 0). (12)

In other words, the 2D Fourier series of F2 is proportional to
the kz = 0 cut through F̃3. Previous studies have made use of this
result (e.g. Stutzki et al. 1998; Lazarian & Pogosyan 2000; Brunt &
Mac Low 2004; Miville-Deschenes & Martin 2007). As the power
spectrum, P 3(k), is the squared modulus of the Fourier transform
[P3(k) = F̃3(k)F̃3

∗
(k)], 2D power spectra of projected fields have

been used to infer the 3D power spectrum, under the assumption
of isotropy, i.e. the kz = 0 cut through the power spectrum is sta-
tistically representative of the full power spectrum. In our analysis
below, we will also make use of the power spectrum and the as-
sumption of isotropy.

Now we compute the variances in the 3D and 2D fields. From
the mean value of F3,

〈F3〉 =
1

L3

∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2
d3r F3(r), (13)

and the mean square value of F3,

〈

F 2
3

〉

=
1

L3

∫ L/2

−L/2

∫ L/2

−L/2

∫ L/2

−L/2
d3r F 2

3 (r), (14)

we find the variance of F3 as

σ 2
3 =

〈

F 2
3

〉

− 〈F3〉2. (15)

We also make use of the Fourier transform of F3, by noting that

〈F3〉 =
1

L3
F̃3(0, 0, 0), (16)

and through Parseval’s theorem:

〈

F 2
3

〉

=
1

L6

∞
∑

kx=−∞

∞
∑

ky=−∞

∞
∑

kz=−∞

F̃3F̃3
∗
, (17)

allowing us to rewrite equation (15) as

σ 2
3 =

1

L6

⎛

⎝

⎛

⎝

∞
∑

kx=−∞

∞
∑

ky=−∞

∞
∑

kz=−∞

F̃3F̃3
∗

⎞

⎠ − F̃3
2
(0, 0, 0)

⎞

⎠. (18)

By similar analysis, we find the variance of F2 is

σ 2
2 =

1

L4

⎛

⎝

⎛

⎝

∞
∑

kx=−∞

∞
∑

ky=−∞

F̃2F̃2
∗

⎞

⎠ − F̃2
2
(0, 0)

⎞

⎠ , (19)

or, applying equation (12)

σ 2
2 =

1

L6

×

⎛

⎝

⎛

⎝

∞
∑

kx=−∞

∞
∑

ky=−∞

F̃3(kz = 0)F̃3
∗
(kz = 0)

⎞

⎠ − F̃3
2
(0, 0, 0)

⎞

⎠.

(20)
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Variance of a 3D field from 2D observations 1509

The ratio, R, of the variance of F2 to the variance of F3 is therefore

σ 2
2

σ 2
3

= R

=

(

∑∞
kx=−∞

∑∞
ky=−∞ F̃3(kz = 0)F̃3

∗
(kz = 0)

)

− F̃3
2
(0, 0, 0)

(

∑∞
kx=−∞

∑∞
ky=−∞

∑∞
kz=−∞ F̃3F̃3

∗
)

− F̃3
2
(0, 0, 0)

.

(21)

In practice, the measurable physical fields, either through obser-
vations or numerical simulations, will consist of a discrete number
of measurements at a fixed set of grid points. We define the scale
ratio, λ, as the ratio of the image (or cube) size to the pixel size.
Taking the grid to be of size λ × λ × λ or λ × λ pixels in 3D and
2D, respectively, the Fourier transforms are carried out at a discrete
set of spatial frequencies, k = −λ/2 + 1, −λ/2 + 2, . . . , −2, −1,
0, 1, 2, . . . , λ/2 − 1, λ/2 along each axis. The quantity F̃3F̃3

∗
is

the spectral power, P3, which can be observationally derived (up to
an unimportant constant of proportionality) as follows. If we had
a projected mean 2D field, F2, and wanted to use this to infer the
3D variance, then we would compute its power spectrum, P 2(kx,
ky), and from this produce an azimuthally averaged power spectrum
P 2(k), which depends only on the modulus of the spatial frequency,
k. The key idea behind the method is that we can, assuming isotropy,
take

P3(k) ∝ P2(k) (22)

to obtain

R =

(

∑λ/2
kx=−λ/2+1

∑λ/2
ky=−λ/2+1 P2(k)

)

− P2(0)
(

∑λ/2
kx=−λ/2+1

∑λ/2
ky=−λ/2+1

∑λ/2
kz=−λ/2+1 P2(k)

)

− P2(0)
.

(23)

The 3D variance can then be calculated as σ 2
3 =σ 2

2/R. Note however
that since λ is necessarily finite, the observed 2D variance and the
calculated 3D variance are lower limits to the true variances that
would be obtained in the limit λ −→ ∞. This is discussed further
below.

A more compact form of equation (23) can be obtained by
defining

2D,λ
∑

k �=0

P2(k) =

⎛

⎝

λ/2
∑

kx=−λ/2+1

λ/2
∑

ky=−λ/2+1

P2(k)

⎞

⎠ − P2(0) (24)

and

3D,λ
∑

k �=0

P2(k) =

⎛

⎝

λ/2
∑

kx=−λ/2+1

λ/2
∑

ky=−λ/2+1

λ/2
∑

kz=−λ/2+1

P2(k)

⎞

⎠ − P2(0) (25)

so that

R =
∑2D,λ

k �=0 P2(k)
∑3D,λ

k �=0 P2(k)
. (26)

For this method to work, it is essential that the projected field,
F2, is the line-of-sight average of the 3D field, F3 (see equation 3).
In many instances, the projected 2D field is the line-of-sight intre-

gral of the 3D field (e.g. column density versus density). A simple
solution for integrated fields that ensures the above requirements
are satisfied is to express the field F2 in normalized units – i.e.
by dividing F2 by its mean value. In this case, the variance of the
normalized 3D density field can be calculated from the variance
of the normalized 2D column density field, as discussed below in
Section 2.6.

2.2 Approximations

The power spectra of many fields of interest are power law in the
form P 3 ∝ k−α . If the power spectrum is steep (large α) then the
variance is sensitively dependent on the power at low spatial fre-
quencies. Because of the quantization in equation (26) and the small
amount of information available at low k, the above procedure may
be inaccurate for large α. Brunt & Mac Low (2004) examined 3D
and projected 2D standard deviations in the normalized density field
(ρ/ρ0) and normalized column density field (N/N 0) obtained from
numerical simulations with λ = 128. The (column) density power
spectra were reasonably well fitted by P 3(k) ∝ k−3, albeit with some
curvature. They found that σN/N0/σρ/ρ0 ≈ 0.34 ± 0.04. Evaluating
equation (26), using λ = 128 and P 3(k) ∝ k−3, to compute the
ratio of standard deviations (i.e.

√
R), we predict σ 2/σ 3 = 0.39,

which is in acceptable agreement with the Brunt & Mac Low (2004)
experimental result, given the spectral curvature.

With a power-law form for the power spectrum, it is tempting to
approximate equation (26) with simple integral-based expressions
for R. If the spectral slope is α, we could write

R =
2π

∫ λ/2
1 dk k k−α

4π

∫ λ/2
1 dk k2 k−α

, (27)

which is easily solved for a specified α. However, this is not a
terribly good approximation as the integrals have been computed
over circular and spherical regions of k-space rather than the square
and cubical regions which contain the fields. At low α this is not
sufficiently accurate, and in general, we recommend that the direct
summation method presented in equation (26) be used. As a triv-
ial example, for a cube of Gaussian noise (α = 0), equation (26)
correctly predicts R = (λ2 − 1)/(λ3 − 1), which tends to 1/λ for
large λ. In the same limit, equation (27) incorrectly predicts R =
3/2λ. Equation (27) is useful however in gaining some intuitive
understanding of how R depends on the form of the power spec-
trum: R decreases if proportionally more power resides at large k

because the denominator is weighted by k2 and the numerator by k.
The physical effect underlying this is that, if the variance is mostly
at high k (small spatial scales), line-of-sight averaging suppresses
more of the power than if the variance is mostly at low k (large spatial
scales). Equation (27) is also useful for exploring scale-dependence
effects on the calculated variances. Note that for 2< α ≤ 3, the 2D
variance converges as λ −→ ∞ but the 3D variance diverges!

2.3 Application to observational data

For fields acquired through observations, it is necessary to account
for the telescope’s beam response (point spread function) in the
calculation of variances. The observational version of equation (26)
is

R =
∑2D,λ

k �=0 P2(k)B̃2(k)
∑3D,λ

k �=0 P2(k)B̃2(k)
, (28)

where λ is the number of pixels along each axis, B̃2(k) = B̃(k)B̃∗(k)
is the square of the Fourier space representation of the telescope
beam pattern, and P 2(k) is the power spectrum of F2 in the
absence of beam smoothing and instrumental noise. (Note that
the observable quantity is P2(k)B̃2(k) + P2N (k), where P 2N(k)
is the noise power spectrum.) Equation (28) includes accounting
for the fact that the observed variance in the 2D field has been sup-
pressed by the smoothing imposed by the telescope beam, and this
must be taken into account. In equation (28), we have also applied
the beam pattern to the denominator (representing the 3D variance).
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1510 C. M. Brunt, C. Federrath and D. J. Price

This procedure may at first appear an odd choice, but it is motivated
by the requirement that we limit our knowledge of the 3D variance
to the resolution provided by the data. In effect, equation (28) is an
attempt to construct a 3D beam that samples the 3D density field
and affords the same effective linear resolution as that provided by
the telescope beam in projected 2D. The Fourier series F̃3 extends
to k = ∞, or at least to a (potentially very large) spatial frequency,
kc, beyond which there are no variations in the field. In other words,
there will be fluctuations in the projected 2D field (and therefore the
3D field) that we are not directly sensitive to, as they lie below our
resolution limit. These, naturally, are additional sources of variance
that we cannot measure.

The full variance of the field F3 should in principle be derived
by removing (from the denominator) the effect of the beam pat-
tern, and summing over the spatial frequency range 1 ≤ k ≤ kc. In
general, we will have little or no information about kc, unless of
course a distinct break in the power spectrum is observed. A possi-
ble, theoretically motivated choice is that kc is the spatial frequency
corresponding to the sonic scale (Vázquez-Semadeni, Ballesteros-
Paredes & Klessen 2003; Federrath et al. 2010). We may try to
account for this, by assuming a form for P3 in the inaccessible
range kc > k > λ/2, by extending an observed power law for ex-
ample. This is quite dangerous, particularly for α ≤ 3 for which the
summation diverges at large spatial frequencies. The case α = 3
provides a convenient reference point, at which R is underestimated
by a factor ∼ln (λ/2)/ln (kc) – a logarithmic divergence. Without a
direct constraint on kc it is more reasonable to restrict our knowl-
edge of the 3D variance to the spatial dynamic range afforded by
the observations, and utilize equation (28) as stated, while recog-
nizing that the 3D variance must be a lower limit to the true 3D
variance. For numerical simulations, this is not an issue, as we have
access to the full range of spatial frequencies at which structure is
present.

2.4 Accounting for non-periodic fields

The Fourier series utilized above implicitly assume that the field
is periodic. While this is true of some numerical simulations, it
is obviously not true of real physical fields. If the field F2 has a
significant amplitude at the field boundaries, then elevated power
is produced in the 2D power spectrum at some spatial frequencies,
typically along the kx = 0 and ky = 0 axes, and this is not consistent
with an isotropic form for the 3D power spectrum. First, we note that
a significant amplitude of F2 at the field edges is almost certainly
not consistent with the assumption of isotropy, as it implies that
F2 has been extracted from a larger field with significant power on
larger scales. In this case, restriction of the field in the projected x

and y directions is imposed, but there has been no corresponding
restriction on the extent of the field in the z direction. Sensible
definition of the field F2 is therefore recommended, with, ideally,
F2 falling to near zero amplitude at the field boundaries.

It is possible to ameliorate the effect of edge discontinuities by
edge tapering the field (e.g. Brunt & Mac Low 2004). In this case,
we recommend that λ is sufficiently large that the tapering causes
a negligible modification of the 2D variance. A good solution is, in
addition to tapering, to pad the field with zero values. If an observed
field with scale ratio λ is zero-padded out to a larger size λp, then it
is straightforward to show that the 3D variance should be calculated
via

σ 2
3 =

1

η3

(((

σ 2
2 + 〈F2〉2

)

η2 − 〈F2〉2
)

/Rp + 〈F2〉2
)

− 〈F2〉2,

where η = λp/λ and Rp is the 2D to 3D variance ratio calculated
from the power spectrum of the padded field. The quantities 〈F 2〉,
σ 2

2 and σ 2
3 apply to the unpadded field.

Above we have assumed a square (cubical) box that contains
the field F2 (F3). In practice, we may wish to apply this method
to fields that are not exactly square, although this then obviously
raises questions about the assumption of isotropy. For a field of size
λx × λy, we recommend zero-padding to produce a square field of
size λpx × λpy, and using equation (29) with η = (λpxλpy/λxλy)1/2.
Note that this assumes that the line of sight extent of F3 is λz =
(λxλy)1/2. Clearly, one should try to ensure that λx ≈ λy to respect
the assumption of isotropy.

2.5 Summary of the method

To summarize the method: to estimate the 3D variance, σ 2
3, the

following procedure should be followed:

(1) measure the variance, σ 2
2, of the normalized projected field

F2;
(2) measure the power spectrum, P 2(k), of F2, and assume,

through isotropy, that P 3(k) ∝ P 2(k);
(3) using P 2(k), compute the 2D to 3D variance ratio, R, via

equation (26) or equation (28);
(4) compute σ 2

3, accounting for any zero-padding used to com-
pute the power spectrum (equation 29).

2.6 Density fields

So far, other than isotropy, we have not imposed any particular
structure to the field F3 (e.g. by choosing a form for the power
spectrum and PDF). It is well established that projected column
density power spectra of molecular clouds are power law in form
(e.g. Stutzki et al. 1998; Bensch, Stutzki & Ossenkopf 2001), im-
plying also that the 3D power spectra are also of power-law form.
Typically, the 2D power spectrum is of the form P 2 ∝ k−α , where
α ≈ 3. Density fields are always positive, and it is convenient to
express both the density, ρ, and column density, N, in normalized
units, by dividing by their respective mean values, ρ0, and N0, re-
spectively. In this way, they will conform to the properties of the
fields F3 and F2 discussed above (i.e. F2 is the line-of-sight av-

erage of F3). Otherwise, the column density will be scaled by the
physical length, L, as it is the integral of ρ along the line of sight,
rather than the average. In most cases, our 2D observations will be
of column density – e.g. through an optically thin spectral line, or
through extinction mapping. The physical line-of-sight length, L,
needed to convert column density to projected mean density, may
be unknown. While L may be inferred through the assumption of
isotropy, if the distance is known, it is better to use the normalized
density, ρ/ρ0, and column density, N/N 0.

Using the observed variance, σ 2
N/N0

, in the normalized column
density field, and the angular-averaged power spectrum, PN/N0 (k),
we can then use equation (28) to obtain R. With appropriate treat-
ment of any zero-padding (equation 29 with 〈F2〉 = 1, σ 2

2 = σ 2
N/N0

and σ 2
3 = σ 2

ρ/ρ0
), the variance in normalized density, σ 2

ρ/ρ0
, can be

calculated.
If a lognormal PDF in 3D is assumed, we can then derive σ 2

ln (ρ/ρ0)

via

σ 2
ln (ρ/ρ0) = ln

(

1 + σ 2
ρ/ρ0

)

. (29)

Note that it is not necessary to assume a lognormal form for
the column density PDF, although this indeed may be true
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Variance of a 3D field from 2D observations 1511

(Ostriker, Stone & Gammie 2001; Vázquez-Semadeni & Garcı́a
2001).

Considering that σ 2
ρ/ρ0

may be subject (for spectral slope α ≈ 3)
to a logarithmic divergence because of unresolved density structure,
as discussed in the previous section, equation (30) has the fortunate
property that the computation of σ 2

ln (ρ/ρ0) suppresses this divergence
to a log(log) divergence, so that σ 2

ln (ρ/ρ0) can be quite well estimated
even from observations at finite resolution, provided the spatial dy-
namic range is sufficiently large to measure σ 2

N/N0
accurately, and

the field is of good linear spatial resolution such that λ/2 approaches
reasonable expectations for kc. We recommend that estimates of the
unresolved variance be made, using equation (27) as a guide for
suitable values of kc (e.g. the spatial frequency corresponding to the
sonic scale, or even kc −→ ∞) to better assess the utility of the ob-
servational measurement (Brunt 2010). We note also that the above
method for estimating σ 2

ρ/ρ0
does not require the cloud distance to be

known. However, observations at fixed angular resolution applied
to clouds at different distances will probe different physical scales,
so the method is not entirely distance independent.

The above prescription can, in principle, be applied to other
positive-definite fields, such as temperature. Estimation of mean
projected temperature fields is usually done by quite a different
procedure than that used for column density fields, however. Typi-
cally, we are able to derive a line-of-sight average temperature for
each pixel, either through flux ratios at far-infrared wavelengths,
or by excitation analysis of millimetre-wave spectral lines, for ex-
ample. These measurements are often not straightforward spatial

averages, as assumed by our method, but may be, e.g., density-
weighted averages instead. Some caution must be applied to the
treatment of such fields.

2.7 Velocity fields

Application of the method to projected mean velocity fields is also
possible. Obviously, since a velocity field is not positive definite,
we do not normalize the field as was done for the density field. In
principle, we do have access to the mean velocity field, which can
be obtained through an optically thin spectral line. However, such
a field is density weighted, rather than a direct spatial average as
assumed by equation (3), and significant problems in estimating the
power spectrum (Brunt & Mac Low 2004), and presumably there-
fore the 2D variance, can arise for supersonic turbulence. There will
be lines of sight with insufficient signal-to-noise ratio to calculate
a mean velocity. Therefore, the variance must be calculated for the
detected lines of sight with the assumption that these reliably repre-
sent the entire field. Note that the problem in estimating the mean of
the field (as required in the case of column density/density analysis)
does not apply here. We also have access to only one component
of the velocity field (the line-of-sight component vz) and we must
assume not only isotropy in this, but also apply the isotropic as-
sumption to the entirely inaccessible vx and vy components. With
these provisos, the method would proceed as outlined at the end of
Section 2.1.

There is a rather more straightforward method of estimating the
line-of-sight velocity dispersion, σvz

, which is simply to measure
the dispersion of the mean line profile obtained through imaging
observations of an optically thin spectral line. (This is also a density-
weighted measure, however.) If we have an estimate of the cloud
temperature, and an estimate of the mean molecular weight, we can
then derive the Mach number to construct the right-hand side of
equation (1).

3 A PPLI CATI ON TO NUMERI CAL

SI MULATI ONS

As an initial test of the method, we now apply it to numerical
simulations of hydrodynamic and MHD turbulence. Given that the
above theory is derived assuming isotropic fields, we investigate
the effect of anisotropy using MHD simulations. In all the studies
below, we use normalized column densities (N/N 0) and normalized
densities (ρ/ρ0) so that σ 2

2 = σ 2
N/N0

and σ 2
3 = σ 2

ρ/ρ0
.

3.1 Hydrodynamic turbulence

First, we analyse hydrodynamic simulations at a range of rms
Mach numbers: 1.25, 2.5, 3.5, 5, 7, 10 and 20. Multiple snap-
shots are used at each Mach number setting, separated by at least
a crossing time. The hydrodynamic simulations were run with the
PHANTOM smoothed particle hydrodynamics (SPH) code, with tur-
bulence driven artificially over five crossing times using large-scale
solenoidal Fourier driving (Brunt 2003; Brunt, Heyer & Mac Low
2009; Federrath et al. 2010; Price & Federrath 2010). For the anal-
ysis in this paper, we performed a suite of low resolution 1283

particle calculations, interpolated to 2563 grids. Since the key idea
here is the reconstruction of the density variance, we find that even
low-resolution calculations are sufficient as demonstrators of the
method. For each simulation, we take the 3D density field, of mean
unity, and create three normalized projected fields by averaging
along each spatial axis. We compute σ 2

3 in 3D and a value of σ 2
2 for

each projected 2D field.
The power spectrum for each column density field is then mea-

sured (specifically, we compute the average power in bins of unit
width in k.) Following this, equation (26) is used to compute a value
of R for each projected field. To do this, we interpolate the binned
column density power spectrum to the appropriate power for each k

resulting from the nested sums. An extrapolation is required (using
a power-law fit to the power spectrum in the high k region) for√

2λ/2 < k ≤
√

3λ/2 in the denominator. In the above procedure,
we emphasize that only information present in the column density
field is used in the calculation of R. Values of R computed for these
fields vary between about 0.03 and 0.15. Note that in general, R will
depend on the form of the power spectrum and the scale ratio of the
field.

In Fig. 1, we plot the estimated 3D density variance, σ 2
2/R, versus

the actual 3D density variance, σ 2
3. For each snapshot, we represent

the measurements as a mean (plotted point) and standard deviation
(error bar) obtained from the three different projections. The method
can predict the 3D density variance to about 10 per cent accuracy.

3.2 Magnetohydrodynamic turbulence

We now analyse MHD simulations of turbulence. The MHD sim-
ulations were run with the grid-based code FLASH (Fryxell et al.
2000). We used a new approximate Riemann solver for ideal MHD
(Bouchut, Klingenberg & Waagan 2007, 2009), which preserves
positive states in highly supersonic MHD turbulence. This solver
was recently developed for FLASH by Waagan (2009). The corre-
sponding scheme for preserving positive states in hydrodynamical
studies has been successfully tested and applied in Klingenberg,
Schmidt & Waagan (2007). We used the same solenoidal forcing
scheme as used in Federrath et al. (2010) and Price & Federrath
(2010). All MHD models were evolved on a fixed grid with 2563

grid zones.
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1512 C. M. Brunt, C. Federrath and D. J. Price

Figure 1. Plot of the estimated 3D density variance, σ 2
2/R, versus the

actual 3D density variance, σ 2
3, obtained from numerical simulations of

hydrodynamic turbulence. Each plotted point represents the mean value
of σ 2

2/R obtained from analysis of column density fields projected along
the three cardinal directions, while the error bars represent the standard
deviation in the values of σ 2

2/R for the three directions.

Figure 2. Plot of the estimated 3D density variance, σ 2
2/R, versus the

actual 3D density variance, σ 2
3, obtained from numerical simulations of

MHD turbulence. Each plotted point represents the mean value of σ 2
2/R

obtained from analysis of column density fields projected along the three
cardinal directions, while the error bars represent the standard deviation in
the values of σ 2

2/R for the three directions. The solid line is the line of
equality.

In addition to varying the Mach number, in the MHD simulations
we now also vary the ratio of thermal to magnetic pressure, β =
P/(B2

0/2μ0). For large magnetic field strengths (lower β), signif-
icant anisotropy can arise in the density and velocity fields (Mac
Low 1999; Vestuto, Ostriker & Stone 2003; Heyer et al. 2008),
and thus the assumptions of our method could break down. Using
the MHD density fields, we repeat the same procedure described
above to calculate R, and hence the estimated 3D variance, σ 2

2/R;
the comparison of estimated to true 3D variance is shown in Fig. 2.
We find that the method is still accurate in predicting the mean
(plotted points) but the variation between the different directions

Figure 3. Plot of the standard deviation in σ 2
2/R expressed as a fraction

of the mean value of σ 2
2/R versus the Alfvénic Mach number, MA, for the

MHD simulations.

(error bars) is now significantly larger for some parameterizations.
Investigation of this shows that significant variations in σ 2

2/R be-
tween the different projection axes are seen if the Alfvénic Mach
number, MA = M

√
(β/2), is smaller than ∼ unity. To show this, in

Fig. 3 we plot the fractional error in the estimated 3D density vari-
ance (i.e. the standard deviation in σ 2

2/R divided by the mean σ 2
2/R

obtained from the three different projection directions) versus MA.
The fractional error in the estimated 3D density variance is around
10 per cent for MA > 1, while it increases significantly for MA < 1.

As there is now notable variation in σ 2
2/R between the different

directions, it is worth plotting the individual σ 2
2/R versus σ 2

3 rela-
tions obtained from each axis. These relations are shown in Fig. 4,
where we have distinguished the plotted points with different sym-
bols for MA ≤ 1 and MA > 1. The 3D variance in sub-Alfvénic runs
is overestimated (underestimated) from 2D fields produced by av-
eraging over an axis parallel (perpendicular) to the mean magnetic
field direction, by as much as a factor of ∼2.

The variations in σ 2
2/R are caused by anisotropic structure in the

density field that is produced when MA < 1. As a simple measure
of this anisotropy, we define an ‘anisotropy indicator’ using the 2D
fields that are produced by averaging over the three cardinal axes.
The anisotropy indicator is defined as σ 2

2⊥/σ 2
2|| = (σ 2

2x + σ 2
2y)/2σ 2

2z,
where σ 2

2x, σ 2
2y and σ 2

2z are the variances in the 2D fields produced
by averaging over the x-, y- and z-axes, respectively. The measured
values of σ 2

2⊥/σ 2
2|| are plotted in Fig. 5 versus MA. For MA > 1,

σ 2
2⊥/σ 2

2|| is ∼ unity, indicating roughly equal variances in each of
the projected 2D fields. For MA < 1, the variance in the 2D field
averaged over the z direction (parallel to the mean B field) is larger,
by as much as a factor of 2, than that of the 2D fields produced by
averaging over the x or y directions (perpendicular to the mean B

field).
Interestingly, the degree of anisotropy appears to be related to the

sonic Mach number, M, as is evident in both Figs 3 and 5. Indeed, for
M ≥ 10, the estimation of the 3D variance is not noticeably worse
for sub-Alfvénic turbulence than for super-Alfvénic turbulence, and
the largest deviations from isotropic behaviour are found in the
M = 2 runs. A direct visualization of the anisotropies present in
the density fields is given in Fig. 6, which shows representative 2D
slices through a sample of density fields produced by sub-Alfvénic
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Variance of a 3D field from 2D observations 1513

Figure 4. Relations between σ 2
2/R and the true σ 2

3 for each of the three axes. Runs with MA ≤ 1 are shown as dots; runs with MA > 1 are shown as open
squares. The solid line is the line of equality and the dotted lines mark underestimation and overestimation of σ 2

3 by a factor of 2.

Figure 5. Plot of the anisotropy indicator, σ 2
2⊥/σ 2

2||, versus the Alfvénic
Mach number, MA, for the MHD simulations. For reference, the horizontal
dashed line marks the expected value of σ 2

2⊥/σ 2
2|| for an isotropic field; the

vertical dashed line marks MA = 1, below which anisotropy is notable.

turbulence. At low sonic Mach number (M = 2), the density field is
characterized by many long filamentary structures oriented parallel
to the mean magnetic field direction. As the sonic Mach number is
increased, this directional order in the density field is systematically
reduced, until at M = 10 it is barely noticeable. The power spectra
of these 2D density field slices are shown in Fig. 7. These confirm
our visual assessment of the density field slices. The high frequency
spectral power along the magnetic field axis is notably lower in the
low sonic Mach number calculations.

The tests on the MHD simulations provide a valuable baseline
for establishing the physical regimes in which our method can be
applied. In most circumstances encountered in molecular clouds
with sizes of a few parsecs, sonic Mach numbers are large enough
to enforce sufficient isotropy that the method can work with around
10 per cent accuracy, even for sub-Alfvénic turbulence. However,
these are rather idealized conditions, as the models do not include
other relevant physics such as self-gravity. Gravitational collapse
in the presence of a magnetic field is likely to be oriented along
the magnetic field lines if the field is sufficiently strong. Note that
the combination of magnetic fields and gravity, in this instance, can
induce anisotropic structure in the orthogonal direction to that seen
in the sub-Alfvénic simulations described above.

Figure 6. Representative 2D slices through a sample of density fields created by sub-Alfvénic turbulence. The mean magnetic field direction is illustrated by
an arrow, labelled B0. The values of the sonic Mach number, M, the plasma beta, β, and the Alfvénic Mach number, MA, are given above each panel.
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1514 C. M. Brunt, C. Federrath and D. J. Price

Figure 7. Power spectra of the 2D density field slices from Fig. 6. Grey-scales are represented in logarithmic units, with contours, each separated by a decade
in power, overlayed; the contours been smoothed for clarity.

Figure 8. Column density plots (logarithmic grey-scale) of the non-periodic SPH simulation.

3.3 Non-periodic fields

In the foregoing analysis, we have used periodic fields for which
there are no edge discontinuities and consequently no zero-padding
is required. A more physically realistic scenario is provided by SPH
simulations that do not employ periodic boundary conditions. For
our analysis, we take density fields produced by the hydrodynamic
simulations of Price & Bate (2009). Column density fields extracted
at three different times (at t = 0; after one free fall time and at the
end of the calculation, where t = 1.274t ff) are shown in Fig. 8. (The
column density fields are represented as logarithmic grey-scales as
the variances are extremely large.) We zero-pad these fields to λp =
512 from the original λ = 256, then compute the power spectra and
from this derive Rp. We then calculate the 3D variance by the use
of equation (29).

In Fig. 9, we compare the 3D variances derived from our method
with the actual 3D variances measured directly from the density
fields. We find that the method is comparably accurate for these
non-periodic fields, albeit with a rather large variation (∼40 per
cent) between different projections in the latest snapshot. In this
field, the variance is very large indeed (7.7 × 106) and is dominated
by a small number of very large density values caused by localized
gravitational collapse. The variances in the initial density field (a
spherical blob), in the t = t ff density field and in the t = 1.274t ff

density field are recovered by the mean calculated variances to
within 0.3, 20 and 20 per cent accuracy, respectively. To evaluate the

Figure 9. Comparison of calculated to true 3D variances for the non-
periodic SPH density fields.

success of these measurements, we calculate an anisotropy indicator
as was done in Section 3.2, by taking the ratio of the variance in one
projected field to the mean of the variances in the other two projected
fields. Since the simulations contain no magnetic fields, there is
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Variance of a 3D field from 2D observations 1515

no preferred axis. Therefore, we combine the three 2D variance
measurements in a way that minimizes the anisotropy indicator
(lower values represent greater degrees of anisotropy). For the three
snapshots, in increasing-time order, we find anisotropy indicators
of 1.00, 0.78 and 0.54. For the two evolved snapshots, the density
fields are comparably anisotropic to the low MA, low M density
fields of the previous section, but with the anisotropy now arising
from the initial velocity perturbations rather than from the effect
of a magnetic field. The accuracy of the method for non-periodic
boundary conditions is therefore comparable to the periodic case
when compared at the same level of intrinsic anisotropy.

The extremely high variances seen in the evolved density fields
are a result of small-scale collapse in this gravitationally bound
cloud, and far exceed variances expected by equation (1) with b ≈
0.5. It will be interesting in future to see how equation (1) is modified
in strongly self-gravitating clouds, and whether observations can
quantify this.

4 C O N C L U S I O N S

We have introduced and tested a simple method for measuring the
3D density variance in molecular clouds, using only information
present in the projected column density field. The method relies on
the assumption of isotropy and uses the measured column density
power spectrum in conjunction with Parseval’s theorem to calculate
a correction factor, R, that scales the observed normalized column
density variance to the intrinsic 3D normalized density variance.
The method is sufficiently general to be applied to any isotropic
field.

For density fields produced in supersonic hydrodynamic and
MHD turbulence, the method is accurate to about 10 per cent pro-
vided that the assumption of isotropy is valid. For turbulent density
fields, in practice this requires that the turbulence motions are super-
Alfvénic (MA < 1), though even in the sub-Alfvénic regime we are
able to recover the 3D variance for high sonic Mach number (M �

10).
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