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ABSTRACT

Presented is a numerical method for simulating
free-surface flows through solution of the time-
dependent, incompressible, Navier-Stokes equa-
tions and the non-linear dynamic and kine-
matic boundary conditions. The numeri-
cal method uses boundary-fitted curvilinear co-
ordinates with a finite-volume, time-splitting,
approximate-factorization method formulated in
primitive variables on a non-staggered grid. The
pressure Poisson equation is solved using a multi-
grid technique. A new extension of domain de-
composition methods is developed which involves
splitting the free surface from the fluid volume
for the iterative enforcement of the pressure equa-
tion and the dynamic boundary condition. A
derivation in curvilinear coordinates of the Eu-
lerian kinematic boundary condition is presented
and is used for advancing the free surface in a
Crank-Nicolson formulation. Development of the
numerical method is presented for three dimen-
sions; preliminary results are given from two-
dimensional non-linear simulations of standing
waves.

NOMENCLATURE

This paper uses tensor notation with the Einstein
summation convention implied unless otherwise
specifically noted.

a wave amplitude

Bi discrete operator for pressure gradient

Ci discrete operator for convective terms

d depth

Dα : α = 1, 2, 3; discrete operators for
approximate-factorized diffusive terms

∗20th Sym. on Naval Hydrodynamics, Nat’l. Acad.
Press, Washington, D.C. pp. 791-809, 1996.

DI implicit discrete operator for diagonal
diffusive terms

DE explicit discrete operator for off-
diagonal diffusive terms

eij rate of strain tensor

Fij flux tensor in Cartesian momentum
equation

F q
i flux tensor in curvilinear momentum

equation

F function representing curvilinear space
position of free surface

g acceleration due to gravity

gqr contravariant metric tensor

gqr covariant metric tensor

H free surface height measured in physical
space

H free surface height measured in curvi-
linear space

I identity matrix

J Jacobian

k wave number

L wave length

L1, L2 discrete linear operators for dynamic
boundary condition

ni normal unit vector

p reduced dynamic pressure

P pressure

Qi discrete operator for grid motion

Si source of discretized momentum equa-
tion

S1, S2 discrete source terms for dynamic
boundary condition

t time (at fixed location in physical
space)

ti tangent unit vector
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T wave period

ui Cartesian velocity

u∗
i intermediate Cartesian velocity

Uq contravariant velocity

U∗q intermediate contravariant velocity

U characteristic velocity of wave

xi Cartesian (physical space) coordinates

Ẋq grid volume flux

Z free surface vertical coordinate in phys-
ical space

Greek Symbols

δij Kronecker delta

∆t time step

∆s thickness of free surface

γ gradient of pressure variable (φ) at free
surface

µ dynamic viscosity

ν kinematic viscosity

φ pressure variable

ρ density

ψ second derivative of pressure variable
(φ) at free surface

τ time (at fixed location in computa-
tional space)

ξq curvilinear coordinates

ω wave frequency

Subscripts

i, j, k indices for Cartesian or covariant vec-
tors

S+ quantity computed in air at free surface

S− quantity computed in water at free sur-
face

S − 1 quantity computed at first cell center
inside free surface

S − 2 quantity computed at second cell cen-
ter inside free surface

Superscripts

q, r, s, t indices for contravariant vectors

n, n + 1 discrete time step

1 INTRODUCTION

Simulations of flows with free-surface effects have
been of interest to the numerical community both
for their real-world engineering applications and
for the challenges which moving-boundary prob-
lems present. The physical phenomena that have
been modelled using free-surface numerical tech-
niques cover a wide range of areas, including wa-
ter waves, viscous surface films, bubble dynamics,
vortex/free-surface interactions, and geophysical
flows. The numerical methods used have been as
varied as the phenomena modelled, and include
boundary integral methods, spectral methods, fi-
nite element methods and finite volume methods.
To date, no single approach has been proven su-
perior, and the complexities of free surface phe-
nomena almost guarantee that there will never be
one perfect method for all free-surface problems.

In this paper, we develop a technique
that is suitable for addressing free-surface wave
problems; where the primary characteristic of the
flow is nonlinear viscous wave motions of a con-
tiguous free surface. Numerical simulations of
this type of free-surface flow face several fun-
damental problems, including the need for ac-
curate free-surface advancement, enforcement of
the non-linear dynamic boundary condition, and
practical computation in three dimensions. Both
finite element and finite volume methods have
been used in the past to study free-surface wave
motions [1]. We shall, however, limit our in-
troductory discussion to finite volume methods,
which appear to have more promise for future
simulation of fully-turbulent flows.

The primary purpose of this paper is to
present a numerical method for free-surface flow
simulation that incorporates a new method for
enforcing the non-linear dynamic boundary con-
dition and uses a curvilinear coordinate deriva-
tion of the kinematic boundary condition to ad-
vance the free surface.

The new approach to the dynamic
boundary condition is to computationally sepa-
rate the free surface and the fluid volume, then
link them through an iterative scheme. This
strategy is borrowed from the method of domain
decomposition, where solutions on adjacent do-
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mains are iterated until the intergrid conditions
converge. In our case, rather than enforcing a
complicated dynamic boundary condition on the
upper boundary of the fluid domain, a simple
Dirichlet boundary condition is enforced and re-
fined iteratively with separate computations of
the dynamic boundary condition. This “surface
decomposition” method may have its ultimate
use in coupled simulations of air-water interfaces
with decomposed domains consisting of the air
volume, the free surface, and the water volume.
In such an application, the free surface would be
the communication channel for iteratively enforc-
ing the boundary conditions on the two fluids.

The derivation of the Eulerian kinematic
boundary condition in this paper is based upon a
Taylor-series expansion in curvilinear space, and
is similar to the derivation of the Eulerian kine-
matic boundary condition in physical space by
Mei [2]. The curvilinear derivation is advanta-
geous because it allows the simulation of free sur-
faces which do not remain single-valued in phys-
ical space.

Previous finite volume simulations of
free-surface flows can roughly be grouped into
two categories: 1) “fixed grid” simulations where
the governing equations are discretized in physi-
cal space on a fixed Cartesian grid while the free-
surface moves within the grid; and 2) “moving
grid” simulations where a boundary-conforming
grid that moves with the free surface is generated.

Most fixed-grid simulations trace their
ancestry to the marker-and-cell (MAC) method
of Harlow and Welch [3], which uses moving
marker particles to track the position of the free
surface on a fixed, Cartesian grid. Modified ver-
sions of this method are still useful [4] [5] [6];
however, the fundamental drawback of MAC sim-
ulations is that the boundary of the computa-
tional domain does not lie on the boundary of
the fluid. The partially empty cells along the
boundary make it difficult to conserve mass and
accurately invoke the dynamic boundary condi-
tion.

An interesting and relatively new ap-
proach using a fixed grid is the “level set” inter-
face technique [7] [8], which is suitable for sim-
ulating a coupled domain of two fluids with an
immiscible interface. This technique does not ex-
plicitly track the position of the free-surface in-
terface, but instead defines a smooth function for
the distance from each fixed grid point to the
free surface. The simulation solves for this level-
set function along with the fluid flow equations.

The position of the interface is computed by in-
terpolation from level-set values at the fixed grid
points. The level-set technique has an interesting
ability to handle flows where the topology of the
interface may be changing, such as with combin-
ing and dividing bubbles. The major drawback of
this method appears to be in the handling of the
dynamic boundary condition. As illustrated by
Sussman et al. [7], the dynamic boundary con-
dition cannot be directly discretized on the free
surface in a level-set method because the surface
is not given a discrete representation. Instead,
the dynamic boundary condition is represented
by a smoothed delta function which depends on
prescribing a “thickness” of the interface that
is greater than the spatial discretization. This
requires the discretization be extremely fine, or
an unrealistically thick interface be prescribed.
We suspect this method may not prove practical
for simulating the complicated dynamic bound-
ary condition of a free-surface wave that includes
transport of scalars on the surface and spatial
variations in the surface-tension coefficient. How-
ever, an intriguing possibility worthy of future
investigation is a method that combines a level-
set solution in computational space (to capture
bubble effects) with a boundary-fitted moving
grid (to compute a discretized, free-surface wave).
This combination might allow efficient computa-
tion of breaking waves with bubble effects and
surfactant transports on the free surface.

Moving-grid simulations are generally
designed with the boundary of the computa-
tional domain coincident with the physical do-
main. This provides a framework for enforcing
the dynamic boundary condition directly on the
boundary of the computational domain. Most
moving-grid simulations generate a structured
system of boundary-fitted curvilinear coordinates
to map the Cartesian coordinates of points in
physical space to a regular orthogonal grid in
“computational space”. This approach is dis-
cussed in greater detail in §2.1 of this paper. An
unusual exception to this approach has been de-
veloped by Hino et al. [9] for steady-state simu-
lations using an unstructured, moving grid that
is discretized wholly in physical space.

Two different methods of curvilinear-
coordinate grid generation have been used in
finite-difference free-surface simulations. One ap-
proach [10] [11] [12] is to simplify the compu-
tation of grid motion by using what might be
termed a “restricted” boundary-fitted grid. In
this scheme, the free surface is typically repre-
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Figure 1: Restricted curvilinear coordinate grid

sented by a series of particles whose horizontal
Cartesian coordinates (x, y) are fixed and whose
vertical Cartesian coordinate (z) follows the free
surface motion along fixed vertical grid lines, as
shown in figure (1).

A second approach to moving-grid gen-
eration is to use “generalized” boundary-fitted
curvilinear coordinates [13] [14]. This method
generates smoothly curved grid lines in physical
space and allows the grid to be tailored to the
requirements of the fluid domain, as shown in fig-
ure (2). A generalized curvilinear grid is prefer-
able to a restricted grid because of the ability of
the former to handle large surface deformations
with minimum grid skewness. This is discussed
in greater depth in §2.2.

A number of different numerical tech-
niques have been used to advance the free surface
in the solution of viscous free-surface problems.
Fully-implicit techniques have been developed for
restricted curvilinear coordinates [10], for gener-
alized curvilinear coordinates [14], and for un-
structured grids [9] [15]. These techniques simul-
taneously solve a coupled set of equations con-
sisting of the Navier-Stokes equations, the kine-
matic and dynamic boundary conditions, and one
or more grid generation equations. The advan-
tage of the fully-implicit technique is that the
free-surface advance is coupled directly to the
flow solution and the dynamic boundary condi-
tion, which is arguably more accurate than un-
coupled methods. The disadvantage is that sig-
nificant computational complexity is involved in
the coupling of grid generation to the flow solu-
tion. To date, the only three-dimensional fully-
implicit approach for the Navier-Stokes equations
found in the literature is limited to steady-flow
solutions [15].

Figure 2: Generalized curvilinear coordinate grid

A three-dimensional approach for un-
steady flow which appears to effectively advance
the free surface without a fully-implicit cou-
pling is that of Dommermuth [11]. His method
uses a third-order Runge-Kutta time integra-
tion of a kinematic boundary condition based on
Helmholtz decomposition.

To avoid the problems associated with si-
multaneous solution of the flow and grid, many
free-surface simulations use explicit free-surface
advancement [6] [13] [12] [16] [17]. Explicit tech-
niques generally suffer from the accumulation of
error in the free-surface advance over long simu-
lation times; however, the explicit Eulerian tech-
nique is a stable and effective method for con-
ducting shorter simulations to investigate phe-
nomena and develop numerical techniques.

Three different forms of the Eulerian
kinematic boundary condition are found in the
literature: 1) numerical enforcement of the physi-
cal space Eulerian kinematic boundary condition
[9] [10] [11] [15]; 2) computation of a curvilin-
ear transformation of the physical space Eule-
rian kinematic boundary condition [6] [13] [12]
[14]; and 3) rotation of the Cartesian space frame
to enforce the physical space Eulerian kinematic
boundary condition in a more suitable orienta-
tion [17]. The first two methods are unusable
for waves which do not remain single-valued in
physical space. The third method, rotation of the
coordinate system, does allow computation of a
free-surface that is not single-valued in physical
space; however, the surface must remain single-
valued in the rotated Cartesian space frame,
which eliminates the method from use with over-
turning waves. Most of the approaches to the
kinematic boundary condition track the surface
by the movement of particles that are required to
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move vertically in physical space; this has some
drawbacks in the accuracy of the free surface ad-
vance for steep waves (see §2.5).

There has been a wide range of nu-
merical flow solvers used in free-surface simu-
lations. As of this date, no method can be
said to be superior and we shall not try to de-
bate the pros and cons of the various approaches
in this paper. However, in order to put our
method in perspective, it is worthwhile to briefly
mention some of the approaches that other au-
thors have taken. Dommermuth [11] has imple-
mented a three-dimensional technique that uses
fourth- and sixth-order finite differences with a
third-order Runge-Kutta scheme. This method
is unique in that it uses Helmholtz decomposi-
tion to split the governing equations into irrota-
tional and vortical flow parts, which provides the
free-surface advance through an equation involv-
ing the solenoidal velocity potential rather than
the Cartesian or curvilinear velocity. Park et al.
[6], Hinatsu [12], and Miyata et al. [13] use time-
splitting methods that are discretized on a stag-
gered grid. Hino et al. [9] have developed an
artificial-compressibility multigrid method that
is suitable for steady-state solutions about ship
hull forms. Ohring and Lugt’s [14] fully-implicit
method uses artificial compressibility to solve for
unsteady flow in two dimensions. Wang and
Leighton [16] have developed a spectral method
that discretizes the Navier-Stokes equations in
a vertical-velocity, vertical-vorticity formulation
that is suitable for periodic boundary condition
problems. An entirely different approach was
taken by Zhan and Zhaoshun [18], who investi-
gated the characteristics of a drift current with
regular waves by decomposing the surface motion
into phase-averaged and fluctuating parts.

The numerical approach in this paper
is similar to those of Park et al. [6], Hinatsu
[12], and Miyata et al. [13] in the use of finite-
volume discretization of primitive variables with
a time-splitting technique. Our numerical ap-
proach differs by: 1) advancing the free surface
in a method that is not limited to single-valued
waves; 2) applying a non-staggered grid to re-
duce storage requirements for metric terms; and,
3) utilizing a multigrid solver for solution of the
pressure Poisson equation with iterative enforce-
ment of the dynamic boundary condition. Our
numerical method is an adaptation of the method
developed by Zang [19] for fixed-boundary prob-
lems which has been shown to be second-order ac-
curate in space and time as well as computation-

ally efficient in three dimensions. The kinematic
boundary condition enforcement is discretized by
the “time-splitting implicit” method of Chan and
Street [20].

This is an interim report on a project
whose goal is the development of a three-
dimensional, time-dependent, Navier-Stokes sim-
ulation of finite-amplitude progressive water
waves over an imposed current with non-linear
dynamic and kinematic boundary conditions.
Presented in this paper are the three-dimensional
mathematical and numerical foundation of the
method and preliminary two-dimensional simu-
lation results for standing waves in a rectangular
basin.

The main body of this paper is divided
into four sections, beginning with the mathemat-
ical formulation and discretization of the govern-
ing equations, §2, followed by a description of the
numerical method, §3, a description of the sur-
face decomposition method, §4, and a summary
of results from numerical simulations, §5.

2 MATHEMATICAL FOR-
MULATION AND DIS-
CRETIZATION

2.1 Computational Domain and
Coordinate Mapping

For moving-grid numerical simulations,
“boundary-fitted curvilinear coordinates”
are often used. This technique is not unique
to moving-grid problems, but has been applied
to fixed-grid, finite-difference methods with
complicated boundary shapes. The boundary-
fitted curvilinear coordinate method is based on
the concepts of tensor analysis and coordinate
transformation that can be found in textbooks
such as Aris [21]. Numerical application of
boundary-fitted curvilinear coordinates involves
developing a coordinate system which matches
the boundaries in physical space and maps to a
regular orthogonal grid in computational space.

The distortions of the curvilinear coordi-
nate system as viewed from physical space, fig-
ure (2), are measured as metric terms. The met-
ric terms are created when the governing equa-
tions are transformed into a regular orthogonal
grid in computational space. Using this tech-
nique, an irregular domain in physical space can
be discretized with a structured (e.g. finite dif-
ference) numerical method on a regular grid in
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computational space while maintaining the sim-
ulation boundary coincident with the physical
boundary. The main disadvantages of this tech-
nique are that the governing equations are more
complicated when transformed to computational
space and the requirement to store metric terms
can overwhelm computer memory. However, im-
provements in computer speed and memory stor-
age have made the use of curvilinear coordinate
transformations more practical, and they can be
considered a standard technique for simulations
with non-moving grids and irregular boundaries.

The extension of boundary-fitted curvi-
linear coordinate methods from fixed-boundary
to moving-boundary problems is relatively
straightforward and is described by Thompson
et al. [22]. Numerical implementation, however,
can be computationally costly because a new grid
and new metric terms must be computed at each
time step. Implementation of boundary-fitted
curvilinear coordinates requires that transforma-
tion operators be used to transform the governing
equations from physical space to computational
space. The operators are derived from the chain
rule for partial differential equations. For a mov-
ing grid these operators can be presented as [22]:

∂

∂xj
=

∂ξq

∂xj

∂

∂ξq
(1)

∂

∂t
=

∂

∂τ
− ∂xj

∂τ

∂ξq

∂xj

∂

∂ξq
(2)

where xj , with j = 1, 2, 3 are the physical space
coordinates; ξq with q = 1, 2, 3 are the computa-
tional space coordinates; ∂/∂t is a time deriva-
tive taken at a fixed point in physical space;
and ∂/∂τ is a time derivative taken at a fixed
point in computational space, and repeated sub-
script/superscript combinations imply summa-
tion.

2.2 Grid generation

Boundary-fitted curvilinear coordinate grids can
be generated either using restricted or general-
ized methods as discussed in the introduction to
this paper. Restricted boundary-fitted curvilin-
ear coordinates are a useful simplification as long
as the free surface deformations remain small.
For steep waves, restricted coordinates provide
a highly skewed grid: the grid parallelpipeds will
be significantly distorted from the ideal rectan-
gular shape. Such grid skewness is undesirable
since it generally results in a decrease in accuracy

[22]. The use of generalized boundary-fitted co-
ordinates can avoid this problem by using a grid
generation method that minimizes grid skewness.

Restricted curvilinear coordinate sys-
tems also suffer from a lack of boundary orthogo-
nality. While it is not possible to generate a com-
pletely orthogonal grid for an arbitrarily-shaped,
three-dimensional domain, it is possible to gen-
erate a grid that is orthogonal to the bound-
aries. There are distinct advantages in the imple-
mentation of numerical techniques with bound-
ary orthogonality. As shown by Zang [23] for a
fixed grid, a non-orthogonal boundary in a finite-
volume method requires a pressure boundary
condition as well as a velocity boundary condi-
tion for the Poisson pressure equation to prevent
an inconsistent solution. The use of boundary or-
thogonality removes the requirement for the pres-
sure boundary condition. Furthermore, in deriv-
ing a discrete form of the dynamic boundary con-
dition, boundary orthogonality provides signifi-
cant simplification by removing two of the three
skew metric terms at the free-surface. That is,
for a free surface ξ3 = 1, boundary-orthogonality
provides g13 = g23 = 0.

Generalized boundary-fitted curvilinear
coordinates can be produced through algebraic
methods (i.e. interpolation from the boundaries)
or the solution of a set of partial differential
equations (typically a Laplace or Poisson equa-
tion) [22]. Algebraic, generalized, grid-generation
methods are an improvement over the restricted-
coordinate technique since the grid developed can
be boundary orthogonal and grid skewness can be
reduced. Algebraic methods have low computa-
tional cost since they use direct solution rather
than iteration techniques. However, algebraic
methods do not necessarily produce the optimum
grid with minimum skewness, thus they might
be considered inferior to partial differential equa-
tion methods for generating curvilinear coordi-
nates. A Poisson-solution method will generate
a grid with minimum skewness in generalized co-
ordinates, but has the disadvantage of requiring
iterative smoothing to obtain a final grid. De-
pending on the shape of the domain, a Poisson
grid-generation method can become the major
driver of computational time for a free-surface
simulation.

In order to have control over grid skew-
ness, we have incorporated into our code sec-
tions from the EAGLE grid generation package
developed at Mississippi State University [24].
This code uses an algebraic generation method
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(transfinite interpolation) as an input to a Pois-
son smoother, while leaving the user control over
the level of smoothing and the maximum number
of iterations (which may be set to zero for purely
algebraic computation of generalized curvilinear
coordinates). The free-surface is represented by
a cubic spline over which the ends of grid lines
may freely move so as to obtain a smooth grid
with boundary orthogonality.

2.3 Non-staggered grid

The governing equations are discretized using
the non-staggered grid technique developed by
Zang [19]. This method solves for the pressure
and the three Cartesian components of velocity
at the grid centers and the normal volume flux
through grid face. The main advantage of this
technique over a staggered-grid method is the
savings of storage for the metric terms. Zang’s
non-staggered grid method requires the storage
of one set of metrics, consisting of nine vector
surface area components

(
J−1∂ξq/∂xi

)
, six non-

trivial mesh skewness components
(
J−1gqr

)
, and

the inverse Jacobian, or cell volume
(
J−1

)
for

each control volume. In contrast, a staggered-
grid method may require up to seven sets of met-
ric terms for each control volume [25] [26].

To adapt the non-staggered grid method
for use in free-surface simulations, a full set of
metric terms is defined on each cell face of the
free surface. This allows the dynamic boundary
condition to be discretized with greater accuracy
without significantly impacting the overall data
storage requirements.

2.4 Navier-Stokes equations

The time-dependent, constant-density, incom-
pressible Navier-Stokes equations in physical
space can be written as:

∂ui

∂t
+

∂Fij

∂xj
= 0 (3)

∂uj

∂xj
= 0 (4)

where ui : i = 1, 3 are the Cartesian (physical
space) components of velocity, and the Cartesian
momentum flux tensor (Fij) is:

Fij = ujui + pδij − ν
∂ui

∂xj
(5)

where ν is the kinematic viscosity, δij is the Kro-
necker delta, and the reduced dynamic pressure

(p) is related to the density (ρ), total pressure (P )
and the vertical Cartesian coordinate (x3) by:

P = ρ (p − gx3) (6)

In order to simulate a flow with a free
surface in boundary-fitted curvilinear coordi-
nates, equations (1) and (2) are used to transform
the physical space Navier-Stokes equations into
computational space. To complete the transfor-
mation, we must utilize the metric identity [22]:

∂

∂ξq

(
J−1 ∂ξq

∂xi

)
≡ 0 (7)

and the conservation of space [27],

∂

∂τ

(
J−1

) − ∂

∂ξq

(
J−1 ∂ξq

∂xj

∂xj

∂τ

)
= 0 (8)

By applying equations (1), (2), (7) and (8) to
equations (3) and (4) it is possible to formulate
the Navier-Stokes equations in time-dependent
boundary-fitted curvilinear coordinates as,

∂

∂τ

(
J−1ui

)
+

∂

∂ξq

(
J−1F q

i

)
= 0 (9)

∂

∂ξq

(
J−1Uq

)
= 0 (10)

where the curvilinear momentum flux tensor (F q
i )

is:

F q
i =

[
Uq − Ẋq

]
ui +

∂ξq

∂xi
p

− νgqr ∂ui

∂ξr
(11)

and other curvilinear quantities are defined as:

J−1 = det

∣∣∣∣∂xi

∂ξs

∣∣∣∣ (12)

Uq =
∂ξq

∂xj
uj (13)

Ẋq =
∂ξq

∂xj

∂xj

∂τ
(14)

gqr =
∂ξq

∂xj

∂ξr

∂xj
(15)

Following the method developed by Zang
[19], to discretize the momentum equation we
apply the explicit 2nd-order Adams-Bashforth
method to the convective terms and the off-
diagonal viscous terms, with the implicit Crank-
Nicolson scheme for the diagonal viscous terms.
The addition of the free surface to Zang’s method
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requires a grid flux term which accounts for the
convective motion of the grid. An explicit Euler
discretization in the velocity is used for the grid
flux term with an average of the time (n) and
(n + 1) metrics. The pressure is removed from
the momentum equation by a predictor-corrector
method and a new pressure variable (φ) is de-
fined. A further simplification is made by using a
second-order accurate approximate factorization
on the left hand side of the discretized momentum
equation. The resulting system can be presented
as:

1. predictor step

(I − Dn+1
1 ) (I − Dn+1

2 ) (I − Dn+1
3 ) (u∗

i − un
i )

= Si (16)

2. pressure Poisson equation

δ

δξq

(
J−1gqr δφ

δξr

)n+1

=
1

∆t

δ

δξq

(
J−1U∗q

)
(17)

3. corrector step

(a) for the Cartesian velocity (on cell cen-
ters):

un+1
i = u∗

i +
[

∆t

J−1
Bi (φ)

]n+1

(18)

(b) for the normal component of con-
travariant velocity (on cell faces):

(Uq)n+1 = U∗q − ∆t

(
gqr δφ

δξr

)n+1

(19)

where the pressure variable (φ) is related to the
reduced pressure (p) by:

Bi (p) =
[
J−1 − ∆t

2
DI

]
Bi (φ)
J−1

(20)

the source term of the predictor, equation (16) is:

Si =
∆t

(J−1)n+1

{
3
2

(
Cn

i + Dn
E [un

i ]
)

− 1
2

(
Cn−1

i + Dn−1
E

[
un−1

i

] )

+
1
2

(
Dn

I [un
i ] + Dn+1

I [un
i ]

)

+ Qi +
(
Jn − Jn+1

)
un

i

}
(21)

The use of time (n + 1) metric terms in the source
of the predictor is allowed because our numerical
method (see §3) solves for the time (n + 1) free
surface position and the curvilinear grid prior to
the solution of the predictor step.

Discrete operators from equations (16),
(18), (20), and (21) are defined as:

Dα ( ) =
∆t

2J−1

δ

δξα

{
νJ−1gαα δ

δξα
( )

}
(22)

where α = 1, 2, 3 with no summation.

DE ( ) =
δ

δξq

{
νJ−1gqr δ

δξr
( )

}
q �=r

(23)

DI ( ) =
δ

δξq

{
νJ−1gqr δ

δξr
( )

}
q=r

(24)

Ci = − δ

δξq

{
J−1Uqui

}
(25)

Bi ( ) = − δ

δξq

{
J−1 δξq

δxi
( )

}
(26)

Qi =
δ

δξq

{ (
J−1Ẋq

)n+ 1
2

un
i

}
(27)

In the operator Qi, we use equation (14) to define:

(
J−1Ẋq

)n+ 1
2

=

1
2∆t

{
J−1 δξq

δxj

∣∣∣∣
n

+ J−1 δξq

δxj

∣∣∣∣
n+1}(

xn+1
j − xn

j

)
(28)

Note that in this method, the effect of
the moving grid is carried in the grid velocity
term (Qi) which is the net contravariant flux of
physical space through the sides of a control vol-
ume cell as viewed from computational space.
The grid flux is a part of the source term for
the computation of the intermediate (u∗) veloc-
ity, but does not explicitly appear in the pressure
Poisson equation or the corrector steps. There-
fore, the Poisson solver and corrector steps are
only indirectly affected by the moving grid.

2.5 Kinematic boundary condition

The kinematic boundary condition is the La-
grangian condition that a particle on the sur-
face must remain on the surface. It is possible
to use the Lagrangian condition directly and ad-
vance the free surface by moving marker particles
based upon their velocity at the free surface; how-
ever, this method has been shown to be unstable
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in long simulations where the free-surface is ad-
vanced explicitly [20]. For fully-implicit solutions
where the kinematic boundary condition is coup-
led in an implicit solution of the velocity, such
instability should not occur with the Lagrangian
boundary condition.

As an alternative to the Lagrangian ap-
proach, the kinematic boundary condition in
physical space can be written in a physical space
Eulerian form which can be obtained through a
Taylor series expansion [2]:

∂H

∂t
= u3 − u1

∂H

∂x
− u2

∂H

∂y
(29)

where H is the height of the free surface mea-
sured from some horizontal baseline in physical
space This form of the kinematic boundary con-
dition is enforced on surface particles that are re-
stricted to vertical motion in physical space, and
is ideally suited to restricted curvilinear coordi-
nate applications.

It has been demonstrated [12] that curvi-
linear coordinate transformations (equations (1)
and (2)) can be applied to the physical space
Eulerian kinematic boundary condition (equation
(29)) for use in numerical simulations. The sim-
ulations that have used this approach [6] [12]
have retained the underlying vertical motion re-
striction on surface particles, thereby making the
methods unsuitable for waves which do not re-
main single-valued.

A more general approach that does not
have a single-valuedness restriction in physical
space requires deriving the Eulerian kinematic
boundary condition directly in curvilinear coor-
dinates. We have not seen this form of the kine-
matic boundary condition used by any previous
authors and, therefore, present the derivation
here even though it is, in some senses, a trivial
extension of the textbook derivation of the physi-
cal space Eulerian kinematic boundary condition
by Mei [2].

To directly obtain a curvilinear Eulerian
kinematic boundary condition, we will consider a
fixed curvilinear space

(
ξ1, ξ2, ξ3

)
such that the

free-surface is single valued in ξ3. Note that
we are not requiring the curvilinear coordinate
system to be boundary-fitted or moving for this
derivation. Define F as a scalar function for the
free surface such that:

F ( ξ , t) = ξ3 − H (
ξ1 , ξ2 , t

)
= 0 (30)

where ξ is a vector representing the curvilinear
coordinates of a surface position at time t, and

H is the height of the free surface measured from
ξ3 = 0 along a line of constant ξ1 and ξ2 in fixed
curvilinear space. After some small time ∆t, the
free surface has moved, while the curvilinear co-
ordinate system remains fixed. We require that
∆t is small, so the free surface remains single val-
ued in ξ3. Therefore,

F (ξ + U∆t , t + ∆t)

= F (ξ , t) +
(

∂F

∂t
+ U · ∇F

)
∆t

+O (∆t)2 (31)

where U is the contravariant vector velocity of a
point on the surface. It follows that:

∂F

∂t
+ U · ∇F = 0 (32)

Substitution of equation (30) provides the curvi-
linear kinematic boundary condition in fixed
curvilinear coordinates as:

∂H
∂t

= U3 − U1 ∂H
∂ξ1

− U2 ∂H
∂ξ2

(33)

To discretize the kinematic boundary
condition, equation (33), we use a time-splitting
implicit method that applies a Crank-Nicolson
discretization for the surface position [20]:

H[n+1] − H[n] =

∆t

{
U3[n] − Uq[n]

2

(
δH
δξq

[n]

+
δH
δξq

[n+1]
)}

+ O (∆t)2 : q = 1, 2 (34)

Now, we require that the fixed curvilinear grid
used in the above derivation be boundary-fitted
to the time (n) free surface; that is, at the surface:

H[n] = ξ3[n]
∣∣∣∣
surface

= constant (35)

then the gradients of the time (n) free-surface
height relative to the ξ1 and ξ2 curvilinear coor-
dinates will disappear, since:

δH
δξq

[n]

=
δξ3

δξq

[n]

= 0 : q = 1, 2 (36)

An approximate-factorization of equation (34)
using equation (36) provides our discrete kine-
matic boundary condition,
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I +

∆t

2
U1 ∂

∂ξ1

)(
I +

∆t

2
U2 ∂

∂ξ2

)
(Hn+1 −Hn)

= ∆t
(
U3

)n
+ O (∆t)2 (37)

Solution of equation (37) in three dimensions re-
quires the inversion of two tridiagonal matrices to
obtain Hn+1. To obtain the time (n + 1) physi-
cal space position of a particle on the surface, we
can use:

∆xi =
∂xi

∂ξ3
∆ξ3 : i = 1, 3 (38)

with equation (35) this can be written as:

xn+1
i = xn

i +
(Hn+1 − Hn

) (
∂xi

∂ξ3

)n

(39)

Our method requires that at time (n)
there is a fixed curvilinear grid that is boundary-
fitted in the ξ3 coordinate. To find the change
in the ξ3 coordinates of the free surface at some
small time later with reference to the same fixed
grid, we apply equation (37). Then equation (39)
is used to obtain the physical space coordinates of
the free surface. The new free surface can then be
used to generate a new boundary-fitted grid. The
advantage of this method over a curvilinear trans-
formation of (29) is that equation (33) is enforced
upon points which move along a line of constant
ξ1 and ξ2 curvilinear coordinates rather than a
line of constant x and y physical coordinates.
As a result, the single-valuedness requirement in
physical space is replaced by a single-valuedness
requirement in curvilinear space, which is a less
restrictive condition for a boundary-fitted coor-
dinate system.

2.6 Dynamic boundary condition

The full equation for the dynamic boundary con-
dition is quite complicated, and can be found in
Scriven [28] and Aris [21]. If we neglect surface
tension and its gradients, inertia of the surface,
gradients of the dilational force, force due to total
curvature and velocity, effects of varying normal
velocity, normal forces due to dilation and shear,
and the viscosity of the upper fluid, then we can
write the dynamic boundary condition for an in-
compressible fluid in its classic form (similar to
that in Batchelor [29]):

PS+ − PS− = −2µeijninj (40)
eijtinj = 0 (41)

where the subscripts S+ and S− indicate the
pressure on the upper and lower sides of the free
surface, eij is the rate-of-strain tensor, and ni

and ti are the unit normal and tangent vectors,
respectively.

Equations (40) and (41) are a form of
the dynamic boundary condition that does not
provide for straightforward implementation in a
boundary-fitted curvilinear coordinate numerical
method; therefore, our approach will begin with
the tensor form of the full equation from Scriven
[28]. By applying the same simplifications used
to get equations (40) and (41), along with the
definition of the reduced pressure (equation (6))
and the requirement that the curvilinear coor-
dinate system be boundary orthogonal, the dy-
namic boundary condition can be presented as:

(pS+ − pS−) − g (ZS+ − ZS−)
= −2ν U3

,3 (42)

U1
,3 = −g33

{
g11U3

,1 + g12U3
,2

}
(43)

U2
,3 = −g33

{
g22U3

,2 + g12U3
,1

}
(44)

where ZS+ and ZS− are the vertical physical
space coordinates on either side of the free surface
along a curvilinear coordinate line that is normal
to the free surface. Defining ∆s as the thickness
of the free surface, it follows that:

ZS+ − ZS− ≤ ∆s (45)

In order to neglect the thickness of the free sur-
face while maintaining second order accuracy in
space, we require:

∆s ≤ (∆x)2 (46)

where ∆x is the grid spacing (measured in physi-
cal space) at the free surface. Equations (45) and
(46) allow equation (42) to be written as:

(pS+ − pS−) = −2ν U3
,3 + O (∆x)2 (47)

Note that the differentiation in equations (43),
(44), and (47) is covariant tensor differentiation
and requires the application of Christoffel sym-
bols for deriving a discrete implementation.

In order to get the reduced pressure (p)
from equation (47) into terms of the pressure vari-
able (φ), we multiply equation (20) by δξr/δxi,
with a sum over i = 1, 2, 3; then use equations
(7), (15), (24) and (26) to obtain:
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J−1gqr δp

δξq
= J−1gqr δφ

δξq

− ∆t

2
δξr

δxi

δ

δξq

{
νJ−1gqs δ

δξs

(
δξt

δxi

δφ

δξt

)}
(48)

Let r = 3 and apply boundary orthgonality so
that g13 = g23 = 0, then equation (48) can be
reduced to:

δp

δξ3
=

δφ

δξ3
− O (∆t) (49)

A discrete version of equation (49) across a free
surface of thickness

(
ξ3
S+ − ξ3

S−
)
, in curvilinear

space, can be written as

pS+ − pS− = φS+ − φS−
− O (∆t)

(
ξ3
S+ − ξ3

S−
)

(50)

The relationship between physical and curvilin-
ear coordinates, equation (38), provides:

ZS+ − ZS− =
∂x3

∂ξq

(
ξq
S+ − ξq

S−
)

(51)

where ZS+ and ZS− are the vertical physical
space coordinates on either side of the free surface
along a curvilinear coordinate line that is normal
to the free surface. Our grid spacing (in physical
space) is defined as ∆x while the grid spacing in
curvilinear space is 1, so we can write:

ZS+ − ZS− = ∆x
(
ξ3
S+ − ξ3

S−
)

(52)

Using equations (45) and (46), it follows that,

∆x ≥ ξ3
S+ − ξ3

S− (53)

Because our numerical method uses an explicit
discretization (Adams-Bashforth) for the con-
vective terms, we are subject to the Courant-
Friedrichs-Lewy condition:

u∆t

∆x
< 1 (54)

So, if we apply equations (53) and (54) to equa-
tion (50), the result is second-order accurate in
space:

pS+ − pS− = φS+ − φS− − O (∆x)2 (55)

Applying equation (55) and some algebra
and tensor manipulation, the dynamic boundary
condition of equations (43), (44), and (47) can

be reduced to a form that can be more readily
implemented in a numerical method:

∂U3

∂ξ3
= − 1

2µ
(φS+ − φS−)

− 1
2
g33

(
U1 ∂g33

∂ξ1
+ U2 ∂g33

∂ξ2

)
(56)

∂U1

∂ξ3
= −g33

{
g11 ∂U3

∂ξ1
+ g12 ∂U3

∂ξ2

}
(57)

∂U2

∂ξ3
= −g33

{
g22 ∂U3

∂ξ2
+ g12 ∂U3

∂ξ1

}
(58)

3 NUMERICAL METHOD

We have expanded the non-staggered grid,
approximate-factorization, time-splitting method
of Zang [19] to handle moving grids and a free sur-
face. Previous authors [22] [27] have noted that
appropriate discretization of the Jacobian in a
moving grid method is important in maintaining
numerical accuracy. In our method, the Jaco-
bian is updated using the conservation of space,
equation (8). By applying the definition of the
grid flux, Ẋ, equation (14), with an explicit Eu-
ler discretization, the conservation of space can
be written as:

(
J−1

)n+1
=

(
J−1

)n
+ ∆t

δ

δξq

(
J−1Ẋq

)n+ 1
2

(59)
Equation (59) requires that the change in the
physical-space volume contained in a computa-
tional space cell must be computed by summing
the fluxes of physical space through the faces of
the computational space cell. This ensures that
space is numerically conserved and prevents an
inconsistency between the Jacobian computation
and the convective grid flux term, equation (27).
To demonstrate that our moving grid method is
second-order accurate in both space and time, nu-
merical simulations of a decaying vortex (without
a free surface) have been conducted and are re-
ported in §5.1.

The numerical method can be summa-
rized as:

1. Use the kinematic boundary condition to ad-
vance the free surface from time (n) to time
(n + 1).
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2. Compute grid and metrics for time (n + 1)
grid using algebraic or Poisson solution
method.

3. Solve for u∗
i at center of cells.

4. Use quadratic interpolation (QUICK [30]) to
obtain the normal component of U∗ on each
cell face.

5. Use surface decomposition to solve the Pois-
son pressure equation for the pressure vari-
able φ, coupled with the dynamic boundary
condition (which solves for the contravariant
velocity Uq on the free surface and the pres-
sure variable φS− at the free surface).

6. Compute time (n + 1) Cartesian velocity
(ui) at cell centers.

7. Compute time (n + 1) contravariant velocity
components normal to cell surfaces, Uq.

8. Compute all three components of contravari-
ant velocity Uq on free surface

The free surface advance (step 1) and the u∗ com-
putation (step 3) are straightforward numerical
implementations of equations (37) and (16) us-
ing vectorized tridiagonal solvers. The grid gen-
eration (step 2) uses the EAGLE code discussed
in §2.2. The surface decomposition solution of
the Poisson pressure equation and the dynamic
boundary condition (step 5) is the most interest-
ing part of our method and is covered in-depth in
§4. Applying the corrector equations (steps 6 and
7) provides the three components of Cartesian ve-
locity at the cell centers in the fluid volume, and
one contravariant flux at each cell edge by solving
equations (18) and (19). In order to advance the
free surface using the kinematic boundary condi-
tion in the next time step, it is necessary to com-
pute all three contravariant velocity components
on the free surface (step 8). This can be done
by using the dynamic boundary condition, equa-
tions (56), (57), and (58), and the contravariant
velocity normal to the free surface (computed in
the surface decomposition).

4 SURFACE DECOMPOSI-
TION

Inherently, the invoking of the dynamic boundary
condition presents difficulties for a Poisson solver
due to the complicated interrelation between the
boundary pressure and velocity gradients that is

found in equations (56), (57), and (58). It is pos-
sible to directly enforce the dynamic boundary
condition in the relaxation of the Poisson pres-
sure equation; however, this is likely to impact
future utility of the code. The difficulties in-
volved can be illustrated by considering that the
dynamic boundary condition directly affects only
the layer of control volumes adjacent to the sur-
face; however, in a multigrid method, this influ-
ence is moved progressively further into the do-
main as the grid is coarsened. This presents chal-
lenges in the derivation and coding of the restric-
tion and interpolation operators that are used for
mesh coarsening and refinement. Our investiga-
tions lead us to believe that this will make it diffi-
cult to develop future refinements of the dynamic
boundary condition with reasonable amounts of
effort.

To get around this problem, we have
adapted the domain decomposition methods of
Zang [31] to split the solution of the dynamic
boundary condition from the solution of the pres-
sure Poisson equation. That is, we decompose
our solution into a two-dimensional surface and
a three-dimensional volume for the pressure solu-
tion step. In Zang’s method (as originally devel-
oped), the pressure Poisson equation is relaxed it-
eratively through decomposed domains using one
or two V-cycles of the multigrid solver on each
domain. Pressure and velocity boundary condi-
tions are exchanged only at the finest multigrid
level. The result is a method that quickly con-
verges to a consistent pressure field over decom-
posed domains. Our new adaptation manipulates
the dynamic boundary condition into an equation
for the pressure at the free-surface and an equa-
tion for the contravariant flux across the free-
surface. Therefore, we can alternately sweep the
free-surface and the volume in a manner similar
to that presented by Zang [31]. Our information
exchange at the free-surface provides the pressure
Poisson equation with a Dirichlet contravariant-
velocity boundary condition without requiring
any changes in the restriction and prolongation
operators. This method is more suitable for fu-
ture expansions since the dynamic boundary con-
dition can be changed by working only with the
surface domain, without affecting the volume do-
main and the fluid-flow Poisson solver.

In addition to those already presented,
two other types of equations are required to ob-
tain our discrete implementation of the dynamic
boundary condition. One is a discrete represen-
tation of the contravariant velocity on the free
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surface based upon the gradient of the contravari-
ant velocity at the free surface and below the free
surface:

U∗q

∣∣∣∣
S

= U∗q

∣∣∣∣
S−1

+
1
4

δ

δξ3
U∗q

∣∣∣∣
S

+
1
4

δ

δξ3
U∗q

∣∣∣∣
S−1

(60)

where subscript (S) indicates the discrete quan-
tities are evaluated at the cell face on the free
surface, and subscript (S−1) indicates the quan-
tities are evaluated at the cell center inside the
free surface.

The second type of equation required for
completeness is an interpolating method for com-
puting the first and second derivatives of the pres-
sure variable (φ) at the free surface from the pres-
sures at and below the free surface. For a two-
dimensional flow with a one-dimensional surface
we have tested both linear and quadratic interpo-
lating forms, which can be written in the general
form:

γ ≡ δφ

δξ3

∣∣∣∣
S

= α1φS− + α2φS−1 + α3φS−2 (61)

ψ ≡ δ2φ

(δξ3)2

∣∣∣∣
S

= α4φS− + α5φS−1 + α6φS−2 (62)

where quantities subscripted with S and S − 1
are as noted above, while φS− indicates the pres-
sure in the water at the free surface, and φS−2

indicates the pressure at the center of the second
cell center inside the free surface.

The derivation of the three-dimensional
discretized equations to be enforced as the
dynamic boundary condition in the two-
dimensional surface domain is too long to present
in this paper. The method requires that equa-
tions (56), (57), (58), (60), (61), and (62), be
manipulated to express the dynamic boundary
condition as two linear operators: one for the con-
travariant velocity component normal to the free
surface,

L1

(
U3

S

)
= S1

(
φS− , φS−1 , U∗

S−1 , γ , ψ
)

(63)

and a second operator for the pressure in the wa-
ter at the free surface,

L2 (φS−) = S2

(
φS+ , U∗

S−1 , U3
S , γ

)
(64)

where φS+ indicates the pressure in the air at the
free surface.

For a three-dimensional flow with a two-
dimensional free surface, the linear operators L1

and L2 take a discretized Poisson-like form and
are solvable by multigrid methods. For the two-
dimensional flows with one-dimensional surfaces
that we have tested to date, the linear opera-
tors take on tridiagonal form and are solved by
inversion. The coupled two-dimensional surface
decomposition method can be summarized as:

1. Solve the free-surface pressure equation (64),
for an estimated free-surface pressure (φS−),
using the pressure gradient and contravari-
ant velocity from the last iteration.

2. Solve the free surface contravariant velocity
equation (63) for an estimated contravariant
velocity

(
U3

S

)
at the surface.

3. Repeat steps 1 and 2.

4. Perform one multigrid V-cycle, relaxing
equation (17) to obtain a pressure estimate
in volume.

5. Compute the estimated free-surface pressure
gradient, γ, and second derivative of pres-
sure, ψ, from equations (61) and (62) respec-
tively.

6. Repeat steps 1 through 5 until convergence.

We expect that the three-dimensional
implementation of this method (currently under
development) will involve two V-cycles of the free
surface pressure and contravariant velocity multi-
grid equations for each V-cycle of the Poisson
pressure equation. This method is likely to be
more costly in computational time than a direct
application of the dynamic boundary condition,
but the overall computational costs should still be
reasonable since they should be less than that for
a three-dimensional, two-grid, domain decompo-
sition case, such as Zang [31] has already shown
to be feasible.

5 SIMULATION RESULTS

5.1 Decaying Vortex with a Mov-
ing Grid

The use of second-order accurate discretizations
does not guarantee second-order accuracy in a
numerical simulation [32]. This is especially true
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with boundary-fitted curvilinear coordinates and
moving grids. We have conducted several simu-
lations of a decaying vortex to demonstrate that
our Navier-Stokes solution method is second-
order accurate in time and space with a moving
grid, The decaying vortex is an analytical solu-
tion of the two-dimensional Navier-Stokes equa-
tions over the domain of (0 ≤ x1, x2 ≤ π) that
can be written as:

u1 = − cos (x1) sin (x2) e−2t (65)
u2 = sin (x1) cos (x2) e−2t (66)
p = −0.25 [cos 2x1 + cos 2x2] e−4t (67)

Figure (3) provides simulation results
showing the reduction of the RMS velocity er-
ror with the increase in grid points from 8x8, to
16x16, to 32x32. Three different error lines are
shown: the first represents the results for a fixed
grid; the second is for a grid that is fixed in shape,
but translates through the decaying vortex do-
main; the third is for a grid that has boundaries
which remain fixed, but whose interior grid lines
are stretched with each time step. It can be seen
that accuracy is approximately second-order in
all these cases.

grid points in one direction (n)

R
M

S
 e

rr
or

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1 1 0 100

fixed grid

translating grid

stretching grid

Figure 3: Decaying vortex accuracy

5.2 Standing Waves

To test the ability of our code to simulate a
free surface, we performed simulations of stand-
ing waves in a two-dimensional rectangular basin.
Free-slip boundary conditions were used for the
sides and bottom of the 32 x 32 cell domain

so that the simulations could be compared to
nonlinear and linear standing wave theory. The
grid points were distributed evenly in both di-
rections. Using the wavelength L = 1 to non-
dimensionalize the domain, the width is 0.5, and
the depth d is 0.5. Simulations were run for
small-amplitude waves with a non-dimensional
wave height (or steepness) of 0.01 and for finite-
amplitude waves with a non-dimensional wave
height of 0.1. Using the wave amplitude a and
the wave number k, these cases have ak values of
0.031 and 0.31, respectively. We conducted simu-
lations at Reynolds numbers of 10, 100, and 1000
to illustrate capabilities of the simulation code
with the relatively coarse grid. The Reynolds
number is defined as:

Re =
LU
ν

(68)

with ν as the kinematic viscosity, and U as the
characteristic Cartesian velocity based upon the
wave amplitude (a) and the wave frequency (ω):

U = aω (69)

From Lamb [33], the damping of a free
wave due to viscosity as a function of time can
be approximated from:

a(t) = a(0)e−2νk2t (70)

Note that this is based upon an energy dissipation
argument for linear waves in deep-water, so we
can only expect this to provide a rough guide to
our expected damping.

From Wiegel [34] we can obtain predic-
tions of wave period and shape for linear and non-
linear standing waves. Both linear and non-linear
irrotational wave theory predict the wave period
(T ) for an inviscid wave as:

T =

√
2πL

g

(
tanh

2πd

L

)−1

(71)

For our simulation domain this provides a theo-
retical period of 1.1339 seconds.

According to linear theory for small am-
plitude waves, the wave shape should be a sinu-
soid, where the surface height (H) above the still
water level is:

H (x, t) = a sin (kx) sin (ωt) (72)

where ω is the wave frequency (2π/T ). Nonlinear
theory for finite amplitude standing waves pre-
dicts a wave shape given by:
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comparison of simulation and theory:
case ak Re initial period wave height linear wave nonlinear wave

wave shape difference1 difference2 shape difference3 shape difference3

1a 0.031 10 linear 0.32 % 1.1 % 0.39 % 0.32 %
1b 0.031 10 non-linear 0.32 % 1.1 % 0.37 % 0.31 %
2a 0.031 100 linear 0.23 % 0.76 % 1.5 % 0.54 %
2b 0.031 100 non-linear 0.23 % 0.64 % 1.1 % 0.22 %
3a 0.31 10 linear 11 % 0.59 % 0.33 % 0.20 %
3b 0.31 10 non-linear 11 % 0.64 % 0.33 % 0.12 %
4a 0.31 100 linear 0.87 % 1.9 % 2.4 % 0.59 %
4b 0.31 100 non-linear 0.87 % 1.1 % 2.2 % 0.37 %
5a 0.31 1000 linear 0.32 % 6.4 % 1.2 % 0.53 %
5b 0.31 1000 non-linear 0.87 % 3.7 % 1.2 % 0.32 %

NOTES:

1. “period difference” is mean difference between the simulation wave period and theoretical period for the four

oscillations simulated, and is expressed as a percentage of the theoretical period.

2. “wave height difference” is RMS difference between the simulation and theoretical wave height for crests at x = 0

from the first through fourth periods, and is expressed as a percentage of the wave height.

3. the “wave shape difference” is the RMS difference between the simulation wave shape and theory for one wave,

expressed as a percentage of the wave height, and measured at the second wave period for case 3 and the

fourth wave period for all other cases.

Table 1: Simulation Summary

H (x, t) = a sin (kx) sin (ωt)

− 1
2
ka2 coth (kd) cos (2kx){

sin2 (ωt) − 3 cos (2ωt) + tanh2 (kd)
4 sinh2 (kd)

}
(73)

Note that for a small amplitude standing wave,
the wave shape predicted by linear and non-linear
theory are practically indistiguishable.

We have run simulations using both the
linear and non-linear free-surface shape as an ini-
tal condition in order to examine the ability of the
method to move toward the correct free-surface
shape. A summary of the simulation conditions
and comparisons between simulation results and
theory are presented in table (1). Note that the
results show excellent agreement for both the
nonlinear wave shape and viscous damping of
the wave height. In all cases, the wave shape is
closer to the theoretical nonlinear shape than to
the linear shape. The wave shape difference was
computed independently of the effects of viscous
damping by using the simulated wave amplitude
in equations (72) and (73) instead of the theoret-
ical amplitude from equation (70). Similarly, an
adjustment was made for the difference between
the theoretical period and the simulation period
by applying a small time shift to adjust the the-
oretical crest to the same time as the simulation

crest. The simulations show an increase in the
simulation wave period with increasing viscosity,
which is a realistic physical result.

To provide a better picture of the simu-
lation accuracy, we present two types of graphs
which compare the results of typical simulations
to linear and nonlinear theory. Figures (4), (6),
(8), (10), and (12) show the height of the free
surface at the wall x = 0 as a function of non-
dimensional time (which is obtained using the
theoretical period computed from equation (71)).
The lines for linear and nonlinear theory are
based on equations (72) and (73) with equation
(70) used to compute the theoretical amplitude
as a function of time. Figures (5), (7), (9), (11),
(13), and (14) compare the wave shape for the
simulation wave and theory.

Figures (4) and (5) present results for
case 1b, showing that the simulation of a small
amplitude standing wave at a low Reynolds num-
ber maintains the correct wave profile and is
damped as predicted by theory. The results for
case 1a (using a linear initial wave shape), are
indistinguishable from the results from case 1b
(using the non-linear initial wave shape). Fig-
ures (6) and (7) present results for the small am-
plitude standing wave at a Reynolds number of
100, case 2b. These graphs demonstrate that the
simulation of viscous, small-amplitude wave still
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Figure 4: Free surface wall height, case 1b;
Re = 10, ak = 0.031
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Figure 5: Free surface wave shape, case 1b;
Re = 10, ak = 0.031

nondimensional time

no
nd

im
en

si
on

al
 s

ur
fa

ce
di

sp
la

ce
m

en
t @

 x
=0

-0.005

0

0.005

0 1 2 3 4

simulation nonlinear theory linear theory

Figure 6: Free surface wall height, case 2b;
Re = 100, ak = 0.031
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Figure 7: Free surface wave shape, case2b;
Re = 100, ak = 0.031
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Figure 8: Free surface wall height, case 3b;
Re = 10, ak = 0.31
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Figure 9: Free surface wave shape, case 3b;
Re = 10, ak = 0.31

follows the linear and nonlinear theory both in
wave shape and in period.

Figures (8) and (9) present results for the
finite amplitude standing wave at Re = 10, case
3b. In this case, the wave is rapidly damped out.
It can be seen that the period for the simulation
is significantly greater than that for the theory.
This result is not unreasonable, as one would ex-
pect that a highly viscous flow will oscillate at
a slower period than that predicted by inviscid
theory.

Figures (10) and (11) present results for
the finite amplitude standing wave at Re = 100
with an initial nonlinear wave shape, case 4b. It
can be seen that linear and non-linear theory are
not coincident and the simulation wave shape fol-
lows nonlinear theory very closely.

Figures (12) and (13) present results for
case 5b (Re = 1000) for an initially nonlinear
wave shape. It can be seen that this case is at
the limit of our ability to resolve the viscous ef-
fects with the coarse grid used in the simulation.
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Figure 10: Free surface wall height, case 4b;
Re = 100, ak = 0.31
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Figure 11: Free surface wave shape, case 4b;
Re = 100, ak = 0.31
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Figure 12: Free surface wall height, case 5b;
Re = 1000, ak = 0.31
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Figure 13: Free surface wave shape, case 5b;
Re = 1000, ak = 0.31

To show that the simulation can evolve
a nonlinear wave from an initially linear profile,
figure (14) presents the wave shape for case 4a,
which is similar to case 4b, (shown in figure (11)),
except that the initial wave shape is a sinusoid
from linear theory.
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Figure 14: Free surface wave shape, case 4a;
Re = 100, ak = 0.31

CONCLUSION

The numerical method presented has been shown
to be second-order accurate in time and space
with a moving grid, and has been shown to
effectively simulate two-dimensional nonlinear
waves. The method presented for deriving the
kinematic boundary condition does not artifi-
cially restrict the free surface movement or limit
wave shapes to single-valued functions in phys-
ical space. The surface decomposition method
presented has been shown to be effective in the
simulation of two-dimensional non-linear waves,
and it is expected that future three-dimensional
implementation will provide an effective method
for invoking extremely complicated implementa-
tions of the dynamic boundary condition.
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