
  

  

Abstract—We propose a method for the dynamic analysis of 

malicious documents that can exploit various types of 

vulnerability in applications. Static analysis of a document can 

be used to identify the type of vulnerability involved. However, 

it can be difficult to identify unknown vulnerabilities, and the 

application may not be available even if we could identify the 

vulnerability. In fact, malicious code that is executed after the 

exploitation may not have a relationship with the type of 

vulnerability in many cases. In this paper, we propose a method 

that extracts and executes “shellcode” to analyze malicious 

documents without requiring identification of the vulnerability 

or the application. Our system extracts shellcode by executing 

byte sequences to observe the features of a document file in a 

priority order decided on the basis of entropy.Our system was 

used to analyze 88 malware samples and was able to extract 

shellcode from 74 samples. of these, 51 extracted shellcodes 

behaved as malicious software according to dynamic analysis. 

 
Index Terms—Malware, shellcode, entropy, dynamic analysis, 

vulnerability. 

 

I. INTRODUCTION 

At the start of a typical attack aimed at stealing information 

from a targeted organization, a piece of malware is supplied 

by targeted email [1]. An email is sent to a specific person, 

and often has an attached document file containing malicious 

code. The victim may then open the document file and 

execute the malicious code without knowing that it was 

created for attacking purposes. As a part of measures to deal 

with targeted attacks, we would like to analyze the behavior 

of malicious code via dynamic analysis. 

It is often not possible to use dynamic analysis directly, 

because we cannot reproduce an appropriate vulnerable 

environment. The reason for this is that the vulnerability 

usually depends on the environment of the operating system 

(OS) or the application software. However, versatile 

malicious code (or “shellcode”), which often does not depend 

on a specific OS or application software, can be executed. 

Therefore, our system extracts shellcode from the document 

file to analyze the malicious document. It then outputs an 

executable file containing shellcode to enable dynamic 

analysis. 

Before building our system, we conducted a preliminary 

survey of malware samples that we had already analyzed. In 

this preliminary survey, we determined parameter values for 
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calculating the entropy, an algorithm for shellcode priority 

and byte sequences to be excluded from the document file. 

Our system executes those byte sequences that are shellcode 

candidates and observes their behavior to detect features. We 

determined the appropriate number of instructions to be 

executed by the emulator to enable feature detection (the 

number of steps) in the preliminary survey. 

The remainder of this paper is organized as follows. 

Section II explains the proposed method by describing the 

environment, the file format, the features of shellcode and the 

definition of entropy. Section III describes the sample set 

used to identify the parameter values and the algorithm that 

are the most appropriate for our system. Section IV explains 

the results obtained by using our system with the sample set 

and evaluates the performance. Section V discusses the 

results. Section VI briefly reviews related work and compares 

it with our system. Section VII describes our plans for future 

work. 

 

II. ENVIRONMENT AND PROPOSED METHOD 

Our system can execute byte sequences that are shellcode 

candidates by using an emulator, extracting a byte sequence 

as an actual shellcode if it observes shellcode-like features. 

First, though, our system produces a list of candidates in 

order of their shellcode likelihood to promote the efficient 

extraction of actual shellcodes. Fig.1 shows the overall flow 

of our system. 

A. Target Environment 

Our system focuses on the following types of malicious 

documents for the 32-bit Windows environment. 

 

1) Microsoft Office Word (.doc) 

2) Microsoft Office Excel (.xls) 

3) Microsoft Office PowerPoint (.ppt) 

4) Rich Text Format (RTF) (.rtf) 

 

Our system does not need application software to open the 

document files. Therefore, our system cannot deal with the 

following types of malicious documents, which depend on 

the application software. 

 Return-oriented Programming [2] 

 Here, instructions in the OS or application software are 

executed based on values that are pushed on a stack. 

Therefore, some of these documents will not include 

shellcode. Even if the document does include shellcode, 

our system cannot deal with it whenever there is a premise 

that the shellcode must be loaded to a specific address. 

 Malicious Document without Shellcode 

 If code that is not included in the document file is executed 
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after the vulnerability is exploited, our system cannot deal 

with it. For example, in CVE-2011-1980 [3], the Dynamic 

Link Library (DLL) in the same folder as the malicious 

document is executed. 

 Malicious Document Strongly Dependent on the 

Environment 

Our system cannot deal with shellcode that is not versatile 

or that depends on specific conditions such as an allocated 

memory or address. 

 

 
Fig. 1. Flowchart. 

B. Narrowing Down the Candidate List and Priority 

Our system narrows down the list of shellcode candidates 

and determines their priority. Narrowing down is possible by 

using Compound File Binary (CFB) analysis or RTF analysis, 

because our system focuses on document files. The proposal  

ofPolychronakis et al. [4] for extracting shellcode does not 

have a narrowing-down method, because it uses network 

packet extraction. The proposal of Li et al. [5] analyzes file 

structures, but not for the purpose of extracting shellcode. 

1) CFB analysis 

The file formats identified in Section II.A are all CFB 

formats [6], [7], except for RTF. CFB formats have a similar 

file structure, such as that shown in Fig. 2. Elements in CFB 

are categorized as follows: Header, DiFAT, FAT, Mini FAT, 

Directory, Stream, Mini Stream and Free. Header is the 

information area at the start of the file. DiFAT, FAT and Mini 

FAT correspond to the File Allocation Table (FAT) in the file 

system. Directory corresponds to directory data. Finally, 

Stream and Mini Stream correspond to file data. Free refers to 

unused areas. Our system analyzes the CFB, categorizes its 

elements and specifies whether they are shellcode candidates. 

 

 
 

Fig. 2. CFB Hierarchy. 

 

2) RTF analysis 

RTF is a type of text format, with binary data (including 

strings) encoded within the text [8]. Because shellcode is a 

form of binary data, our system focuses on this binary data. It 

is not possible to have executable shellcode in a small section 

of binary data, because the features described in Section II.C 

must be included. We estimate that the minimum size of code 

that can include these features is about 128 bytes. Therefore, 

our system ignores binary data sequences smaller than 128 

bytes. 

3) Pre-disassembly 

Our system disassembles targeted byte sequences before 

performing the emulation. If our system cannot disassemble 

successfully, the byte sequence is not emulated, and our 

system concludes that the byte sequence is not shellcode. The 

purpose of disassembly is to reduce the number of booted 

emulations, because the booting process requires substantial 

CPU resources. Our system uses the results of disassembly 

only for the narrowing-down process. This is different from 

the method of Polychronakis et al. [4], which uses 

disassembly to extract shellcode. 

4) Priority by entropy 

If our system tried to extract shellcode from the file header, 

it would be inefficient, because byte sequences that could 

never be shellcode would be emulated. Therefore, our system 

creates an order of priority on the basis of entropy. This is 

different from the method of Polychronakis et al. [4]. 

The entropy of a byte sequence ሺܽଵ, ܽଶ, ⋯ , ܽ௡ିଵ, ܽ௡ሻ is 

defined as: ܪሺܺሻ ൌ෍െ ௜ܲ logଶ ௜ܲଶହହ
௜ୀ଴  (1)

Here, ௜ܲ is the probability of byte i (equal to the count of  

occurrences divided by size n). It is defined as: 

௜ܲ ൌ ∑ ቊ1൫ ௝ܽ ൌ ݅൯0൫ ௝ܽ ് ݅൯௡௝ୀଵ ݊  
(2)

The range of ܪሺܺሻ is 0 ൑ Hሺܺሻ ൑ 8 .If ௜ܲ ൌ 0 , then 
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െ ௜ܲ logଶ ௜ܲ. 
The entropy of any shellcode section in a file will be high, 

because shellcode contains executable instructions. On the 

other hand, the entropy of a non-shellcode part will be lower, 

because it represents the data in the document file. The 

entropy of any padding between data areas in the file will be 

very low, because it contains the same bytes. 

For example, the start of a shellcode sequence is at 

(hexadecimal) address 5E00 in Table I. The area ahead of the 

shellcode is filled by (hexadecimal) 00, whereas the 

shellcode area has a random distribution of values. 

Our system partitions an input document file into 

identifiable areas and calculates the entropies for these areas, 

looking for “Higher entropy byte sequence” or “Larger 

difference in entropy” cases. The system then performs 

emulations in priority order, starting with the candidate 

having the highest probability of being shellcode. 

 
TABLE I: BINARY IMAGE AROUND A SHELLCODE ENTRY POINT 

5DD0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

5DE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

5DF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

5DF0 60 B9 A4 05 00 00 EB 0D 5E 56 46 8B FE AC 34 FC 

5E00 AA 49 75 F9 C3 90 E8 ED FF FF FF 61 15 C1 FE FC 

5E10 FC AA CF 3C 98 77 BC CC 77 BC F0 77 8C E0 51 77 

 

 
Fig. 3. Structures for obtaining the DLL base address. 

 

C. Shellcode Detection 

Our system regards a byte sequence having a high 

probability of being shellcode as executable code for a 32-bit 

Windows environment and executes it by using an emulator. 

If a byte sequence represents the start of shellcode, the byte 

sequence is executed and our system observes the features of 

the execution. If the emulation can no longer continue, or the 

system ceases to observe features after a certain number of 

steps, the emulation stops and applies this process to the next 

shellcode candidate. If no features are observed for any 

candidate, our system decides that the document file does not 

include shellcode. 

Our system regards the following behaviors as features of 

shellcode. 

1) self-modifying code, 

2) access to the Process Environment Block (PEB) using 

the FS register, or 

3) invoking the Application Programming Interface (API) 

If the payload in the shellcode is encrypted, the payload is 

executed after the initial code decrypts the payload. 

Therefore, (1) is observed in this case. However, (2) is 

observed without (1) if the payload is not encrypted. 

For 32-bit Windows, the FS register (a CPU register) is set 

to the address of the Thread Environment Block (TEB), 

which contains the current thread information. Fig. 3 shows 

the structures used to obtain the DLL base address. The 

shellcode obtains a linked list to LDR_MODULE by 

following the pointers in the structures for TEB, PEB and 

PEB_LDR_DATA. Finally, the shellcode resolves API 

addresses using the DLL base address obtained from a 

member of LDR_MODULE. Therefore, (2) is regarded as a 

feature of shellcode. 

The shellcode invokes the API after obtaining the API 

address. Therefore, (3) is regarded as a feature of shellcode. 

Our system detects the byte sequence as shellcode if it 

observes (1) and (2) or (2) and (3). 

D. Executable File 

If our system detects shellcode, it outputs a 32-bit 

Windows executable file to execute the shellcode. The 

executable file contains a document file, a filename and the 

address of the shellcode within the document file. Shellcode 

often obtains a file handle of itself by examining the file 

handles opened by an application. The executable file output 

by our system therefore creates a document file in a 

temporary folder and opens it to reproduce the state of the 

application before the shellcode is executed. The executable 

file disguises its filename as a standard application (e.g., 

WINWORD.EXE) to open the document file by hooking 

GetCommandLine and GetModuleFileName. 

This method of disguise by API hooking has already been 

used by a previous analysis tool [9]. 
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III. PRELIMINARY SURVEY 

Before building our system, we conducted a preliminary 

survey to determine the most appropriate parameters and 

algorithm using malware samples that we had already 

analyzed. 

A. Sample Set 

For the preliminary survey and the experiments, we chose 

a random subset of samples from the set of samples that could 

be estimated to satisfy the conditions of Section II.A. We 

used static analysis to confirm that the samples in the sample 

set contained shellcode, and noted the address of the 

shellcode in the document file. Of the 125 CFB samples 

chosen randomly, 73 satisfied the conditions of Section II. A, 

as did 15 of the 25 RTF samples. Table II shows the number 

of vulnerabilities for various file formats in the sample set. 

There were 15 types of vulnerability, with three samples 

having unknown vulnerability. There were 42 unique types of 

samples, in terms of the address of the shellcode and the 

vulnerability type. 

The ratios for each of the CFB file formats are 

disproportionate, because we chose randomly without paying 

regard to the CFB file format. At this stage of obtaining the 

samples, we did not aim to equalize the file-format ratios. 

Therefore, the ratios in Table II are the approximate 

file-format ratios in the samples we obtained, which seems to 

reflect the file-format ratios for the attacks that we were 

targeting. The ratios for the vulnerabilities are also 

disproportionate. For the same reason, they also seem to 

reflect the proportion of attacks using the vulnerability in 

question. 

B. The CFB Element Containing the Shellcode 

In our analysis, all identified shellcodes were in the Stream 

area of the CFB. Note that our system does not distinguish a 

Mini Stream element from a Stream element. 

C. Determination of the Number of Steps 

We determined the necessary number of steps executed by 

the emulator to detect the features described in Section II.C. 

Table III shows the results of using an emulator to execute 

from the start addresses of the shellcodes in the sample set. 

Table IV shows the results of measuring the maximum 

number of steps required to observe the features. 

D. Entropy Calculations and Algorithms 

It is necessary to specify the sizes of byte sequences in 

entropy calculations. To determine an appropriate size 

$n$ for equation (2), we calculated entropies for samples in 

the sample set ranging between 128 bytes and 2,048 bytes in 

length. The “difference in entropy” is the difference between 

the entropy for the target byte sequence and that for the byte 

sequence preceding the target byte sequence. Whenever a 

byte-sequence range would require consideration of 

out-of-file bytes, we terminated the range at the beginning (or 

end) of the file. We changed the byte-sequence size in steps 

of 16 bytes, because it would be too time-consuming to 

calculate entropies for all possible sizes. Table V shows the 

averages of the ratio of the number of emulation trials and the 

expectation (the number of emulation trials where the byte 

sequence was chosen randomly), calculated for sizes between 

128 bytes and 2,048 bytes and for each algorithm (“Higher 

entropy byte sequence” or “Larger difference in entropy”). 

 
TABLE II: FILE TYPE AND VULNERABILITY 

Vulnerability doc xls ppt rtf Total

CVE-2006-2389 4    4

CVE-2006-2492 13    13

CVE-2006-6456 2    2

CVE-2007-0671   1  1

CVE-2008-2244 5    5

CVE-2008-4841 1    1

CVE-2009-0556   1  1

CVE-2009-0563 1    1

CVE-2009-3129  24  5 29

CVE-2010-0822  2   2

CVE-2010-1901    1 1

CVE-2010-3333    6 6

CVE-2011-1269 1  2  3

CVE-2012-0158 13   2 15

CVE-2014-1761    1 1

UNKNOWN 3    3

Total 43 26 4 15 88

 
TABLE III: OBSERVED FEATURES 

Feature Number

(1)Self-modifying,(2)PEB access, (3)API call 55

(1)Self-modifying, (2)PEB access 2

(2)PEB access, (3)API call 17

None 14

 
TABLE IV: MAXIMUM STEP 

Feature Step

Start to (1)Self-modifying 35,847

Start to (2)PEB access or (1)Self-modifying to (2)PEB access 857

(2)PEB access to (3)API call 2,772,706

 
TABLE V: AVERAGE OF RATIO OF EMULATION TRIALS 

Size Higher entropy byte sequence Larger difference in entropy

128 0.561 0.33

192 0.581 0.317

256 0.578 0.288

384 0.554 0.268

512 0.593 0.27

1,024 0.715 0.305

1,536 0.817 0.403

2,048 0.882 0.55

 

The ratio of emulation trials is smallest where the size is 

384 bytes and the algorithm is “Larger difference in entropy”. 

Fig. 4 shows the distribution of the ratio of emulation trials 

when we used the most appropriate parameter and algorithm. 

The efficiency is higher where the ratio is smaller. It is more 

efficient than random choice if the ratio is less than 1. 

 

IV. EXPERIMENTS 

As described in Section III-B, our system searches only the 

Stream area. As described in Section III-B, our system uses 

16,384 as the step limit for the emulator if it observes 

self-modifying code and 4,194,304 if it observes PEB access. 

As described in Section III-D, our system is implemented so 

that the byte-sequence size for entropy calculations is 384 

and the algorithm is “Larger difference in entropy”. 

A. CFB/RTF Analysis and Narrowing down by 

Pre-disassembly 

The Stream area occupies 30.83% of all CFB files in the 

sample set and binary data occupies 11.95% of all RTF files. 

Disassembly was possible for 95.92% of the byte sequences 
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in all files. 

B. False Positives 

In addition to the sample set described in Section III, 125 

benign files (doc:50, xls:25, ppt:25, rtf:25) were prepared. 

Our system did not attempt to extract shellcode from these 

benign files. 

C. Shellcode Extraction 

Using our system in the experimental environment of 

Table VI, we attempted to extract shellcode from 88 samples 

in the sample set. Shellcode could be extracted in 74 of these 

88 cases. 

Our system required 9,468 seconds for all processes. 

Shellcode extraction required 5,389 seconds, except for 

samples that did not include shellcode. However, only 4,399 

seconds were required in one case. The average execution 

time for the booting emulator was 1.638 milliseconds. Fig. 5 

shows the distribution of times to extract shellcode, omitting 

the 4,399-second case. 

 
TABLE VI: ENVIRONMENT 

 Shellcode Extraction Dynamic Analysis

CPU Pentium M 1.20GHz Core i7 3.40GHz 

Memory 1GB 512MB 

OS Ubuntu 10.04 LTS Windows XP SP3

(Virtual Machine)

 

 
Fig. 5. Time for shellcode extraction. 

D. Results of Dynamic Analysis 

Table VII shows the results of executing the 74 executable 

files extracted by our system on a 32-bit Windows virtual 

machine. We regarded a document as malicious if the 

shellcode wrote a file and executed it (Drop) or accessed the 

network (Communication). We regarded cases as failures if 

the shellcode could not continue the execution because of an 

illegal instruction or a memory leak. There were also cases 

where execution was stuck in an infinite loop. 

 
TABLE VII: RESULT OF EXECUTION 

Success 
Drop 50 

Communication 1 

Failure 

Memory 6 

Instruction 3 

Unknown 1 

Infinite Loop 13 

 

V. CONCLUSIONS 

Shellcode is usually versatile. Neither the initial register 

contents nor the starting address of the loaded shellcode have 

to be specific values. However, our system cannot extract 

shellcode in some cases, and some executable files did not 

behave as malicious documents. Because some examples of 

shellcode need specific addresses or register values, they are 

not considered versatile. 

Our system stops its emulation after the first API 

invocation, even if the executable file continues on the 32-bit 

Windows virtual machine. Therefore, the executable file did 

not behave as a malicious document, despite shellcode being 

extracted. We conclude that impersonation and reproduction 

such as specifying the address of shellcode or memory 

allocation by the application software was an insufficient 

condition. 

A. Performance 

For the narrowing down described in Section IV.A, about 

30% of the byte sequences were shellcode candidates. 

However, the effect of narrowing down based on 

pre-disassembly was smaller than we expected. If the booting 

process for the emulator was enhanced or the examination 

environment was different, pre-disassembly might not be 

necessary. 

B. Order of Priority 

Our system determined the priority order for shellcode 

candidates using entropy. As shown in Fig. 4, the number of 

emulation trials was considerably smaller than expected. 

There were a few samples that required more time than 

expected (random choice would be better). 

The difference between entropies for byte sequences such 

as that shown in Table I depend on the specification of the 

listed document formats described in Section II.A. If there are 

document formats that do not exhibit differences between 

entropies, the method used by our system would not be 

appropriate. 

C. Broken Samples 

As shown in Table VII, there were cases involving infinite 

loops because the file size was smaller than that expected by 

the shellcode. If such a document were to be opened by 

vulnerable application software, it would stick in an infinite 

loop and therefore not behave as a malicious document. 

If we were to analyze the code statically for infinite loops 

before forming the sample set, we would be able to exclude 

these cases. However, this proof was due to the shellcode 

being executed by our system. Without using our system, we 

would not know that some of the samples were broken. 

 

VI. RELATED WORK 

A. Network Communication Analysis 

Polychronakis et al. [4] proposed a method for extracting 

shellcode from network communications. In that paper, the 

shellcode candidates are determined on the basis of code that 

refers to its own address. The method observes 

self-modifying code via an emulator, as does our system. 

However, shellcode that does not modify itself is not 

extracted, even if it has other features such as PEB access or 

API invocation. 

B. Structure Analysis of Document Files 

Li et al. [5] proposed a method for detecting malicious 

Microsoft Word documents by statistical analysis that 
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involves entropy. However, the purpose was not shellcode 

extraction. They prepared many application software 

environments for opening documents to enable dynamic 

analysis. This is different from our system, because our 

system does not use application software to open documents. 

C. Shellcode Analysis 

Cova et al. [10] proposed a method for detecting malicious 

JavaScript. Shellcode was extracted using the method 

described in their paper. Our system, which extracts 

shellcode from document files, is different because their 

method extracts shellcode generated by JavaScript. 

Fratantonio et al. [9] proposed a tool for analyzing shellcode 

Our system is assumed to utilize dynamic analysis 

environments other than the 32-bit Windows environment 

used in our system. Consequently, our system does not have 

the capacity to list API invocations. Our system assumes that 

the issues for dynamic analysis discussed by Fratantonio et al. 

[9] can be resolved by other systems. However, the 32-bit 

Windows executable file output by our system disguises the 

name of the executable file, as does the application software 

that would open the document file. Their tool might be able to 

analyze the 32-bit Windows executable file output by our 

system, even though we expect that the output executable file 

would be analyzed via the environment proposed by Inoue 

and Yoshioka [11]–[13]. 

 

VII. FUTURE WORK 

Our system can extract shellcode without requiring use of 

the vulnerable target application. We conclude that our 

system is effective and useful for analyzing malicious 

document files. 

Our system focuses on the file formats listed in Section 

II.A. The malicious document file must include shellcode 

capable of being executed without use of the target 

application software. Our system has definite limits, although 

we do not know the proportion of malicious document files 

that can be analyzed by our system. The analysis of 

Return-oriented Programming documents or malicious 

documents that depend on their application software is an 

unresolved issue. 

On the other hand, it would be possible to increase the 

proportion of analyzable documents by including additional 

acceptable formats. This might not be difficult because, for 

example, the Office Open XML format in Microsoft Office 

2007 (and later) is CFB-based. If the original binary image 

could be extracted from compressed or encoded data, our 

proposal would also be effective for such document files. 

We must increase the accuracy of the emulator, because 

the emulator did not observe features for some of the samples. 

Moreover, some executable files output by our system did not 

behave as malicious documents. Finally, the environment 

provided by our system must be improved to reproduce the 

environment of real application software. 
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