

Abstract—We propose a method for the dynamic analysis of

malicious documents that can exploit various types of

vulnerability in applications. Static analysis of a document can

be used to identify the type of vulnerability involved. However,

it can be difficult to identify unknown vulnerabilities, and the

application may not be available even if we could identify the

vulnerability. In fact, malicious code that is executed after the

exploitation may not have a relationship with the type of

vulnerability in many cases. In this paper, we propose a method

that extracts and executes “shellcode” to analyze malicious

documents without requiring identification of the vulnerability

or the application. Our system extracts shellcode by executing

byte sequences to observe the features of a document file in a

priority order decided on the basis of entropy.Our system was

used to analyze 88 malware samples and was able to extract

shellcode from 74 samples. of these, 51 extracted shellcodes

behaved as malicious software according to dynamic analysis.

Index Terms—Malware, shellcode, entropy, dynamic analysis,

vulnerability.

I. INTRODUCTION

At the start of a typical attack aimed at stealing information

from a targeted organization, a piece of malware is supplied

by targeted email [1]. An email is sent to a specific person,

and often has an attached document file containing malicious

code. The victim may then open the document file and

execute the malicious code without knowing that it was

created for attacking purposes. As a part of measures to deal

with targeted attacks, we would like to analyze the behavior

of malicious code via dynamic analysis.

It is often not possible to use dynamic analysis directly,

because we cannot reproduce an appropriate vulnerable

environment. The reason for this is that the vulnerability

usually depends on the environment of the operating system

(OS) or the application software. However, versatile

malicious code (or “shellcode”), which often does not depend

on a specific OS or application software, can be executed.

Therefore, our system extracts shellcode from the document

file to analyze the malicious document. It then outputs an

executable file containing shellcode to enable dynamic

analysis.

Before building our system, we conducted a preliminary

survey of malware samples that we had already analyzed. In

this preliminary survey, we determined parameter values for

Manuscript received September 24, 2014; revised November 20, 2014.
Kazuki Iwamoto is with Advanced Research Laboratory at SecureBrain

Corporation, Kojimachi RK Building 4F 2-6-7 Kojimachi, Chiyoda-ku
Tokyo, Japan (e-mail: kazuki_iwamoto@securebrain.co.jp).

Katsumi Wasaki is with Interdisciplinary Graduate School of Science and
Technology, Shinshu University, 4-17-1 Wakazato, Nagano-shi, Japan
(e-mail: wasaki@cs.shinshu-u.ac.jp).

calculating the entropy, an algorithm for shellcode priority

and byte sequences to be excluded from the document file.

Our system executes those byte sequences that are shellcode

candidates and observes their behavior to detect features. We

determined the appropriate number of instructions to be

executed by the emulator to enable feature detection (the

number of steps) in the preliminary survey.

The remainder of this paper is organized as follows.

Section II explains the proposed method by describing the

environment, the file format, the features of shellcode and the

definition of entropy. Section III describes the sample set

used to identify the parameter values and the algorithm that

are the most appropriate for our system. Section IV explains

the results obtained by using our system with the sample set

and evaluates the performance. Section V discusses the

results. Section VI briefly reviews related work and compares

it with our system. Section VII describes our plans for future

work.

II. ENVIRONMENT AND PROPOSED METHOD

Our system can execute byte sequences that are shellcode

candidates by using an emulator, extracting a byte sequence

as an actual shellcode if it observes shellcode-like features.

First, though, our system produces a list of candidates in

order of their shellcode likelihood to promote the efficient

extraction of actual shellcodes. Fig.1 shows the overall flow

of our system.

A. Target Environment

Our system focuses on the following types of malicious

documents for the 32-bit Windows environment.

1) Microsoft Office Word (.doc)

2) Microsoft Office Excel (.xls)

3) Microsoft Office PowerPoint (.ppt)

4) Rich Text Format (RTF) (.rtf)

Our system does not need application software to open the

document files. Therefore, our system cannot deal with the

following types of malicious documents, which depend on

the application software.

 Return-oriented Programming [2]

 Here, instructions in the OS or application software are

executed based on values that are pushed on a stack.

Therefore, some of these documents will not include

shellcode. Even if the document does include shellcode,

our system cannot deal with it whenever there is a premise

that the shellcode must be loaded to a specific address.

 Malicious Document without Shellcode

 If code that is not included in the document file is executed

A Method for Shellcode Extractionfrom Malicious
Document Files Using Entropy and Emulation

Kazuki Iwamoto and Katsumi Wasaki

101DOI: 10.7763/IJET.2016.V8.866

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

after the vulnerability is exploited, our system cannot deal

with it. For example, in CVE-2011-1980 [3], the Dynamic

Link Library (DLL) in the same folder as the malicious

document is executed.

 Malicious Document Strongly Dependent on the

Environment

Our system cannot deal with shellcode that is not versatile

or that depends on specific conditions such as an allocated

memory or address.

Fig. 1. Flowchart.

B. Narrowing Down the Candidate List and Priority

Our system narrows down the list of shellcode candidates

and determines their priority. Narrowing down is possible by

using Compound File Binary (CFB) analysis or RTF analysis,

because our system focuses on document files. The proposal

ofPolychronakis et al. [4] for extracting shellcode does not

have a narrowing-down method, because it uses network

packet extraction. The proposal of Li et al. [5] analyzes file

structures, but not for the purpose of extracting shellcode.

1) CFB analysis

The file formats identified in Section II.A are all CFB

formats [6], [7], except for RTF. CFB formats have a similar

file structure, such as that shown in Fig. 2. Elements in CFB

are categorized as follows: Header, DiFAT, FAT, Mini FAT,

Directory, Stream, Mini Stream and Free. Header is the

information area at the start of the file. DiFAT, FAT and Mini

FAT correspond to the File Allocation Table (FAT) in the file

system. Directory corresponds to directory data. Finally,

Stream and Mini Stream correspond to file data. Free refers to

unused areas. Our system analyzes the CFB, categorizes its

elements and specifies whether they are shellcode candidates.

Fig. 2. CFB Hierarchy.

2) RTF analysis

RTF is a type of text format, with binary data (including

strings) encoded within the text [8]. Because shellcode is a

form of binary data, our system focuses on this binary data. It

is not possible to have executable shellcode in a small section

of binary data, because the features described in Section II.C

must be included. We estimate that the minimum size of code

that can include these features is about 128 bytes. Therefore,

our system ignores binary data sequences smaller than 128

bytes.

3) Pre-disassembly

Our system disassembles targeted byte sequences before

performing the emulation. If our system cannot disassemble

successfully, the byte sequence is not emulated, and our

system concludes that the byte sequence is not shellcode. The

purpose of disassembly is to reduce the number of booted

emulations, because the booting process requires substantial

CPU resources. Our system uses the results of disassembly

only for the narrowing-down process. This is different from

the method of Polychronakis et al. [4], which uses

disassembly to extract shellcode.

4) Priority by entropy

If our system tried to extract shellcode from the file header,

it would be inefficient, because byte sequences that could

never be shellcode would be emulated. Therefore, our system

creates an order of priority on the basis of entropy. This is

different from the method of Polychronakis et al. [4].

The entropy of a byte sequence ሺܽଵ, ܽଶ, ⋯ , ܽ௡ିଵ, ܽ௡ሻ is

defined as: ܪሺܺሻ ൌ෍െ ௜ܲ logଶ ௜ܲଶହହ
௜ୀ଴ (1)

Here, ௜ܲ is the probability of byte i (equal to the count of

occurrences divided by size n). It is defined as:

௜ܲ ൌ ∑ ቊ1൫ ௝ܽ ൌ ݅൯0൫ ௝ܽ ് ݅൯௡௝ୀଵ ݊
(2)

The range of ܪሺܺሻ is 0 ൑ Hሺܺሻ ൑ 8 .If ௜ܲ ൌ 0 , then

102

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

െ ௜ܲ logଶ ௜ܲ.
The entropy of any shellcode section in a file will be high,

because shellcode contains executable instructions. On the

other hand, the entropy of a non-shellcode part will be lower,

because it represents the data in the document file. The

entropy of any padding between data areas in the file will be

very low, because it contains the same bytes.

For example, the start of a shellcode sequence is at

(hexadecimal) address 5E00 in Table I. The area ahead of the

shellcode is filled by (hexadecimal) 00, whereas the

shellcode area has a random distribution of values.

Our system partitions an input document file into

identifiable areas and calculates the entropies for these areas,

looking for “Higher entropy byte sequence” or “Larger

difference in entropy” cases. The system then performs

emulations in priority order, starting with the candidate

having the highest probability of being shellcode.

TABLE I: BINARY IMAGE AROUND A SHELLCODE ENTRY POINT

5DD0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5DE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5DF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5DF0 60 B9 A4 05 00 00 EB 0D 5E 56 46 8B FE AC 34 FC

5E00 AA 49 75 F9 C3 90 E8 ED FF FF FF 61 15 C1 FE FC

5E10 FC AA CF 3C 98 77 BC CC 77 BC F0 77 8C E0 51 77

Fig. 3. Structures for obtaining the DLL base address.

C. Shellcode Detection

Our system regards a byte sequence having a high

probability of being shellcode as executable code for a 32-bit

Windows environment and executes it by using an emulator.

If a byte sequence represents the start of shellcode, the byte

sequence is executed and our system observes the features of

the execution. If the emulation can no longer continue, or the

system ceases to observe features after a certain number of

steps, the emulation stops and applies this process to the next

shellcode candidate. If no features are observed for any

candidate, our system decides that the document file does not

include shellcode.

Our system regards the following behaviors as features of

shellcode.

1) self-modifying code,

2) access to the Process Environment Block (PEB) using

the FS register, or

3) invoking the Application Programming Interface (API)

If the payload in the shellcode is encrypted, the payload is

executed after the initial code decrypts the payload.

Therefore, (1) is observed in this case. However, (2) is

observed without (1) if the payload is not encrypted.

For 32-bit Windows, the FS register (a CPU register) is set

to the address of the Thread Environment Block (TEB),

which contains the current thread information. Fig. 3 shows

the structures used to obtain the DLL base address. The

shellcode obtains a linked list to LDR_MODULE by

following the pointers in the structures for TEB, PEB and

PEB_LDR_DATA. Finally, the shellcode resolves API

addresses using the DLL base address obtained from a

member of LDR_MODULE. Therefore, (2) is regarded as a

feature of shellcode.

The shellcode invokes the API after obtaining the API

address. Therefore, (3) is regarded as a feature of shellcode.

Our system detects the byte sequence as shellcode if it

observes (1) and (2) or (2) and (3).

D. Executable File

If our system detects shellcode, it outputs a 32-bit

Windows executable file to execute the shellcode. The

executable file contains a document file, a filename and the

address of the shellcode within the document file. Shellcode

often obtains a file handle of itself by examining the file

handles opened by an application. The executable file output

by our system therefore creates a document file in a

temporary folder and opens it to reproduce the state of the

application before the shellcode is executed. The executable

file disguises its filename as a standard application (e.g.,

WINWORD.EXE) to open the document file by hooking

GetCommandLine and GetModuleFileName.

This method of disguise by API hooking has already been

used by a previous analysis tool [9].

103

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

III. PRELIMINARY SURVEY

Before building our system, we conducted a preliminary

survey to determine the most appropriate parameters and

algorithm using malware samples that we had already

analyzed.

A. Sample Set

For the preliminary survey and the experiments, we chose

a random subset of samples from the set of samples that could

be estimated to satisfy the conditions of Section II.A. We

used static analysis to confirm that the samples in the sample

set contained shellcode, and noted the address of the

shellcode in the document file. Of the 125 CFB samples

chosen randomly, 73 satisfied the conditions of Section II. A,

as did 15 of the 25 RTF samples. Table II shows the number

of vulnerabilities for various file formats in the sample set.

There were 15 types of vulnerability, with three samples

having unknown vulnerability. There were 42 unique types of

samples, in terms of the address of the shellcode and the

vulnerability type.

The ratios for each of the CFB file formats are

disproportionate, because we chose randomly without paying

regard to the CFB file format. At this stage of obtaining the

samples, we did not aim to equalize the file-format ratios.

Therefore, the ratios in Table II are the approximate

file-format ratios in the samples we obtained, which seems to

reflect the file-format ratios for the attacks that we were

targeting. The ratios for the vulnerabilities are also

disproportionate. For the same reason, they also seem to

reflect the proportion of attacks using the vulnerability in

question.

B. The CFB Element Containing the Shellcode

In our analysis, all identified shellcodes were in the Stream

area of the CFB. Note that our system does not distinguish a

Mini Stream element from a Stream element.

C. Determination of the Number of Steps

We determined the necessary number of steps executed by

the emulator to detect the features described in Section II.C.

Table III shows the results of using an emulator to execute

from the start addresses of the shellcodes in the sample set.

Table IV shows the results of measuring the maximum

number of steps required to observe the features.

D. Entropy Calculations and Algorithms

It is necessary to specify the sizes of byte sequences in

entropy calculations. To determine an appropriate size

n for equation (2), we calculated entropies for samples in

the sample set ranging between 128 bytes and 2,048 bytes in

length. The “difference in entropy” is the difference between

the entropy for the target byte sequence and that for the byte

sequence preceding the target byte sequence. Whenever a

byte-sequence range would require consideration of

out-of-file bytes, we terminated the range at the beginning (or

end) of the file. We changed the byte-sequence size in steps

of 16 bytes, because it would be too time-consuming to

calculate entropies for all possible sizes. Table V shows the

averages of the ratio of the number of emulation trials and the

expectation (the number of emulation trials where the byte

sequence was chosen randomly), calculated for sizes between

128 bytes and 2,048 bytes and for each algorithm (“Higher

entropy byte sequence” or “Larger difference in entropy”).

TABLE II: FILE TYPE AND VULNERABILITY

Vulnerability doc xls ppt rtf Total

CVE-2006-2389 4 4

CVE-2006-2492 13 13

CVE-2006-6456 2 2

CVE-2007-0671 1 1

CVE-2008-2244 5 5

CVE-2008-4841 1 1

CVE-2009-0556 1 1

CVE-2009-0563 1 1

CVE-2009-3129 24 5 29

CVE-2010-0822 2 2

CVE-2010-1901 1 1

CVE-2010-3333 6 6

CVE-2011-1269 1 2 3

CVE-2012-0158 13 2 15

CVE-2014-1761 1 1

UNKNOWN 3 3

Total 43 26 4 15 88

TABLE III: OBSERVED FEATURES

Feature Number

(1)Self-modifying,(2)PEB access, (3)API call 55

(1)Self-modifying, (2)PEB access 2

(2)PEB access, (3)API call 17

None 14

TABLE IV: MAXIMUM STEP

Feature Step

Start to (1)Self-modifying 35,847

Start to (2)PEB access or (1)Self-modifying to (2)PEB access 857

(2)PEB access to (3)API call 2,772,706

TABLE V: AVERAGE OF RATIO OF EMULATION TRIALS

Size Higher entropy byte sequence Larger difference in entropy

128 0.561 0.33

192 0.581 0.317

256 0.578 0.288

384 0.554 0.268

512 0.593 0.27

1,024 0.715 0.305

1,536 0.817 0.403

2,048 0.882 0.55

The ratio of emulation trials is smallest where the size is

384 bytes and the algorithm is “Larger difference in entropy”.

Fig. 4 shows the distribution of the ratio of emulation trials

when we used the most appropriate parameter and algorithm.

The efficiency is higher where the ratio is smaller. It is more

efficient than random choice if the ratio is less than 1.

IV. EXPERIMENTS

As described in Section III-B, our system searches only the

Stream area. As described in Section III-B, our system uses

16,384 as the step limit for the emulator if it observes

self-modifying code and 4,194,304 if it observes PEB access.

As described in Section III-D, our system is implemented so

that the byte-sequence size for entropy calculations is 384

and the algorithm is “Larger difference in entropy”.

A. CFB/RTF Analysis and Narrowing down by

Pre-disassembly

The Stream area occupies 30.83% of all CFB files in the

sample set and binary data occupies 11.95% of all RTF files.

Disassembly was possible for 95.92% of the byte sequences

104

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

in all files.

B. False Positives

In addition to the sample set described in Section III, 125

benign files (doc:50, xls:25, ppt:25, rtf:25) were prepared.

Our system did not attempt to extract shellcode from these

benign files.

C. Shellcode Extraction

Using our system in the experimental environment of

Table VI, we attempted to extract shellcode from 88 samples

in the sample set. Shellcode could be extracted in 74 of these

88 cases.

Our system required 9,468 seconds for all processes.

Shellcode extraction required 5,389 seconds, except for

samples that did not include shellcode. However, only 4,399

seconds were required in one case. The average execution

time for the booting emulator was 1.638 milliseconds. Fig. 5

shows the distribution of times to extract shellcode, omitting

the 4,399-second case.

TABLE VI: ENVIRONMENT

 Shellcode Extraction Dynamic Analysis

CPU Pentium M 1.20GHz Core i7 3.40GHz

Memory 1GB 512MB

OS Ubuntu 10.04 LTS Windows XP SP3

(Virtual Machine)

Fig. 5. Time for shellcode extraction.

D. Results of Dynamic Analysis

Table VII shows the results of executing the 74 executable

files extracted by our system on a 32-bit Windows virtual

machine. We regarded a document as malicious if the

shellcode wrote a file and executed it (Drop) or accessed the

network (Communication). We regarded cases as failures if

the shellcode could not continue the execution because of an

illegal instruction or a memory leak. There were also cases

where execution was stuck in an infinite loop.

TABLE VII: RESULT OF EXECUTION

Success
Drop 50

Communication 1

Failure

Memory 6

Instruction 3

Unknown 1

Infinite Loop 13

V. CONCLUSIONS

Shellcode is usually versatile. Neither the initial register

contents nor the starting address of the loaded shellcode have

to be specific values. However, our system cannot extract

shellcode in some cases, and some executable files did not

behave as malicious documents. Because some examples of

shellcode need specific addresses or register values, they are

not considered versatile.

Our system stops its emulation after the first API

invocation, even if the executable file continues on the 32-bit

Windows virtual machine. Therefore, the executable file did

not behave as a malicious document, despite shellcode being

extracted. We conclude that impersonation and reproduction

such as specifying the address of shellcode or memory

allocation by the application software was an insufficient

condition.

A. Performance

For the narrowing down described in Section IV.A, about

30% of the byte sequences were shellcode candidates.

However, the effect of narrowing down based on

pre-disassembly was smaller than we expected. If the booting

process for the emulator was enhanced or the examination

environment was different, pre-disassembly might not be

necessary.

B. Order of Priority

Our system determined the priority order for shellcode

candidates using entropy. As shown in Fig. 4, the number of

emulation trials was considerably smaller than expected.

There were a few samples that required more time than

expected (random choice would be better).

The difference between entropies for byte sequences such

as that shown in Table I depend on the specification of the

listed document formats described in Section II.A. If there are

document formats that do not exhibit differences between

entropies, the method used by our system would not be

appropriate.

C. Broken Samples

As shown in Table VII, there were cases involving infinite

loops because the file size was smaller than that expected by

the shellcode. If such a document were to be opened by

vulnerable application software, it would stick in an infinite

loop and therefore not behave as a malicious document.

If we were to analyze the code statically for infinite loops

before forming the sample set, we would be able to exclude

these cases. However, this proof was due to the shellcode

being executed by our system. Without using our system, we

would not know that some of the samples were broken.

VI. RELATED WORK

A. Network Communication Analysis

Polychronakis et al. [4] proposed a method for extracting

shellcode from network communications. In that paper, the

shellcode candidates are determined on the basis of code that

refers to its own address. The method observes

self-modifying code via an emulator, as does our system.

However, shellcode that does not modify itself is not

extracted, even if it has other features such as PEB access or

API invocation.

B. Structure Analysis of Document Files

Li et al. [5] proposed a method for detecting malicious

Microsoft Word documents by statistical analysis that

105

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

involves entropy. However, the purpose was not shellcode

extraction. They prepared many application software

environments for opening documents to enable dynamic

analysis. This is different from our system, because our

system does not use application software to open documents.

C. Shellcode Analysis

Cova et al. [10] proposed a method for detecting malicious

JavaScript. Shellcode was extracted using the method

described in their paper. Our system, which extracts

shellcode from document files, is different because their

method extracts shellcode generated by JavaScript.

Fratantonio et al. [9] proposed a tool for analyzing shellcode

Our system is assumed to utilize dynamic analysis

environments other than the 32-bit Windows environment

used in our system. Consequently, our system does not have

the capacity to list API invocations. Our system assumes that

the issues for dynamic analysis discussed by Fratantonio et al.

[9] can be resolved by other systems. However, the 32-bit

Windows executable file output by our system disguises the

name of the executable file, as does the application software

that would open the document file. Their tool might be able to

analyze the 32-bit Windows executable file output by our

system, even though we expect that the output executable file

would be analyzed via the environment proposed by Inoue

and Yoshioka [11]–[13].

VII. FUTURE WORK

Our system can extract shellcode without requiring use of

the vulnerable target application. We conclude that our

system is effective and useful for analyzing malicious

document files.

Our system focuses on the file formats listed in Section

II.A. The malicious document file must include shellcode

capable of being executed without use of the target

application software. Our system has definite limits, although

we do not know the proportion of malicious document files

that can be analyzed by our system. The analysis of

Return-oriented Programming documents or malicious

documents that depend on their application software is an

unresolved issue.

On the other hand, it would be possible to increase the

proportion of analyzable documents by including additional

acceptable formats. This might not be difficult because, for

example, the Office Open XML format in Microsoft Office

2007 (and later) is CFB-based. If the original binary image

could be extracted from compressed or encoded data, our

proposal would also be effective for such document files.

We must increase the accuracy of the emulator, because

the emulator did not observe features for some of the samples.

Moreover, some executable files output by our system did not

behave as malicious documents. Finally, the environment

provided by our system must be improved to reproduce the

environment of real application software.

REFERENCES

[1] Mandiant. Mandiant Apt1: Exposing one of china's cyber espionage
units. [Online]. Available:
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

[2] M. Prandini and M. Ramilli, “Return-oriented programming,” Security

Privacy, vol. 10, no. 6, pp. 84-87, 2012.
[3] Microsoft. Vulnerabilities in Microsoft Office Could Allow Remote

Code Execution [Online]. Available:
http://www.microsoft.com/en-us/download/details.aspx?id=10725

[4] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos,
“Network-level polymorphic shellcode detection using emulation,”
Journal in Computer Virology, vol. 2, no. 4, pp. 257-274, 2007.

[5] W. Li, S. Stolfo, A. Stavrou, E. Androulaki, and A. D. Keromytis, “A
study of malcode-bearing documents,” Detection of Intrusions and

Malware, and Vulnerability Assessment, pp. 231-250, 2007.
[6] Microsoft. Compound File Binary File Format. [Online]. Available:

http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4B
B0-A41D-A4F81%802D92C/%5BMS-CFB%5D.pdf

[7] D. Rentz. The Microsoft Compound Document File Format. [Online].
http://www.openoffice.org/sc/compdocfileformat.pdf

[8] Microsoft. Word 2007: Rich Text Format (RTF) Specification.
[Online]. Available:
https://technet.microsoft.com/library/security/ms11-073

[9] Y. Fratantonio, C. Kruegel, and G. Vigna, “Shellzer: a tool for the
dynamic analysis of malicious shellcode,” in Proc. the Symposium on

Recent Advances in Intrusion Detection (RAID), 2011, pp. 61-80.
[10] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of

drive-by-download attacks and malicious javascript code,” in Proc. the

World Wide Web Conference (WWW), 2010, pp. 281-290, Raleigh,
NC.

[12] D. Inoue, K. Yoshioka, M. Eto, Y. Hoshizawa, and K. Nakao,
“Automated malware analysis system and its sandbox for revealing
malware's internal and external activities,” IEICE Transactions on

Information and Systems, vol. 92, no. 5, pp. 945-954, 2009.
[13] K. Yoshioka, D. Inoue, M. Eto, Y. Hoshizawa, H. Nogawa, and K.

Nakao, “Malware sandbox analysis for secure observation of
vulnerability exploitation,” IEICE Transactions on Information and

Systems, vol. 92, no. 5, pp. 955-966, 2009.

Kazuki Iwamoto received the B.S. degree in
information science from Tokyo Denki University at
Tokyo, Japan, in 1998. He received the M.S. degree in
information engineering from Shinshu University at
Nagano, Japan, in 2008. He entered the doctoral
course in the Graduate School at Shinshu University
in 2010.

He joined Japan Computer Security Research and
started analyzing malicious software in 1998. He
served on the IPA: Information-technology Promotion

Agency in Japan as a visiting researcher in 2012. He is a senior software
engineer, Advanced Research Laboratory at SecureBrain Corporation in
Tokyo, Japan, where he joined in 2013.

Mr. Iwamoto is a member of Anti Virus Asia Researchers (AVAR) since
1999, a director in 2011 and 2012.

Katsumi Wasaki received the M.S. and Ph.D degrees
in information engineering from Shinshu University at
Nagano, Japan, in 1993 and 1997, respectively.

He is presently a professor of computer science,
Department of Information Engineering at Shinshu
University, where he initially joined in 1998. During
occasional leave of absence from Japan, he was
invited to visit Department of Computing Science,
University of Alberta at Edmonton, Canada, in 2003
and 2005. He has served on the NEDO: New Energy

and Industrial Technology Development Organization in Japan, as a member
of technological evaluation committee in 2008. His current research interests
include modeling and analysis of concurrent, parallel and/or distributed
processing systems, mathematical model and formal verification of
asynchronous circuits, and hardware compiler for model checking systems.

Prof. Wasaki is a member of IEEE, IEICE, IPSJ, IEEJ and JSiSE.

106

that is extracted via the method proposed by Cova et al. [10].

[11] D. Inoue, K. Yoshioka, M. Eto, Y. Hoshizawa, and K.

Nakao, “Malware behavior analysis in isolated miniature network for

revealing malware's network activity,” in Proc. IEEE International

Conference on Communications, 2008, pp. 1715-1721.

IACSIT International Journal of Engineering and Technology, Vol. 8, No. 2, April 2016

