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This paper presents a new approach to sensor placement based on diagnosability criteria. It is based on the study of struc-
tural matrices. Properties of structural matrices regarding detectability, discriminability and diagnosability are established
in order to be used by sensor placement methods. The proposed approach manages any number of constraints modelled by
linear or nonlinear equations and it does not require the design of analytical redundancy relations. Assuming that a con-
straint models a component and that the cost of the measurement of each variable is defined, a method determining sensor
placements satisfying diagnosability specifications, where all the diagnosable, discriminable and detectable constraint sets
are specified, is proposed. An application example dealing with a dynamical linear system is presented.
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1. Introduction

In the scientific literature, many approaches to fault di-
agnosis have been proposed since 1980. The FDI ap-
proach, which focuses on fault detection in dynamical sys-
tems, was summarized in (Blanke, Kinnaert, Lunze and
Staroswiecki, 2006). Related papers in this journal deal
with the design of redundancy relations (Shumsky, 2007)
as well as with the use of fuzzy logic (Dalton, Klotzek
and Frank, 1999; Koscielny, Syfert and Bartys, 1999;
Lopez-Toribio, Patton and Uppal, 1999) and neural net-
works (Korbicz, Patan and Obuchowicz, 1999; Witczak,
2006). The DX approach focuses on diagnosis reasoning.
It is summarized in (Hamscher, Console and De Kleer,
1992). Recently, a bridge approach between FDI and
DX was proposed (Cordier, Dague, Lévy, Dumas, Mont-
main, Staroswiecki and Travé-Massuyès, 2000; Nyberg
and Krysander, 2003; Ploix, Touaf and Flaus, 2003).
Thus, tools for solving diagnosis problems are now well
established. However, designing an efficient diagnosis
system does not start after the system design but it has
to be done during the system design. Indeed, the per-
formance of a diagnostic system highly depends on the
number and location of actuators and sensors. Therefore,
designing a system that has to be diagnosed requires not

only relevant fault diagnosis procedures, but also efficient
sensor placement algorithms.

Madron and Veverka (1992) proposed a sensor place-
ment method which deals with a linear system. This
method makes use of the Gauss-Jordan elimination to find
a minimum set of variables to be measured. This ensures
the observability of variables while simultaneously mini-
mizing the cost of sensors. In this approach, the observ-
able variables include the measurable variables plus the
unmeasured but deductible variables. Another method of
sensor placement was proposed in (Maquin, Luong and
Ragot, 1997). This method aims at guaranteeing the de-
tectability and isolability of sensor failures. It is based
on the concept of the redundancy degree in variables and
on the structural analysis of the system model. The sensor
placement problem can be solved by an analysis of a cycle
matrix or by using the technique of mixed linear program-
ming. Commault, Dion and Yacoub Agha (2006) pro-
posed an alternative method of sensor placement where a
new set of separators (irreducible input separators), which
generates sets of system variables in which additional sen-
sors must be implemented to solve the considered prob-
lem, is defined.

However, all these methods are not suitable for the
design of systems that include a diagnosis system because,
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in this context, the goal of sensor placement should be to
make it possible to monitor hazardous components. The
sensor placement algorithm should compute solutions that
satisfy detectability and diagnosability properties where
detectability is the possibility of detecting a fault on a
component and diagnosability is the possibility of isolat-
ing a fault on a component without ambiguities with any
other faulty components. Few methods have focused on
this problem.

Travé-Massuyès, Escobet and Milne (2001) pro-
posed a method based on consecutive additions of sensors,
which takes into account diagnosability criteria. The prin-
ciple of this method is to analyze the physical model of
a system from a structural point of view. This structural
approach is based on Analytical Redundancy Relations
(ARRs) (Blanke et al., 2006). However, this method re-
quires an a priori design of all the ARRs for a given set of
sensors. Recently, Frisk and Krysander (2007) proposed
an efficient method based on a Dulmage-Mendelsohn de-
composition (Dulmage and Mendelsohn, 1959; Pothen
and Chin-Ju, 1990). Nevertheless, this method only ap-
plies to just-determined sets of constraints while most
practical systems are under-determined when sensors are
not taken into account and over-determined afterwards.

This paper presents a new sensor placement algo-
rithm that takes into account detectability and diagnos-
ability specifications. It applies to systems for which only
the structure is known. Thanks to this algorithm, sen-
sor placements satisfying diagnosability objectives can be
computed without designing all the ARRs, which is still
an open problem. It applies to any system described struc-
turally and does not assume just-determination. Section 2
details the main concepts that are useful to model systems
for sensor placement. Then, Section 3 presents how the
sensor placement problem is formulated. Section 4 in-
troduces tools for analyzing structural matrices. These
tools are then used in Section 5 to determine diagnos-
ability properties directly from the analysis of structural
matrices. Section 6 proposes basic algorithms for extract-
ing blocks with useful properties from structural matrices,
and Section 7 shows how to use these algorithms to com-
pute sensor placements that satisfy diagnosability specifi-
cations. Finally, Section 8 presents an application to an
electronic circuit.

2. System modelling for sensor placement

Let us introduce the concepts and the formalism used
in the paper to formalize the sensor placement problem.
Behavioural knowledge starts with phenomena. A phe-
nomenon is a potentially observable element of informa-
tion about the actual state of a system. It is modelled
by an implicitly time-varying variable, which has to be
distinguished from a parameter that is model-dependent.
Generally speaking, even if a phenomenon is observable,

it is not possible to merge it with data because in fault
diagnosis data are only known provided that some actu-
ators or sensors behave properly. Phenomena V (t) =
{. . . , vi(t), . . . } are linked to a phenomenological space
F(T, V ) = {V (t); t ∈ T}, where T stands for a contin-
uous or discrete time set. At any given time t in T , these
phenomena belong to a domain dom(t, V ) = dom(V (t))
representing all the possible values that the phenomena
may have. Consequently, when considering all t ∈ T ,
{dom(V (t)); t ∈ T} represents a tube in the timed phe-
nomenological space F(T, V ).

All the phenomena have thus to be considered as
unknown because observable phenomena are not obser-
vations. Let us introduce the concept of a data flow
to model actual data recorded on a system. A data
flow models data provided by a source of information
concerning a phenomenon. A data flow concerning a
phenomenon v is denoted by val(t, v) with val(t, v) ∈
dom(t, v). It corresponds to a trajectory belonging to the
tube {dom(t, v); t ∈ T} (see Fig. 1). When information
about v is coming from different sources, the different
data flows can be denoted by vali(t, v). Formally, a data
flow provided by a component c can be linked to a phe-
nomenon: ok(c) → ∀t ∈ T, val(t, v) = v, which means
that if the component named c is in the mode ok, then the
data val(t, v) correspond to the actual value of the phe-
nomenon v at any time t ∈ T .

Fig. 1. Tube modelling a variable and a related observation.

In fault diagnosis, a system is not supposed to re-
main in a given mode. Indeed, diagnostic analysis aims
at retrieving the actual behavioral modes of the compo-
nents of a system. At minimum, two modes are de-
fined: the ok mode, which corresponds to the expected
normal behavior, and the cf mode, which is the com-
plementary fault mode: it refers to all the behaviours
that do not fit to the expected normal behavior. Some-
times, specific fault modes may be modelled (de Kleer
and Williams, 1992; Struss, 1992). They are denoted by a
specific label, e.g., the leak mode. Consider, e.g., a pipe
where ok and leak are modelled. It yieldsModes(pipe) =
{ok, leak, cf}, where cf(pipe) refers to the behaviours
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that do not correspond to ok(pipe) or to leak(pipe).
Except for the complementary fault mode, be-

havioural modes are modelled by cause-effect relation-
ships between phenomena, which are represented by con-
straints. Each constraint refers to a set of mappings con-
taining unknown variables and known data flows. Gener-
ally speaking, a mapping over dom(t, V ) is defined from
one subspace dom(t, V1) to another dom(t, V2), where
{V1, V2} is a partition of V . Note that several mappings κi

may model the same constraint k. If κi : dom(t, V1) �→
dom(t, V2) is a mapping representing a constraint k that
models, for example, a component c1 in modemode1 and
a component c2 in mode mode2, we have

mode1(c1) ∧ mode2(c2) →
V2 = κi(t, V1, val(V3)); (1)

V1 ∈ dom(t, V1), V2 ∈ dom(t, V2), (2)

where the data flow val(V3) is considered as being in-
cluded in the mapping.

But constraint is not strictly equivalent to mapping.
A constraint corresponds to a set of equivalent mappings.
Firstly, although mappings to multidimensional spaces
could be used, they are difficult to manage. It is bet-
ter to break them down into one-dimensional mappings.
In the following, one-dimensional mappings modelling a
constraint k are named realizations of k. Moreover, sev-
eral realizations of a constraint may be equivalent. Let
κi be a realization from V \{v} to {v}. There may be
equivalent realizations defined on V that also model the
constraint. Therefore, the notion of constraint can be ex-
tended to represent all the equivalent realizations repre-
senting a given subset of dom(V ). In the following, a
constraint k will be understood as a set of equivalent re-
alizations. It is summarized by the set of variables occur-
ring in the realizations: var(k). It is assumed that if k
is a constraint, for all v ∈ var(k), there is an equivalent
realization κi : dom(t, var(k)\{v}) �→ dom(t, v).

To summarize, a system Σ is composed of a set of
constraintsKΣ and a set of behavioural modesModes(Σ)
related to components in Σ. var(KΣ) is the set of vari-
ables, named port in (Chittaro and Ranon, 2004), which
models observable phenomena involved in Σ. Indeed, by
extension, the set of variables appearing in a set of con-
straints K is denoted by var(K) =

⋃
k∈K var(k). Each

constraint κ ∈ KΣ is linked to a mode m ∈ Modes(Σ)
by a first order relationship: m → κ. For the sake of
simplicity, in this paper, it is assumed that:

• only ok modes are considered in the sensor place-
ment,

• each constraint κ ∈ KΣ models one mode and, con-
versely, that a mode can be modelled by at most one
constraint.

The sensor placement problem then consists in defin-
ing the variables of var(Σ) that have to be measured to fa-
cilitate the detection and identification of ok modes from
Modes(Σ). These modes are denoted by Modesok(Σ).
From a mathematical point a view, it is a kind of com-
binatorial problem. The next section proposes a precise
problem formulation.

3. Problem formulation

Let us present an intuitive formulation of the problem.
Full definitions are given afterwards. The solving of a di-
agnostic problem is generally decomposed into two con-
secutive steps. The conflict or symptom generation, also
called fault detection in the automatic control commu-
nity, and the diagnostic analysis, also called fault isola-
tion. The first step relies on consistency tests among min-
imal testable subsets of constraints1 K ∈ KΣ that include
data flows (often called OBS for observations). Let K

be the set of minimal testable subsets of constraints. If
K ∈ K is a set of constraints leading to a test which is
inconsistent, this means that, at least, one of the modes
corresponding to the constraints of K is not actual. It is
therefore important to trace the constraints belonging to a
minimal testable subset K because this makes it possible
to solve the second sub-problem: the diagnostic analy-
sis, which provides global conclusions in terms of modes
about the actual system states. The performance of a di-
agnostic system is highly dependent on the set K and,
consequently, dependent on the set KΣ, which highly de-
pends on the dataflows, i.e., on the observations. Addi-
tional sensors lead to addtional constraints in KΣ and,
therefore, to new sets in K. K can be obtained from com-
binations of constraints from KΣ using possible conflict
generation (Pulido and Alonso, 2002), a bipartite graph
(Blanke et al., 2006), the Dulmage-Mendelsohn decom-
position (Krysander, Aslund and Nyberg, 2008) or elim-
ination rules (Ploix, Désinde and Touaf, 2005). Basi-
cally, once K has been generated, it is possible to com-
pute the performance of the diagnostic system in terms of
detectability, discriminability or discernability, and diag-
nosability. Irrespective of whether or not the performance
satisfies the requested performance requirements, the set
KΣ is modified and the process is conducted once again
until the requested performance is reached. However, this
process requires lots of computations because the genera-
tion ofK is time consuming. Moreover, up to now, no one
of these algorithms has been proved to be complete.

Another approach to sensor placement is proposed in
this paper. It does not require the computation of K from
KΣ. It directly solves the following problem by studying
the structure of Σ: Let KΣ be a set of constraints mod-
eling the ok modes of a system Σ. Let var(KΣ) be the

1‘Minimal’ means that to be able to carry out a consistency test, no
constraint can be removed from a subset.



500 A.A. Yassine et al.

variables appearing in KΣ. The problem to be solved is
as follows: What are the complementary constraints mod-
elling sensors dedicated to variables from var(KΣ) that
have to be added to satisfy requested diagnosability per-
formance requirements?

Let us precise the problem formulation by defining
the concept of a testable subset or a subsystem (TSS) of
constraints and its relationship with the concept of the
ARR.

Definition 1. Let K be a set of constraints and v a vari-
able in var(K) characterized by its domain dom(v). K is
a solving constraint set for v if, using K, it is possible to
instantiate v with a value set S such that S ⊂ dom(v). A
solving constraint set for v is minimal if there is no subset
of K, which is also a solving constraint set for v. A mini-
mal solving constraint set K for v is denoted by K � v.

Definition 2. Let K be a set of constraints. K is testable
if and only if there is a partition {K1, K2} of K and a
variable v ∈ var(K) such that K1 � v and K2 � v. If
this property is satisfied, it is indeed possible to check if
the value set S1 deduced from K1 is consistent with the
value set S2 deduced from K2: S1 ∩ S2 
= ∅.

Adding any constraint to a testable set also leads to a
testable set of constraints. Only minimal testable sets are
interesting.

Definition 3. A testable set of constraints is minimal
if it is not possible to keep testability when removing a
constraint.

A global testable constraint that can be deduced
from a TSS is called an analytical relation (ARR). Let
KΣ = {. . . , Kk, . . .} be the set of all the testable subsys-
tems that can be deduced from KΣ according to (Blanke
et al., 2006; Ploix et al., 2005). Because of the assumed
one-to-one relationships between constraints and compo-
nents, the notions of detectability and discriminability can
be extended to constraints.

Definition 4. Let K be a set of TSSs coming from
(KΣ, CΣ). A constraint k ∈ KΣ is detectable (Struss, Re-
hfus, Brignolo, Cascio, Console, Dague, Dubois, Dressler
and Millet, 2002) in K iff ∃Ki ∈ K/k ∈ Ki. By exten-
sion, a set of constraints K ⊂ KΣ is detectable in K if
∀ki ∈ K, ki is detectable in K.

Definition 5. Two constraints (k1, k2) ∈ K2
Σ are dis-

criminable (Struss et al., 2002) in K if: ∃Ki ∈ K/ k1 ∈
Ki and k2 /∈ Ki or if ∃Kj ∈ K/ k2 ∈ Kj and k1 /∈ Kj .
By extension, the constraints of a set K ⊂ KΣ are dis-
criminable in K iff ∀(ki, kj) ∈ K2, ki and kj are discrim-
inable in K with ki 
= kj .

Obviously, nondetectability implies nondiscrim-
inability.

Definition 6. A constraint k ∈ KΣ is diagnosable (Struss
et al., 2002; Console, Picardi and Ribando, 2000) in K

iff it is detectable and ∀kj ∈ (KΣ \ k), (k, kj) are dis-
criminable in K. By extension, constraints K ⊂ KΣ are
diagnosable in K iff ∀ki ∈ K, ki are diagnosable in K.

In order to formulate the sensor placement problem,
the notion of a terminal constraint has to be introduced.

Definition 7. A terminal constraint k is a constraint that
satisfies card(var(k)) = 1, where var(k) is the set of
variables appearing in the constraint k.

A terminal constraint usually models a sensor or an
actuator. It is thus a major concept in sensor placement.
Note that if a candidate sensor measures not only one vari-
able v but a combination of several variables v1, . . . , vn,
a new constraint k satisfying var(k) = {v1, . . . , vn, v∗},
where v∗ is a virtual measurable variable, has to be added
intoKΣ. Then, the solving is similar to the standard prob-
lem.

In fault diagnosis, sensor placement has to satisfy
specifications dealing with detectability and diagnosabil-
ity. Because a one-to-one relation between components
and constraints is assumed, what is true for components
is also true for constraints. In the following, only con-
straints will be considered: the analogy with components
is implicit. In this paper, complete specifications are con-
sidered. Partial specifications can also be managed: they
will be presented in a forthcoming paper. These complete
specifications consist of a partition of the constraint set
KΣ into the following subsets:

• the set of constraintsKdiag that must be diagnosable,

• the set of subsets of constraints Knondis =
{. . . , Ki, . . .} for which each set Ki must be non-
discriminable but detectable,

• the set of constraints Knondet that must be non-
detectable,

Complete specifications Kdiag , Knondis and Knondet for
sensor placement problems are meaningful if the follow-
ing two properties are satisfied:

1. Sets in specifications must not overlap one another to
make sense. Constraint sets have to satisfyKnondet∩
Kdiag = φ, ∀Ki ∈ Knondis, Ki ∩ Knondet = φ,
∀Ki ∈ Knondis, Ki ∩ Kdiag = φ and ∀(Ki, Kj) ∈
K

2
nondis, Ki ∩ Kj = φ if Ki 
= Kj (no-overlapping

property).

2. The union of all the components appearing in Kdiag,
Knondis and Knondet has to correspond to KΣ:
KΣ = Kdiag ∪ Knondet ∪

⋃
Ki∈Knondis

Ki (com-
pleteness property).
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If these properties are satisfied, the complete specifica-
tions are qualified as consistent in KΣ.

Satisfying the diagnosability specifications requires
information delivered by sensors. Let K

′
Σ represent the

system Σ with additional sensors where KΣ′ contains the
constraints KΣ of the system Σ plus the additional termi-
nal constraints modelling the additional sensors. There-
fore, solving a sensor placement problem consists in de-
termining additional terminal constraints in KΣ′ that lead
to the satisfaction of complete specifications.

In the next sections, diagnosability properties of
structural matrices are established and used for the design
of a sensor placement satisfying diagnosability specifica-
tions.

4. Basic properties of structural matrices

Before pointing out diagnosability properties, some basic
properties of structural matrices have to be established.
The constraints KΣ = {. . . , ki, . . .} can be represented
by a structural matrix MΣ, which is an incidence matrix
representing the mappingMΣ : var(KΣ) → KΣ.

According to the definition, a TSS is a minimum set
of constraints K such that there is at least one variable for
which two different minimal solving sets can be found. A
minimal solving set leading to a variable v corresponds
to a value propagation (Apt, 2003) starting usually, but
not necessarily, by terminal constraints and leading to v.
Therefore, a TSS can also be seen as two distinct value
propagations leading to a given variable. This point of
view has been adopted as a theoretical tool to develop
proofs.

Let k1 and k2 be two constraints. The propagation
of a variable v between k1 and k2 is possible only if
v ∈ var(k1) ∩ var(k2). The variable v is qualified as
propagable between k1 and k2: v is a link between k1 and
k2. In the corresponding structural matrix, this link is rep-
resented by a thick line:

Consider now a system defined by KΣ =
{k1, k2, k3, k4, k5} with var(k1) = {v1, v3}, var(k2) =
{v1, v2}, var(k3) = {v2, v3}, var(k4) = {v2} and
var(k5) = {v3}. Terminal constraints k4 and k5 model
sensors or actuators. Each terminal constraint contains
known data. Figure 2 represents examples of propagations
that lead to a TSS with a bipartite graph. But in a bipar-
tite graph, links do not appear clearly: they correspond
to alternate paths (or chains) with the pattern ‘constraint-
variable-constraint’. Links appear more clearly in struc-
tural matrices as lines linking two constraints. In the fol-

Fig. 2. Link between propagations and minimal
testable subsets.

lowing structural matrices, the variables surrounded by
a circle represent the variables that can be instantiated
twice. The relevance of links remains obvious in Example
2, where a propagation does not start by a terminal con-
straint. The paths corresponding to propagations of solv-
ing sets were drawn. Variable v2 was instantiated twice.

Once again, paths may be reduced to links (thick lines).
The following example points out another structural ma-
trix with two propagations leading to variable v3:

The concept of linked constraints has to be formal-
ized because discriminability depends on this concept.
Before defining linked constraints, the concept of inter-
connected constraints has to be introduced. The con-
straints of a system Σ may be modelled by a non-directed
bipartite graph (KΣ, var(KΣ), EΣ), where EΣ is the set
of edges. Each edge e = (k, v) reflects v ∈ var(k).

Definition 8. A set of constraints K ⊂ KΣ is inter-
connected by a set of variables V ⊂ var(KΣ) iff there is
a tree (K, V, E) ⊂ (KΣ, var(KΣ), EΣ) with constraints
at extremities (see, e.g., (Bollobás, 1998)), which satisfies
card(V ) = card(K) − 1.

To point out the link with bipartite graph theory, ifK
is interconnected by V inKΣ, V is necessarily a complete
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coupling for K with respect to variables. The notion of a
linked set of constraints can now be introduced.

Definition 9. A set of constraints K ⊂ KΣ is linked
in KΣ by a set of variables V ⊂ var(KΣ) iff K is inter-
connected by V and iff the other constraints of KΣ (i.e.,
KΣ\K) do not contain any variable of V . The variables
of V are called linking variables for K. They are denoted
by varlinking(K, KΣ).

The shape of a structural matrix dealing with linked
constraints is drawn in Fig. 3.

Fig. 3. Structural matrix of a constraint set K, which is linked
by a set of variables V .

The concept of linked constraints is strongly con-
nected with discriminability.

Lemma 1. A set of constraints K ⊂ KΣ linked by a set of
variables V ⊂ VΣ is necessarily non-discriminable.

Proof. Indeed, because variables in V only appear in
the constraints belonging to K, the only way for prop-
agating variables is to use the constraints in K and the
variables in V . What is more, because there is a tree
(K, V, E) ⊂ (KΣ, var(KΣ), EΣ) with constraints at ex-
tremities, instantiating all the variables in V involves at
least the achievement of the propagations defined by the
tree.

Therefore, all the constraints are invariably found to-
gether in the TSS. In order to improve the clarity of these
explanations, let us introduce the notion of stump vari-
ables. �

Definition 10. A set of variables var(K) appearing in
a set of constraints K but not in the other constraints of
KΣ (i.e., KΣ\K) are named stump variables in KΣ with
respect to K. They are denoted by varstump(K, KΣ).

For instance, the set of variables V that link a
set of constraints K belong to the stump variables
varstump(K, KΣ) with K ⊂ KΣ.

A set of constraints cannot be used to generate a TSS
if they are linked and if there are additional variables that
cannot be propagated. These constraints are qualified as
isolated. Detectability depends on this concept.

Definition 11. A set of several constraints K ⊂ KΣ

is isolated in KΣ by a set of variables V ⊂ var(KΣ) if
it is linked by V and if there is at least one variable in
var(K)\V that does not belong to other constraints of
KΣ (i.e., KΣ\K). If the set contains only one constraint,
the link condition disappears.

The shape of a structural matrix dealing with isolated
constraints is shown in Fig. 4.

Fig. 4. Structural matrix of a constraint set, which is isolated by
the set of variables V .

The concept of isolated constraints is strongly linked
with detectability.

Lemma 2. A set of constraints K ⊂ KΣ isolated in KΣ

by V is necessarily non-detectable.

Proof. The constraintsK isolated inKΣ by V will always
come together in the TSS because, by definition, they are
linked by V . Because of the fact that, in isolated con-
straints, there is at least one additional variable in var(K)
which does not appear in other constraints (i.e., KΣ\K),
it is not possible to instantiate this variable and, therefore,
this set of constraints cannot be involved into a TSS: con-
straints K are thus non-detectable. �

5. Diagnosability properties of structural

matrices

This section aims at setting up a direct link from sets of
constraints to detectability and diagnosability properties.
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Firstly, it is obvious that adding additional constraints con-
nected to all the variables var(k) appearing in a constraint
k ensures the diagnosability of k.

Lemma 3. Let k ∈ KΣ be a constraint. If additional ter-
minal constraints dealing with all the variables in var(k)
are added, then the constraint k is diagnosable.

Proof. Because there are additional terminal constraints
connected to each variable in V (k), a value can be as-
signed to each variable. Consequently, there is one TSS
containing k plus additional terminal constraints con-
nected to variables in var(k). Therefore, the constraint
k ∈ KΣ is necessarily diagnosable because there is one
TSS that does not contain other constraints of KΣ (i.e.,
KΣ\{k}). �

Lemma 3 can be directly applied to all the constraints
of a constraint set.

Corollary 1. If additional terminal constraints dealing
with all the variables var(K) of a constraint set K belong
to KΣ, then each constraint k ∈ K is diagnosable.

In Lemma 2, a relationship between isolated con-
straints and the detectability property has been presented.
The next lemma generalizes the previous results.

Lemma 4. A sufficient condition for a subset of con-
straints K ⊂ KΣ to be non-detectable is that there is a
sequence (K1, . . . , Km) of m sets of constraints making
up a partition P(K) of K such that each Ki is isolated in
KΣ\

⋃
j<i Kj (K1 is a limit case: it should be isolated in

KΣ).

Proof. The case of K1 has been discussed in Lemma 2:
because the constraints in K1 are isolated in KΣ, they
are non-detectable and therefore cannot be included in
the TSS. Then, the remaining candidate constraints for
the TSS belong to KΣ\K1. Because K2 is isolated in
KΣ\K1, they are non-detectable. The reasoning can be
extended to any Ki. Consequently, the constraints in
K =

⋃
iKi are non-detectable. �

Figure 5 indicates the shape of a structural matrix of
non-detectable constraints.

Consider, e.g., a system modelled by the following
structural matrix:

v1 v2 v3 v4 v5 v6

k1 1 0 0 1 0 0
k2 0 1 1 0 1 0
k3 0 1 1 0 1 0
k4 0 0 0 1 0 1
k5 0 0 0 1 1 1

Assume that the set K = {k1, k2, k3} is required
to be non-detectable. In this example, there exists a
pair ({k1} , {k2, k3}) such that each element Ki satisfies

Fig. 5. Structural matrix of non-detectable constraints.

Lemma 4. If there are no additional terminal constraints
containing v1, v2 and v3, the subset K is necessarily non-
detectable.

Lemma 5. A sufficient condition for each set Ki ⊂ K be-
longing to a set of m constraint sets K = {K1, . . . , Km}
such that ∀Ki 
= Kj , Ki ∩ Kj = ∅, to be non-
discriminable is that each Ki is linked by a set of vari-
ables Vi.

Proof. This lemma is a direct application of Lemma 1 to
several sets of constraints. �

Consider, for example, a system modelled by the fol-
lowing structural matrix:

v1 v2 v3 v4 v5

k1 1 0 1 1 1
k2 1 1 1 1 0
k3 1 1 1 0 1
k4 0 1 1 0 0
k5 0 0 0 1 1

Assume that K = {k1, k2, k3, k4} is a constraint
subset that should be non-discriminable. Because the con-
straints k1, k2, k3 and k4 are linked by V = {v1, v2, v3},
Lemma 5 is satisfied. Therefore, k1, k2, k3 and k4 are non-
discriminable provided that no additional terminal con-
straints contain a variable of V .

The following theorem collects the results of Lem-
mas 3, 4 and 5.

Theorem 1. Let KΣ be a set of constraints and Knondet,
Knondis and Kdiag be the specifications of a sensor place-
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ment problem consistent in KΣ. Sufficient conditions for
the specifications to be fulfilled are as follows:

1. There exists a system (K1, . . . , Kp) of p sets
of constraints making up a partition P(Knondet)
of Knondet such that each Ki is isolated in
KΣ\

⋃
j<i Kj (K1 is a limit case: it should be iso-

lated in KΣ) as shown in Fig. 5.

2. Each set Ki belonging to Knondis = {K1, . . . , Km}
such that ∀Ki 
= Kj , Ki ∩ Kj = ∅, is linked by a
set of variables Vi in considering only the detectable
constraints KΣ\Knondet.

3. Additional terminal constraints are added on the
variables

Vcandidate

= var(KΣ)\(varstump(Knondet, KΣ)

∪
⋃

Kj∈Knondis

varlinking(Kj , KΣ\Knondet)).

Proof. The proof relies on the resulting structure of the
structural matrix, which directly stems from Corollary 5
as well as Lemmas 4 and 5. Note that Point 2 could also
be stated for the whole set of constraints KΣ. However, it
is not useful to include non-detectable constraints, which
will not appear in the resulting TSS: it would be less con-
servative.

Because of Lemmas 4 and 5, the variables
of var(Kdiag) cannot contain variables appear-
ing in the variables involved in (1) and (2),
that is to say, in varstump(Knondet, KΣ) and in⋃

Kj∈Knondis
varlinking(Kj , KΣ\Knondet). It follows

that var(Kdiag) satisfies var(Kdiag) ⊂ Vcandidate.
Because the variables of Vcandidate can be instantiated
with measured values, all the constraints of Kdiag are
diagnosable following Corollary 5.

The point which has to be proved is that, in specifi-
cations, Knondis defines non-discriminable but detectable
sets and not only non-discriminable sets as in Lemma 5:
the detectability of sets in Knondis has to be proved.
The variables var(Ki) of a constraint set Ki ∈ Knondis

can be decomposed into two sets: V −
i and V +

i , where
V −

i = varlinking(Ki, KΣ\Knondet) contains the link-
ing variables and V +

i contains the remaining variables
V +

i = var(Ki)\V −
i . Lemmas 4 and 5 imply that the set

V +
i cannot contain variables in varstump(Knondet, KΣ)
and in

⋃
Kj∈Knondis;Kj �=Ki

varlinking(Kj , KΣ). There-
fore, V +

i satisfies V +
i ⊂ Vcandidate.

Because of the third point of the theorem, all the vari-
ables of Vcandidate are known: additional terminal con-
straints are indeed added, and there is necessarily a TSS
dealing with all the constraints in Ki. It proves that the

Algorithm 1. FindBlocks(KΣ, VΔ): A triple of block sets
(Bnondet, Bnondis, Bdiag), considering only the variables
VΔ

Require: VΔ ⊆ var(KΣ)
KΔ ← KΣ

Bnondet ← findIsolatedBlocks(KΣ, KΔ, VΔ)
KΔ ← KΔ\merge(Bnondet).cons
Bnondis ← findLinkedBlocks(KΣ \ merge(Bnondet).
cons, KΔ, VΔ \ merge(Bnondet).var)
Kdiag ← KΔ\merge(Bnondis).cons
return (Bnondet, Bnondis, block(Kdiag, var(Kdiag)))

Fig. 6. Shape of a structural matrix satisfying Theorem 1.

Fig. 7. Dependency scheme of the block extraction algorithm.

constraint set Ki is necessarily detectable. Because this
result holds for any Ki ∈ Knondis, it proves the theorem.
�
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Algorithm 2. findIsolatedBlocks(KΣ, KΔ, VΔ): A block
containing the set of isolated constraints subsets of KΔ

in KΣ and the isolating variables, considering only the
varcostiables VΔ

Require: KΔ ⊆ KΣ

Require: A buffer is created
buffer ← ∅
B ← ∅ {an empty list of blocks}
buffer .push(Knode(∅, KΔ))
while buffer 
= ∅ do

Knode ← buffer .pop()
K ← KΔ\Knode−

V ← findIsolatingVariables(KΣ,K, VΔ)
if V 
= ∅ then

B ← (B, block(Knode+, V ))
KΔ ← Knode−

KΣ ← KΣ\K
VΔ ← VΔ\V
buffer ← ∅
buffer .push(Knode(∅, KΔ))

else

K+ ← Knode+

for all k ∈ Knode+ do

K− ← Knode− ∪ {k}
K+ ← K+\{k}
if K− 
= KΔ then

buffer .push(Knode(K−, K+))
end if

end for

end if

end while

return B

Satisfying the assumptions of Theorem 1 guarantees
that the specifications are satisfied. However, because the
theorem provides only a sufficient condition for diagnos-
ability, the number of additional terminal constraints is not
necessarily minimal. It has to be checked afterwards.

In the next section, an algorithm for extracting blocks
from a structural matrix is presented. This algorithm is
required by methods for sensor placement based on com-
plete specifications.

6. Extracting blocks from a structural

matrix

Before presenting an algorithm for extracting blocks from
a structural matrix KΣ, let us introduce some notation.
Firstly, the notion of a block is formalized: a block is a
couple defined by block = (K, V ) where block.cons =
K and block.var = V stand respectively for a set of con-

Algorithm 3. findIsolatingVariables(KΣ, KΔ, VΔ): A set
of variables isolating KΔ in KΣ, considering only the
variables VΔ

Require: KΔ ⊆ KΣ

Vstump ← findStumpVariables(KΣ, KΔ, VΔ)
if card(Vstump) ≥ card(KΔ) then

if card(KΔ) = 1 then

return Vstump

else

for V ∈ combinations of card(KΔ) − 1 variables
from Vstump do

if isInterconnected(KΔ, V ) then

return Vstump

end if

end for

end if

end if

return ∅

straints and a set of variables. Two blocks can be merged:

merge(block1, block2)
= block(block1.cons ∪ block2.cons,

block1.var ∪ block2.var).

A set of blocks is denoted by the symbol B. By extension,
the block resulting from the merging of sets of blocks B is
denoted by merge(B).

Figure 7 represents the dependency scheme between
the methods that are defined. The main algorithm is
named findBlocks (Algorithm 1). It extracts the differ-
ent blocks that appear in Theorem 1, considering only the
variables VΔ.

In order to describe the methods findIsolatedBlocks()
and findLinkedBlocks(), the notions of Knode and buffer
of Knodes are introduced. A Knode is a couple of
constraint sets: Knode = Knode(K−, K+), where
Knode− = K− and Knode+ = K+. A buffer is a
special First-In First-Out buffer. The basic functionalities
are buffer .push(Knode) and buffer .pop(). They respec-
tively correspond to adding a Knode in the buffer and
getting a Knode from the buffer.

Using these notions, the algorithm findIsolated-
Blocks() (Algorithm 2) extracts the set of isolated blocks
from a set of constraints KΔ ⊆ KΣ, considering only the
variables VΔ. According to Lemma 4, the constraints be-
longing to the resulting blocks are not detectable.

This algorithm depends on the findIsolatingVari-
ables() method. It is given by Algorithm 3.

The algorithm findLinkedBlocks() (Algorithm 4) ex-
tracts the set of linked constraints from a set KΔ ⊆ KΣ,
considering only the variables VΔ. The structure of this
algorithm is very closed to that of Algorithm 2. Accord-
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Algorithm 4. findLinkedBlocks(KΣ, KΔ, VΔ): A set of
blocks, where each one corresponds to a linked but not
isolated set of constraints, and its corresponding linking
variables, considering only the variables VΔ

Require: KΔ ⊆ KΣ

Require: A buffer is created
buffer ← ∅
B ← ∅ {an empty list of blocks}
buffer .push(Knode(∅, KΔ))
while buffer 
= ∅ do

Knode ← buffer .pop()
K ← KΔ\Knode−

V ← findStumpLinkingVariables(KΣ,K, VΔ)
if V 
= ∅ then

B ← (B, block(Knode+, V ))
KΔ ← Knode−

buffer ← ∅
buffer .push(Knode(∅, KΔ))

else

K+ ← Knode+

for all k ∈ Knode+ do

K− ← Knode− ∪ {k}
K+ ← K+\{k}
if K− 
= KΔ then

buffer .push(Knode(K−, K+))
end if

end for

end if

end while

return B

Algorithm 5. findLinkingStumpVariables(KΣ, KΔ, VΔ):
One set of stump variables linkingKΔ inKΣ, considering
only the variables VΔ

Require: KΔ ⊆ KΣ

Vstump ←findStumpVariables(KΣ, KΔ, VΔ)
for V ∈ combinations of card(KΔ)− 1 variables from
Vstump do

if isInterconnected(KΔ,V ) then

return VlinkingStump

end if

end for

return ∅

ing to Lemma 5, the constraints belonging to the resulting
blocks are not discriminable. This algorithm depends on
the findLinkingStumpVariables() method, which is given
by Algorithm 5.

Finally, according the Fig. 7, the algorithms findIs-
olatingVariables() and findLinkedBlocks() depend on two
methods findStumpVariables() (Algorithm 6) and isInter-

Algorithm 6. findStumpVariables(KΣ, KΔ, VΔ): A set
of stump variables for KΔ in KΣ, considering only the
variables VΔ

Require: KΔ ⊆ KΣ

Vstump ← ∅
Vnonstump ← ∅
for all v ∈ VΔ do

if cons(KΣ, v) ⊂ KΔ then

Vstump ← Vstump ∪ {v}
else

Vnonstump ← Vnonstump ∪ {v}
end if

end for

return Vstump

connected() (Algorithm 7).

Algorithm 7. isInterconnected(KΔ, V ): True if con-
straints KΔ are interconnected by V

Require: KΔ ⊆ KΣ

Require: An empty buffer is created
if V ⊆ var(KΔ) ∧ card(V ) = card(KΔ) − 1 then

buffer .push(V node(∅, V ))
while buffer 
= ∅ do

V node ← buffer .pop()
V + ← V node+

for all v ∈ V node+ do

V − ← V node− ∪ {v}
K+ ← cons(V −)
if card(K+) = card(V −) then

return false
else

V + ← V +\{v}
if V + 
= ∅ then

buffer .push(Knode(V −, V +))
end if

end if

end for

end while

return true
else

return false
end if

The top-level method findBlocks(KΣ) leads to the
blocks depicted in Fig. 6. These results are very useful
to support the sensor placement. Indeed, constraints be-
longing to Bdiag.cons are already diagnosable. There-
fore, finding a sensor placement satisfying the specifi-
cations requires that the specified Kspec

diag should include
Bdiag.cons:

Bdiag.cons ⊂ Kspec
diag . (3)
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Fig. 8. Dependency scheme of the sensor placement method for
complete specifications.

In much the same way, the constraints
merge(Bnondis).cons ∪ Bdiag.cons are already de-
tectable. Therefore, finding a sensor placement satisfying
the specifications requires that the specified Kspec

nondet

should be included in merge(Bnondet).cons:

Kspec
nondet ⊂ merge(Bnondet).cons. (4)

7. Method for sensor placement

A method for optimal sensor placements satisfying di-
agnosability specifications is proposed in this section.
This method deals with complete specifications: Kspec

diag ,
K

spec
nondis and Kspec

nondet (see Section 4).
There may be several sensor placements that satisfy

diagnosability specifications. In order to select the most
interesting one, a criterion based on the cost of the sensor
placement is considered. Introduce the following nota-
tion: The cost of the measurement of a variable v is de-
noted cost(v). By extension, the cost of the measure-
ment of a set of variables V is defined as cost(V ) =∑

v∈V cost(v).
Adding sensors amounts to adding terminal con-

straints (see Definition 7). Indeed, as mentioned in Sec-
tion 3, a sensor measuring a variable v is modelled by
the constraint val(t, v) = v, where val(t, v) is a datum
coming from the sensor. Therefore, structurally speak-
ing, a sensor measuring v is modelled by a terminal con-
straint k satisfying var(k) = {v}. The constraint k will
be denoted by ksensor(v). By extension, the terminal con-
straints modelling sensors measuring variables V are de-
noted by Ksensor(V ).

Algorithm 8. findCandidates(KΣ, Kspec
nondet, K

spec
nondis,

Kspec
diag ): A set of variables to be measured to satisfied

complete specifications, ∅ if no solution
Require: Specifications are consistent in KΣ

B ← findIsolatedBlocks(KΣ, Knondet, var(KΣ))
if B.cons = Kspec

nondet then

Vnomes ← findStumpVariables(KΣ, Knodet,
var(KΣ))
KΔ ← KΣ\Kspec

nondet

VΔ ← var(KΣ) \ Vnomes

for all K ∈ K
spec
nondis do

V ← findLinkingVariables(KΔ,K, VΔ)
if V 
= ∅ then

Vnomes ← Vnomes ∪ V
else

return ∅
end if

end for

return var(KΣ)\Vnomes

else

return ∅
end if

The method to solve these complete specifications
can be decomposed into two steps: the determination
of candidate variables for sensor placements using The-
orem 1, and the reduction of the candidate variables in or-
der to find the minimal cost sensor placement that satisfies
the complete diagnosability specifications using a branch-
and-bound algorithm. Figure 8 presents the dependency
scheme of the method.

The findCandidates() (Algorithm 8) method is based
on Theorem 1. It takes into account the specifications to
determine a set of variables to be measured. If these vari-
ables are measured, the complete specifications will be
satisfied. This algorithm depends on the findLinkingVari-
ables() method, which is given by Algorithm 9. This al-
gorithm uses the results issuing from Algorithm 5 to find
a subset of variables linking a subset of constraints KΔ,
considering only the variables VΔ.

In this algorithm, the cost of variables is considered.
This algorithm depends on the sortVariables() method,
which sorts a list of variables according to measurement
costs in descending order.

A subset of the candidate variables may also lead to
the satisfaction of the specifications. A branch-and-bound
algorithm is used to select the most interesting candidate
variables to be measured in order to find an optimal sensor
placement. Before defining the optimisation algorithm, it
is necessary to be able to check if the complete specifica-
tions are satisfied for a given subset of candidate variables.
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Algorithm 9. findLinkingVariables(KΣ, KΔ, VΔ,
cost(VΔ)): One set of variables linking KΔ in KΣ, in the
subset variable VΔ

VlinkedStump ← findStumpLinkingVariables(KΣ, KΔ,
VΔ)
Vsorted ← sortVariables(VlinkedStump,
cost(VlinkedStump))
for V ∈ combinations of card(KΔ)− 1 variables from
sorted list Vsorted do

if isInterconnected(KΔ,V ) then

return V
end if

end for

return ∅

Algorithm 10. isFeasible(KΣ, Vmeasured, K
spec
nondet,

K
spec
nondis, K

spec
diag ): True is the sensor placement satisfies

the specifications
Require: Specifications are consistent in KΣ

Kglobal ← KΣ ∪ sensor(Vmeasured)
(Bnondet, Bnondis, Bdiag)=findBlocks(KΣ, var(KΣ) \
Vmeasured)
if Bdiag.cons 
= Kspec

diag then

return false
else if Bnondet.cons 
= Kspec

nondet then

return false
else

for all Kspec ∈ K
spec
nondis do

found ← false
for all B ∈ Bnondis do

if B.cons = Kspec then

found ← true
end if

end for

if found = false then

return false
end if

end for

end if

return true

Method isCSFeasible() (Algorithm 10) achieves this.
The optimality criterion for a feasible sensor place-

ment defined by Vmeasured is given by cost(Vmeasured).
The branch-and-bound search algorithm is implemented
in the placeSensor() method (Algorithm 11) using a sim-
ple First-In First-Out buffer of nodes of variables.

8. Application

In this section, the special case of a dynamical system
modelled by recurrent or differential equations is dis-
cussed. Then, an example is presented.

Algorithm 11. placeSensor(KΣ, Kspec
nondet, K

spec
nondis,

Kspec
diag ): a set of variables to be measured

Require: Specifications are consistent in KΣ

Require: cost() is defined for each variable in VΣ

criteria ← cost(var(KΣ))
Vcandidate ← findCandidates(KΣ, Kspec

nondet, K
spec
nondis,

Kspec
diag )

Vmeasured ← Vcandidate

buffer ← ∅
buffer .push(V node(∅, Vcandidate))
while buffer is not empty do

V node ← buffer .pop()
Vremaining ← V node+

for all v ∈ V node+ do

Vselected ← V node− ∪ {v}
if cost(Vselected) < criteria then

if isFeasible(KΣ, Vselected, K
spec
nondet, K

spec
nondis, K

spec
diag )

then

criteria ← cost(Vselected)
Vmeasured ← Vselected

else

Vremaining ← Vremaining\{v}
buffer .push(V node(Vselected, Vremaining))

end if

end if

end for

end while

return Vmeasured

8.1. Dynamical systems. The sensor placement
method relies on structural modelling. Therefore it should
be suitable for most systems. Let us examine the special
case of dynamical systems. Generally speaking, a model
is said to be dynamic if either:

• a variable appears several times in a system but at
different time, stamps, or

• a variable and some of its derivatives or summations
(whatever the order is) appear in the system.

The first case mainly concerns time-delays and dis-
crete time recurrent systems. According to Section 3, each
variable stands for a tube in a phenomenological space.
Therefore, a time delay, modelled by y(t + Δ) = x(t),
is a constraint that establishes a link between two tubes:
{dom(y(t + Δ));∀t} and {dom(x(t));∀t}. Therefore,
even if the two variables model the same phenomenon, in
the structural model they cannot be merged. Consider now
the following discrete-time recurrent model:

x((k + 1)Te) = Ax(kTe) + Buk(kTe),
y(kTe) = Cx(kTe),

k ∈ N, where Te stands for the sampling period.
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The phenomenon modelled by x appears twice.
Therefore, the constraint must be implicitly completed by
a time delay between variables x((k + 1)Te) and x(kTe).
Structurally speaking, these constraints are modelled by
the following structures:

var(k1) = {x(kTe), x((k + 1)Te), u(kTe)},
var(k2) = {x(kTe), x((k + 1)Te)},
var(k3) = {x(kTe), y(kTe)}.

Moreover, if the tube corresponding to x((k + 1)Te) ap-
pears only once in these constraints (which is usually the
case in practice), constraints k1 and k2 can be merged:

var(k12) = {x(kTe), u(kTe)},
var(k3) = {x(kTe), y(kTe)}.

The second case mainly concerns integration and dif-
ferential equations. Consider, e.g., the following model:
dx
dt = u. dx

dt corresponds to a tube, which can be con-
nected to x in adding the implicit constraint x =

∫
dx
dt dt.

The initial condition could also be taken into account by
considering x =

∫ tf

0
dx
dt dt + x0. In this case, the struc-

tures of the constraints become var(k1) = {dxdt, u}
and var(k2) = {x, dxdt, x0}. In the same way as time-
delays, the constraints k1 and k2 can be merged to obtain
the following structure: var(k12) = {u, x} or, if the ini-
tial condition is considered, var(k12) = {u, x, x0}. This
result remains true for summations and derivatives of any
order.

Consequently, these kinds of dynamical systems can
be handled just like other systems.

8.2. Example. The method presented in this paper has
been applied to a sensor placement for an electronic cir-
cuit (Fig. 9). It is modelled by the following constraints:

k1 : v1c = v2, k8 : v3 − v4a = R2i2,

k2 : i1 = i2 + i3, k9 : v1 − v4b = R3i3,

k3 : v1 = v1a, k10 : v2 = R4i4,

k4 : v1 = v1b, k11 : v4 = v4a,

k5 : v1 = v1c, k12 : v4 = v4b,

k6 : v0 − v1 = R1i1, k13 : v0 = val(v0).

k7 : C(v1a − v3) =
∫ t

0

i2 dt, (5)

with KΣ = {k1, . . . , k13}.
The corresponding structural matrix is given by Ta-

ble 1.

Fig. 9. Scheme of an electronic circuit.

Suppose that the costs of the measurements are

cost(v0) = cost(v1) = cost(v2) = cost(v3) = cost(v4)
= . . . = cost(v1a) = cost(v1b) = cost(v1c)

= cost(v4a) = . . . = cost(v4b) = 1

and

cost(i1) = cost(i2) = cost(i3) = cost(i4) = 2.

Consider the following complete specifications:

Knondis = {{k2, k6} , {k7, k8}} ,

Knondet = {k1, k4, k10} ,

Kdiag = {k3, k5, k9, k11, k12} .

In order to check if the specifications Knondet are
satisfiable, Algorithm 2 is used with KΔ = {k1, k4, k10},
KΣ and VΔ = var(KΣ). Algorithm 2 computes the
following sets of isolated constraints: {{k10, k1} , {k4}}.
The specifications Knondet are consequently satisfi-
able. Algorithm 2 also provides the isolated variables
Visolated = {i4, v1b, v2}.

In order to check if the specificationsKnondis are sat-
isfiable, Algorithm 9 is used with two subsets, KΔ1 =
{k2, k6} and KΔ2 = {k7, k8}, considering VΔ =
var(KΣ \ Visolated). Algorithm 9 computes the linking
variable subsets V1 = {i1} and V2 = {v3}.

In order to find the candidate variables to be mea-
sured to satisfy the specifications, Algorithm 8 is used. It
yields terminal constraints that correspond to the measure-
ments of variables {v0, v1, v4, i2, i3, v1a, v1c, v4a, v4b}.

In order to find the cheapest sensor placement that
satisfies the specifications, Algorithm 11 is used. It yields
Vminimal = {v0, v4, i2, i3, v1a, v1c, v4a, v4b} with a cost
of 10.

In order to validate the result, the method proposed in
(Ploix et al., 2005) has been used to design all the ARRs.
It has led to the fault signature given by Table 2.
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Table 1. Structural matrix of the electronic circuit.

v0 v1 v2 v3 v4 i1 i2 i3 i4 v1a v1b v1c v4a v4b

k1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
k2 0 0 0 0 0 1 1 1 0 0 0 0 0 0
k3 0 1 0 0 0 0 0 0 0 1 0 0 0 0
k4 0 1 0 0 0 0 0 0 0 0 1 0 0 0
k5 0 1 0 0 0 0 0 0 0 0 0 1 0 0
k6 1 1 0 0 0 1 0 0 0 0 0 0 0 0
k7 0 0 0 1 0 0 1 0 0 1 0 0 0 0
k8 0 0 0 1 0 0 1 0 0 0 0 0 1 0
k9 0 1 0 0 0 0 0 1 0 0 0 0 0 1
k10 0 0 1 0 0 0 0 0 1 0 0 0 0 0
k11 0 0 0 0 1 0 0 0 0 0 0 0 1 0
k12 0 0 0 0 1 0 0 0 0 0 0 0 0 1
k13 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. Analytical relations for the complete specifications.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13

ARR1 0 1 0 0 0 1 0 0 1 0 0 0 1
ARR2 0 1 0 0 0 1 0 0 1 0 0 0 0
ARR3 0 1 1 0 0 1 0 0 0 0 0 0 1
ARR4 0 1 1 0 0 1 0 0 0 0 0 0 0
ARR5 0 0 1 0 0 0 0 0 1 0 0 0 0
ARR6 0 1 0 0 1 1 0 0 0 0 0 0 1
ARR7 0 0 0 0 0 0 1 1 0 0 0 0 0
ARR8 0 1 0 0 1 1 0 0 0 0 0 0 0
ARR9 0 0 0 0 0 0 0 0 0 0 0 0 1
ARR10 0 0 0 0 0 0 0 0 0 0 1 0 0
ARR11 0 0 0 0 1 0 0 0 1 0 0 0 0
ARR12 0 0 1 0 1 0 0 0 0 0 0 0 0
ARR13 0 0 0 0 0 0 0 0 0 0 0 1 0

According to these results, the constraint sets that
cannot be discriminated are {k2, k6} and {k7, k8}. The
constraint set that cannot be detected is {k1, k4, k10}
and the diagnosable constraints are {k3, k5, k9, k11, k12}.
Applying the function Φ : KΣ −→ CΣ, it is obvi-
ous that the components that cannot be discriminated are
{c2, c6} and {c7, c8}, the components that cannot be de-
tected are {c1, c4, c10}, and the diagnosable components
are {c3, c5, c9, c11, c12}.

Suppose now that the specifications are given by

Knondis = {{k2, k3} , {k7, k8}} ,

Knondet = {k1, k10} ,

Kdiag = {k6, k4, k5, k9, k11, k12} .

In order to check if the specifications Knondet are satisfi-
able, Algorithm 2 is used with KΔ = {k1, k10}, KΣ and

VΔ = var(KΣ). Algorithm 2 computes the following
sets of isolated constraints: {{k10, k1}}. The specifica-
tions Knondet are consequently satisfiable. Algorithm 2
also provides the isolating variables Visolated = {i4, v2}.

In order to check if the specifications Knondis are
satisfiable, Algorithm 9 is used with the two subsets
KΔ1 = {k2, k3} and KΔ2 = {k7, k8}, considering
VΔ = var(KΣ \ Visolated). Because Algorithm 9 com-
putes the linking variable subset V1 = {∅} for the con-
straint subset KΔ1 = {k2, k3}, there is no solution that
satisfies these specifications.

The results presented in this paper demonstrate that
it is possible to design optimal sensor placements satisfy-
ing diagnosability criteria without designing the ARR a
priori.
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9. Conclusion

A new approach to sensor placement has been proposed
that makes it possible to satisfy diagnosability specifica-
tions. It is thus possible to specify the performances that a
diagnostic system has to meet and then to compute where
the sensors should be placed.

The presented lemmas, theorems and algorithms are
general and can be reused to develop other methods for
sensor placement that deal with various kinds of specifi-
cations, e.g., a set of components that have to be at least
detectable and another one of those that have to be di-
agnosable. The provided tools apply to any system in-
cluding dynamical systems described by recurrent or dif-
ferential equations because they are based on a structural
approach: only the variables appearing in constraints are
considered. However, the generality of the structural ap-
proach is paid by possible over-estimation depending on
the nature of constraints: it is well known that it relies on
the conditioning of constraints. But solutions taking into
account the nature of constraints can only be specific.

An algorithm for sensor placement managing com-
plete specifications has been presented. It deals with ele-
ments that have to be diagnosable, discriminable and non-
detectable. Thanks to the proposed algorithm, cost op-
timal sensor placement satisfying complete diagnosabil-
ity specifications is possible without designing the ARR a
priori. This is a very important feature since it is no longer
necessary to design all the possible ARRs assuming all the
variables are measured.

This approach manages only specifications dealing
with models of the normal behaviour. It does not take
into account specific fault models such as a leak in a
pipe. Therefore, if such models are considered, the sensor
placement algorithm will lead to an over-estimation of the
required sensors. Taking into account specific fault mod-
els may lead to a reduction of the required sensors. Nev-
ertheless, fault models cannot be easily taken into account
in sensor placement methods. It is still an open problem.
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