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A METHOD FOR SEPARABLE NONLINEAR LEAST SQUARES 
PROBLEMS WITH SEPARABLE NONLINEAR EQUALITY 

CONSTRAINTS* 

LINDA KAUFMANt AND VICTOR PEREYRA:j: 

Abstract. Recently several algorithms have been proposed for solving separable nonlinear least 
squares problems which use the explicit coupling between the linear and nonlinear variables to define a 
new nonlinear least squares problem in the nonlinear variables only whose solution is the solution to 
the original problem. In this paper we extend these techniques to the separable nonlinear least squares 
problem subject to separable nonlinear equality constraints. 

1. Introduction. In this paper we will consider the nonlinear least squares 
problem of finding a and a which minimize 

(1.1) IIY- <I>( a )all~, 

subject to nonlinear equality constraints of the form 

(1.2) H(a)a = g(a). 

The abbreviated notation of {1.1) has the following meaning: 

i = 1, · · · , m, j = 1, · · · , n, 

a= (a!, . .. 'an)T, y = (yl. ... 'Ym{, a= (a!, . .. 'ak{. 

In {1.2) we have p nonline~r constraints, i.e. g(a) = (g1(a), · · · , gP(a){, and 
H (a) is a p X n nonlinear matrix function (p ~ n + k ). All the functions involved 
are assumed to be at least twice continuously differentiable, though somewhat 
weaker hypotheses could be employed. 

In [2], Golub and Pereyra have discussed unconstrained problems of the form 
(1.1) which they have denoted as "separable nonlinear least squares problems". 

Krogh [7] has extended those results to the more general models 

(1.3) JJy- 'If( a)- <I>(a)all~. 

We do not need to introduce 'If( a) explicitly in our present formulation, since it 
can be included in <l>{a)a as an+l 'If( a) provided we add the constraint an+l = 1. In 
[5] one of the authors has introduced more substantial modifications which 
simplify even further the algorithm. 

Constraints of the form {1.2) appear in the applications [6] and they are 
considered here because of their similarity with {1.1). These problems can be 
reduced to unconstrained separable problems with a somewhat more complex 
structure. This is developed in detail in § 2. Once the reduction is performed, one 
could use any program available for unconstrained separable problems. However, 
it turns out to be considerably more efficient to devise a completely new algorithm, 
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taking into account the structure of the problem, as we have done in § 3 of this 
paper. 

It has been shown in practice [2], [7] and there are some theoretical 
indications [10], that the separation of the linear variables a from the nonlinear 
variables a by means of the variable projection method [2], [3], [5], [8] speeds up 
the convergence of iterative methods used to solve problem (1.1). 

We extend in this paper the range of applicability of the variable projection 
method to constrained problems. 

The reduction to an unconstrained problem at the beginning of § 2 was 
anticipated in [3]. 

2. The reduction to an unconstrained separable problem. In this section we 
consider the problem of finding vectors a and & which minimize 

(2.1a) r(a,a)=lly-cl>(a)all~. 

subject to the nonlinear equality constraints 

(2.1b) H(a)a=g(a), 

where all the vectors and matrices are as in § 1. In what follows, an upper 
superscript + on a matrix will denote its Moore-Penrose generalized inverse (see 
[9]). 

In order to guarantee the existence of feasible points we assume that there are 
vectors a for which the resulting linear systems (2.1b) is compatible; i.e. g(a)e 
range (H(a)), or equivalently, g(a) = H(a)H+(a)g(a). The set of all such vectors a 
will be denoted by A. 

For each fixed a E A, the general solution of the resulting system of linear 
equations (2.1b) is given by [8] 

(2.2) a= F(a)g(a)+ Y(a)z, 

with H+(a)TY(a) = 0, and z varying over all R"-r where r is the rank of H. In 
other words, the columns of Y(a) are a basis for the null space of H(a). The set of 
all pairs (a, a), where a E A, and a is defined in (2.2), is the feasible set for problem 
(2.1 ). Therefore, this problem is equivalent to minimizing in z and a, 

s(z, a)= lly-cl>(a)H(atg(a)-cl>(a)Y(a)zl@ 

== lly-t(a)- G(a)zll~. 
(2.3) 

where 

t(a) = cl>(a)H(at g(a) and G(a) = cl>(a) Y(a). 

If the dimension (n -r) of z is nonzero, then we would have a separable 
problem of the form (1.3). Since we want to apply the variable projection 
technique we will assume that r < n. 

This problem could then be solved with any program for unconstrained 
separable problems by simply giving it the appropriate information. Once z is 
computed in the standard fashion, a is found by an application of formula (2.2). 
However, we would like to develop a completely new and more efficient 
algorithm, avoiding all redundant computation. 
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Let 

(2.4) f(cx)= V(cx)T(y-t(cx)) 

where V(«) is an orthogonal basis for the null space of G(cx). Using a proof similar 
to Theorem 2.1 of [2], one can show that an ex which minimizes t(a) = lif(cx)ll~ also 
minimizes s(z, a). Except for the terms involving t(cx), the function t(a) is similar 
to r3(cx) of equation (4;1) in Kaufman [5]. The Marquardt-Levenberg algorithm 
applied to t(a) using the derivative formula for r3(cx) in [3] modified to account for 
t(cx), gives the following scheme for generating the required ex: one starts with an 
arbitrary cx<o> and, until convergence is attained, generates the vectors au> by the 
rule 

(2.5) <i+t> = <il _ (.!!__) +(f(cx<il)) 
ex ex v.J 0 }k ' 

1 

where v1 is large enough so that 

llf(cxU+t))lh ~ llf(cxU>)Ih 

and B = VT[-D(t)-D(G)G-(y-t)J. The operator D represents the Frechet 
derivative with respect to ex, and o- is any matrix satisfying GG-G = G and 
(GG-)T = GG-. 

Once B and f(cxu>) have been computed, one may efficiently obtain trial 
values of cxU+t) for various values of v1 using the algorithm of [2]. 

A vector z which minimizes s(z, ex) for fixed ex is then given by 
o-(cx)(y -t(cx)). 

The compact formula forB in (2.5) is in terms of D(t) and D(G). A more 
convenient expression for B for the implementation of the algorithm is given in 
the following theorem: 

THEOREM. 

(2.6) B = - VT {<I>F[-D(H)b + FTD(HT)PiN, + D(g)] + D(<l>)b} 

where b= YG-1(y-t)+Fg. 
Proof. By (2.3), 

(2.7) D(G)=<I>D(Y)+D(<I>)Y 

and 

(2.8) D(t)=D(<I>)H+g+<I>D(F)g+<I>FD(g). 

Thus, to obtain an expression forB, we need expressions for D(F) and D(Y). 
Golub and Pereyra [2] have proved that 

(2.9) D(H+) =-H+ D(H)H+ + H+ H+TD(H) TPJi+ uPL D(H) TH+THT 

where 

Pii=I-HF 

and 
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When this formula is inserted into (2.8) and then into (2.5), the last term of 
(2.9) is canceled since 

vr<I>HPl_= vr<I>YYT = vroyr =o. 
To obtain a formula for D(Y) we'll use the orthogonal decomposition of H 

given by 

(2.10) 

where Q and Z are orthogonal matrices and T is an r X r nonsingular upper 
triangular matrix where H has rank r. It is easy to verify that 

H+ = z(~ll ~)a 
and that if Z is partitioned as 

zr = [-~i-]}r ' 
Zz }n-r 

then H+Tz2 = 0. Thus one may set Y = Zz. 
A formula for D(Y) can be derived using the ideas of§ 4 of [5]. From (2.10) 

we have 

which, according to § 4 of [5], implies that there exists a matrix M such that 

(2.11) 

This means that 

The matrix Zz is not unique and M depends on which Z 2 is computed. 
Fortunately, when (2.11) is inserted into (2.7) and then into (2.5) the term with 
Z 2MT is canceled since 

VT<I>Z2MT = VT<I>YMT = VTGMT =0. 

Thus one does not have to be concerned about M 
Combining (2.5), (2.7), (2.8), (2.9) and (2.10) we have 

B =-VT{D(<I>)Fg+<I>F[-D(H)H+g+ H+TD(HfPiN,+ D(g)] 

+ [-<I>FD(H)Y + D(<I>)Y]G-(y-t)} 

=- VT{<I>F[ -D(H)b+ H+TD(HT)PiN,+ D(g)] + D(<l>)b} 

where b= YG-(y-t)+Fg. 0 



16 LINDA KAUFMAN AND VICTOR PEREYRA 

The matrix V in (2.4) and (2.6) and the matrix a- in (2.6) can be computed 
using the orthogonal decomposition of a given by 

where U is an orthogonal matrix, P is a permutation matrix and R is a q x q 
nonsingular upper triangular matrix. If U is partitioned into 

U= (!!J : U2), 
q 

then aru2 = 0 so V can be U2. V can be generated using a sequence of 
Householder transformations as in [1]. The matrix a- can be represented as 

3. Computational procedure. For a fixed value of u, the vector f(u) of (2.4) 
may be constructed as follows: 

1) Determine <l>(u), H(u). 
2) Determine a complete orthogonal decomposition of H(u) by finding 

orthogonal matrices H and Z such that 

QHZ=(~ I~) 
where Tis an r x r nonsingular upper triangular matrix. As in Golub [1] Q and Z 
may be the products of Householder transformations designed to reduce H to T. 
The matrices Q and Z need not be explicitly formed. Only the information 
required to generate the Householder transformations need be saved. 

3) Form the matrix C = <I>Z by applying the Householder transformations 
which form Z to the matrix <1>. The last n -r columns of C form the matrix a in 
(2.3). 

4) Determine the orthogonal matrix U and the permutation matrix P such 
that 

uci*)=(~l ~ ~~ 
'-v-' '--v--' 
n-r n-r 

where R is a q x q nonsingular upper triangular matrix. Again U may be the 
product of Householder transformations and need not be explicitly formed. 

5) Compute d = F g as follows: 

(a) Set a= Qg= (-~-)'. 

(b) Solve Tc = a1. 

(c) Set d = z(- ij + 
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6) Compute f(a) by setting 

p=U(y-~d)=(Pl)q . 
P2 m-q 

The vector f(a) is contained in P2 and hence IJf(a)Jiz is simply IIP2IJz. 
When B of (2.5) is also required, one should continue the procedure as 

follows: 
7) Compute D(<l>(a)), D(H(a)), and D(g). 
Usually D(<l>) and D(H) are tensors with many columns that are zero. Golub 

and Pereyra [2] describe a scheme for storing only the nonzero columns and 
determining tensor by vector products using this compact storage arrangement. 

8) Compute b of (2.6) as follows: 
(a) Solve Re=p1 where R was formed in step 4) and P1 in step 6). 

(b) Seth= P(~). 

(c) Set b = z(~) +d. 

9) Set R = QD(H) by applying the Householder transformations which 
form Q to the nonzero columns of the tensor D(H). 

10) Form J= Q(D(H)b-Fr(DH{Pifg-D(g)). 
(a) Form (DH)rPiigby setting 

E=Rr(~J· 

r (F1)' (b) Set F = Z E = F2 

(c) Solve the k r x r systems 

TTG=Fl. 

(d) Set J= Rb- [~]- QD(g)= (-~:-r 
11) The matrix B is finally obtained as follows: 

(a) Solve the k r x r systems 

TK=l1. 

(b) Set L = UD(<I>)b= (L1) q 
L2 m-q 

(c) B=-(NK+L2). 

4. Algorithm implementation and numerical results for linear 
constraints. Considerable simplifications arise in the aglorithm of§ 3 when H(a) 
is a constant matrix. Since this is the case we have actually implemented as a 
computer code and for which currently we have practical applications we would 
like to indicate these simplifications. 
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Naturally H(ct) is not evaluated in 1) each time, since H does not depend 
upon ct. For the same reason 2) is done once and for all at the beginning of the 
process. Steps 3}-6) remain the same, while in step 7) DH(ct) need not be 
calculated. Step 8) is the same, while 9) is eliminated. In 10) J simply becomes 
-QD(g), so parts (a}-(d) are eliminated. Step (11) remains. 

The algorithm was implemented in FoRTRAN and tested on two examples, in 
both of which H and g were constant. 

The first problem considered was fitting Gaussians with an expoential 
background, i.e., the model 

is fitted to 65 data points. See [11] for a listing of the data and starting values for ct. 

The a's were constrained to the hyperplanes 

a1 + 2a2 + 3a3 + 4a4 = 6.27006284, 

a1 +a3 = 1.74158318. 

This problem was chosen in order to verify the correctness of the formulas 
and the corresponding code. 

With these constraints the solution to the problem coincides with the solution 
to the unconstrained problem which is available in [2], [11]. 

With 9 function evaluations, 8 derivative evaluations and 3.23 seconds of 
computing time on a CDC 6400 computer (Run compiler) the residual r(a, ct) was 
reduced to .04013774. 

The second problem was supplied by Peter Kirkegaard of the Atomic Energy 
Commission, Riso, Denmark. Kirkegaard and Eldrup [6] had devised a method 
for solving separable nonlinear least squares problems with linear constraints on 
the linear variables which arose in the analysis of positron lifetime spectra. Their 
algorithm used Marquardt's algorithm based on the fact that for a fixed ct, the 
optimal arc could be obtained via the symmetric indefinite system 

Kirkegaard gave the authors an example in which the <I> matrix was given by 

2 

<l>ti = xJI2 L wp(Ztip- Zi+1,iP -erf {(t1 -a4- dp)/up}+erf {(ti+1- a4- dp)/up}). 
p=1 

where 

Ztjp = e-ap,-a4-dP-114af'"~(1- erf {ap·p/2- (t1 -a4- dp)/up}) for j = 1, 2, 3, 

Ztjp = e-A(I,-a4-dP-1 /4Au~)(1- erf {Aup/2- It -a4- dp)jup})), 

and 

6 d I .07 
w1= , w2=4, 1=25 70, d2=0, A =1.7, 

.38 .485 
u1 = .14 [ln (2)]1/2 and 0"2 = .14 [ln (2)]1/2 



SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS 19 

and the values of Xi are given in the Table 1 below. Thus n = 4 and k = 4. The 
vector t was given by 

ti = i + 121 for i = 1, 2, · · · , 379 

and the vector y was given by 

(xi -85) 
Yi = 112 fori= 1, 2, · · · , 379. 

Xi 

TABLE 1 
(xvalues) 

101 84 88 99 106 104 
105 109 105 99 90 84 112 
919 2,099 4,352 7,947 12,952 18,596 24,154 

25,948 22,837 19,579 17,241 14,495 12,727 11,264 
7,473 6,642 6,131 5,626 5,192 4,691 4,324 
3,219 2,977 2,628 2,589 2,394 2,105 1,997 
1,511 1,481 1,346 1,264 1,199 1,144 1,029 

847 737 751 695 644 644 600 
447 454 411 371 357 346 320 
252 263 264 252 204 205 204 
198 169 183 171 168 157 159 
153 120 132 157 124 133 106 
104 133 116 102 127 101 105 
84 100 97 99 94 112 89 
82 87 100 95 92 113 88 

102 103 87 80 77 85 84 
80 94 100 88 80 80 88 
75 72 94 77 86 108 63 
77 79 87 79 72 67 90 
86 89 87 102 93 91 97 
82 93 68 82 83 77 76 
68 90 102 77 75 93 87 
84 79 84 93 83 84 89 
91 88 71 93 96 82 89 
78 88 72 70 72 81 83 
91 84 86 82 84 80 88 
85 83 96 92 89 64 91 
79 103 80 100 75 88 79 
81 104 77 98 92 81 78 
78 90 72 95 92 72 77 
83 80 76 91 79 83 80 

105 80 94 77 102 88 92 
82 82 82 87 86 99 78 
83 104 85 95 89 94 70 
89 99 85 97 99 86 76 
86 69 79 98 82 73 78 
95 76 75 97 77 103 88 
93 76 72 91 85 98 107 
90 82 78 80 63 91 93 
72 83 82 86 103 90 83 

100 74 107 
141 195 419 

27,804 29,418 28,497 
10,007 9,088 8,115 
4,136 3,677 3,461 
1,967 1,697 1,656 
1,003 910 891 

548 509 465 
315 318 292 
212 190 195 
147 162 152 
112 122 129 
105 121 86 
98 82 87 
95 96 104 
95 107 91 
90 97 84 
88 82 106 
85 89 91 
90 80 87 
93 92 90 
76 72 78 
88 90 84 
75 101 70 
88 92 85 
76 77 97 
87 89 85 
77 82 81 
88 81 91 
84 78 88 
76 75 81 
79 93 93 
82 77 90 
83 84 92 
98 84 90 
79 75 78 
86 90 87 
99 81 71 
89 75 80 
90 96 80 
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There was only 1 linear constraint for this particular problem: 

.54at + .54a2 + .46a3 + .54a4 = 0. 

Initially a was (.54, .2, .07, 127.4)T which gave a residual of 1,353.036. The 
residuals at successive iterations were 

426.9649 
359.8339 
359.1253 
359.0751 
335.0720 

Initially 11; in (2.5) was set to (IIBIIV (m · k )). On successive iterations "was half of 
its previous value. The final a was (.53777671, .211172, .073373458, 
126.92371{ while the final a was (32,783.984, 52,140.2229, 108,630.17, 
7,612.5942)T. 
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