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Abstract. The approach given in this paper leads to numerical methods for Volterra

integral equations which avoid the need for special starting procedures. Formulae for a

typical fourth-order method are derived and some numerical examples presented. A

convergence theorem is given for the method described.

1. Introduction. In this paper we consider the numerical solution of the equation

(1) yOx) =gOx)+      KOx,t,yit))dt.
J o

Here y Ox) is the unknown function which is to be determined in some interval

0 S x S a. The function gix) and the kernel Kix, t, y) are given and are assumed to

satisfy the conditions :

(1) gix) is continuous and bounded in 0 Ss x S a,

(2) Kix, t, y) is bounded and uniformly continuous in x and t for all finite y and

0 S t S x S a,
(3) Kix, t, y) satisfies a uniform Lipschitz condition

[Kix, t, y/) - Kix, t, y2)\ S L\yi - y2\

for all 0 S t S x S a.

It is well known that under these conditions Eq. (1) has a unique solution

[8, p. 42].
In practice, approximate solutions to Eq. (1) are frequently obtained by finite-

difference methods, such that approximate values for y Ox) are computed at certain

discrete points (mesh-points) of the range. Several approaches exist for developing

such numerical methods. The first consists of replacing the integral in (1) by some

numerical quadrature using values at the mesh-points and satisfying the resulting

equation at these points. The system of equations thus obtained can be solved, one

point at a time. Discussions of this approach have been given by Fox and Goodwin

[2], Noble [5], and Mayers [4], In general, special starting procedures are needed to

obtain the solution at the first few points. Some typical starting procedures were

given by Noble [5] and Day [1].

A different class of approximation formulae is based on an extension of the

Runge-Kutta methods to Eq. (1). This has been studied in detail by Pouzet [6],

[7]. Runge-Kutta methods are self-starting, but tend to be complicated and in-

efficient and hence of limited practical use.

A third approach uses numerical quadrature, but the computations are arranged

such that several values of y are obtained at the same time. This leads to what are
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generally called block-by-block methods, and it is with these that we are concerned

here. The block-by-block approach was first suggested by Young [9] in connection

with product integration techniques. The present paper extends this idea to develop

methods which are generally useful. The main advantage of this approach is due to

the fact that no special starting procedures are needed ; thus the methods are simple

to use and switching step-size presents no problem.

2. Block-by-Block Methods. The basic interval [0, o] is divided into steps of

width A, such that Xi = ih and Nh = a. The approximate solution will be defined at

the mesh-points Xi and denoted by F,-, such that Y i is an approximation to y Ox/).

We rewrite Eq. (1) in the form

/xpm l""n

KOxn, t, yOt))dt + J     KOxn, t, yit))dt,

where p is some integer and m = integer part of n/p. If the values Y0, Y\, • • -, Ypm

are known, then the first integral can be approximated by standard quadrature

methods. The second integral is estimated by a quadrature rule using values of the

integrand at t = Xpm, Xpm+i, • • -, a^m+u. Since the values of F at these points are

unknown, we have a system of p simultaneous equations

mp p

(2) ln   —   g(Xn)   + h  ¿_i WniK(Xn, Xi,   Y i)  +  h   ¿_, WniK(Xn, XmpJri,   Ymp+i)  ,
¿=0 »=0

for n = mp + 1, mp + 2, • • •, p(m + 1), where w„i and w'ni depend on the quadra-

ture rule used. For sufficiently small A the system (2) has a unique solution which

can be determined by iteration (or directly, if the system is linear). Thus, a "block"

of p values of Y is obtained simultaneously.

For example, using p = 2 the integration over [0, x2m] can be accomplished by

Simpson's rule, and the integral over [x2m, xn] by using a quadratic interpolation of

the integrand at the points x2m, x2m+h x2m+2. Then (2) becomes

Y2m+i = g(x2m+i) + — [K(x2m+i, xo, Yo) + AK(x2m+i, Xi, Yi) +

■ ■ ■ + K(x2m+i, x2m, Y2m)]

(3) + YôK(x2mA-i, x2m, Y2m) + — K(x2m-\-i, a;2m+i, Y2m+i)

— t^K(x2m+i, x2m-\-2, Y2mjr2) ,

Y2m+2 = g(x2m+2) + -r- [K(x2m+2, xo, Y0) + AK(x2m+2, Xi, Y{) +

(4) • • • + AK0x2m+2, x2m+u Y2m+i)

+ K(x2m+2, X2m+2,   F2m+2)J .

Equations (3) and (4) constitute a valid method for the numerical solution of Eq.

(1). However, it is not completely general since it requires the use of the kernel

outside the region 0 S t S x S a. If the kernel does not exist outside this region or

if it is ill-behaved near the edges, numerical difficulties may arise. This objection

can be overcome by the following modification. We write
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K(x2m+i, t, y(t))dt ~ — K0x2m+i, x2m, Y2m)
6

+ ~rrK0x2m+i, x2m+i/2, Y2m+i/2) -\—— K0x2m+i, a;2m+i, F2m+i) .

Now F2m+i/2 is not known, but may be estimated by quadratic interpolation

F2m+l/2 — f   Y2m +   f   F2m+1   ~    8   Y2m+2 .

The resulting equations then are

F2m+1   =   gix2m+l)

+ — [K0x2m+i, xo, Yo) + AKix2m+i, xi, Yi) + ■ ■ ■ + K0x2m+i, x2m, F2m)]

/r\ +    p   K(x2m+i, X2m,  F2m)  H-7T K(x2m+l, X2m+i/2,   g   F2»

+    r,   K(X2m+l, X2m+l,   -I2m+l)

+   4   F2m+1 g   í 2m+2J

A
, s F2m+2 = 0(a;2m+2) + — [K(x2m+2, x0, F0) + 4ii(a:2m+2, Xi, Yi)

+   • • •   + K(x2m+2, X2m+2,  F2m+2)] .

3. Theoretical Results.

Definition 1. Let F0(A), Fi(A) • • • denote the approximation obtained by a given

method using step-size A. Then a method is said to be convergent if and only if

|F,-(A) - y(xi)\ -► 0 ,    for i = 0, 1, 2, - • -, N

as A —> 0, A7 —* oo, such that Nh = a.

Definition 2. A method is said to be of order g if g is the largest number for which

there exists a finite constant C such that

|F,-(A) -y(x.)\ SCh",       i = 0,l,---,N,

for all A > 0.

Our aim is to show that method (5), (6) converges and to establish its order of

convergence. We need the following lemma.

Lemma. If

n—l

I&.I ÚA Ta\íÁ +B,   A>0,    B>0,

then |6,| rg B(l + A)n.

The proof follows immediately by induction. As a corollary we have that, if

A = hK and x = nh, then

(7) %\SBeKx.

The main result then follows immediately.

Theorem. The approximation method given by Eqs. (5) and (6) is convergent and

its order of convergence is four.
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Proof. Let e¿ = y(x/) — Yi. Then, using Eqs. (1), (5), (6) and the Lipschitz

condition, we can find a constant C such that

2m

|«2m+l|   S  hC  ¿^  |e,|   + AC|e2m+l|   + feC| Ê2m+21   +   |-f?2m+l|   ,
i-0

2m

|«2m+2|   S  hC  ¿_,  \ti\   + AC|e2m+l|   + AC|e2m+2|   +   |Ä2m+2|   ,

where the R's represent the quadrature errors involved in integrating K(x, t, y(t))

using the given quadrature rule. Setting ||em|| = max,=i,2 |e2m+¿|, andÄ = maxí|i2¿|,

we have, from (7),

IM g (1 - 2hCr1R exp [Cxn/il - 2hC)] .

For sufficiently smooth K and y, R = O (A4), thus

Ikll = 0(A)
and the theorem is proven.

4. Numerical Examples.

Example 1.

y(x) = 1 + x — cos x —       cos (x — t)y(t)dt.
J o

Solution. y(x) = x.

The absolute values of e, for various step-sizes are given in Table 1.

■

Table 1

x A = .2 A = .1 A = .05

.2 5.80 X 10"8 3.21 X 10"8 1.94 X 10"9

.4 1.98 X 10-6 1.16 X 10-7 7.17 X 10~9

.6 4.11 X 10-6 2.40 X 10-7 1.50 X 10~8

.8 6.40 X 10-6 3.98 X 10"7 2.45 X 10~8
1.0 9.89 X 10-6 5.61 X 10"7 3.52 X 10"8
1.2 1.19 X 10-5 7.39 X 10"7 4.63 X 10-8
1.4 1.61 X 10-6 9.16 X 10-7 5.75 X 10~8
1.6 1.74 X 10-5 1.09 X 10-6 6.85 X lO""8
1.8 2.20 X lO"6 1.25 X lO"6 7.84 X lO"8
2.0 2.21 X lO"5 1.39 X 10"6 8.77 X 10"8

Example 2 (From [1]).

-/;yix) = 3 + 2x - /   [2(3 - i) + 3]yi-)dt,

Solution. yOx) = Ae~2x — e~x.

The errors are shown in Table 2.

5. Concluding Remarks. The method which we have established here con-

stitutes a convenient algorithm for solving nonlinear Volterra equations of the
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second kind which is computationally efficient and of high accuracy. While only

one method was explicitly given, it is clear that the approach can be generalized

for arbitrary order. A general statement of the convergence theorem can be found

in [3]. Also, the method can easily be extended to a system of simultaneous Volterra

equations.

Table 2

x A = .2 A = .1 A = .05

.2 3.26 X 10-3 7.08 X lO"6 4.38 X lO"6

.4 1.54 X 10"3 9.26 X 10"5 5.73 X 10~6

.6 4.52 X 10-4 9.04 X 10~5 5.60 X 10"6

.8 1.30 X 10-4 7.82 X 10"6 4.83 X 10"6
1.0 1.94 X 10"4 6.29 X 10"5 3.89 X 10"6
1.2 8.05 X 10-4 4.82 X 10-6 2.98 X 10~6
1.4 2.26 X 10"4 3.55 X 10"5 2.20 X lO"6
1.6 4.24 X 10-4 2.53 X lO"6 1.56 X 10"6
1.8 1.38 X 10-4 1.74 X 10-5 1.08 X 10~6
2.0 1.94 X 10"4 1.15 X 10"5 7.12 X 10~7
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