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Abstract 

We present a method for investigating the simultaneous movement of all zeros of equations 

of motions defined by discrete mappings. The method is used to show that knowledge of the 

interplay of all zeros is of fundamental importance for establishing periodicities and relative 

stability properties of the various possible physical solutions. The method is also used (i) to show 

that the Fronti~re set of Fatou is defined primarily by zeros of functions leading to an entire 

invariant limiting function which underlies every dynamical system, (ii) to identify cyclotomic 

polynomials as components of the limiting function obtained for a parameter value supporting a 
particular superstable orbit of the quadratic map, (iii) to describe highly symmetric periodic cycles 

embedded in these components, and (iv) to provide an unified picture about which mathematical 

objects form basin boundaries of dynamical systems in general: the closure of all zeros not 

belonging to "stable" orbits. 

1. Introduction 

The purpose of  this paper is to present a method to study the dynamics o f  natural 

phenomena which may be approximated by models defined by discrete mappings. As 

traditional, we write these models generically as xt+l = f ( x t ,  a) ,  where f is a nonlinear 

function, xt is a real variable representing some quantity of  interest as measured at time 

t and a is a real parameter. For simplicity, we start considering one variable and one 

parameter. For any particular generation t, the state and stability of  possible solutions 

of  the model are determined from the function f t ( x ,  a) obtained by composing f with 

itself t times. Discrete models are frequently investigated by studying the behavior of  
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sequences of numbers generated with finite precision by iteration, starting from some 

initial condition. For example, the characterization of dynamical behaviors involves 

frequently the numerical determination of the so-called stable and unstable manifolds 

by, respectively, forward and backward iterating equations of motion from specific sets 

of  initial conditions. In this paper, rather than studying sequences of numbers generated 

with finite precision, we wish to concentrate on the analytic properties of the infinite 

hierarchy of functions { f t }  which underlie all iterative processes. As we hope to make 

clear in what follows, sequences of numbers are relatively simple consequences of the 

properties of  this hierarchy of functions and, in particular, of a very special system- 

dependent invariant entire limiting function to which the dynamics must necessarily 

converge. 

To fix ideas we elect the quadratic map 

Xt+I = f ( x t , a )  = a - x 2 t ,  t = 0 , 1 , 2  . . . .  (1.1) 

as the main model to help implementing a systematic method to study limiting functions 

generated by iterating equations of motion. The state and stability of a system f ( a ,  xt) 

for a given set of parameters and given t is defined by equations which may be formally 

represented as power series. For Eq. (1.1) the power series after t iterates is 

f t ( x ,  a) = pk(a)x  2' + . . .  + Pl (a)x  2 + po(a),  (1.2) 

where the coefficients {p~(a)} are different for every generation t. Since there are no 

singularities in any of the f t ( x ,  a) and also no upper bound for the number of iterates, 

the generic limit for t ~ ~x~ of this hierarchy of functions for an arbitrary f(xt, a) is 

clearly an entire function, not a polynomial. From Eq. (1.2) we see that the asymptotic 

limiting function A(a, x) obtained after an infinite number of iterates is of the form 

O O  

,~(x, a) = Z PJ(a)x2J" (1.3) 
j=0 

The iterative process implied by Eq. ( 1.1 ) and similar ones certainly fixes the functional 

interdependence of every Pj(a) on the parameter a. Now, instead of choosing to start 

with a one-parameter function we could also have taken a mapping more general in that 

while still maintaining a x 2j dependence on the variable, would be allowed to contain 

many more parameters. One fruitful example involving just two parameters is [ 1 ] 

Xt+l = f ( x t , a , b )  = (x 2 - a) 2 - b, (1.4) 

which is simply the second iterate of the quadratic map with a of the second iterate 

replaced by an arbitrary b. For Eq. (1.4), the relation between the several limiting 

coefficients Pj (depending now on two parameters) is much more complicated. But the 

existence of more control parameters allows simultaneously much more freedom and 

richness in dynamical behavior. Let us assume for a moment that the several Pj which 

appear in a given power series a(x ,a ,  ) like Eq. (1.3) could be generated from some 

not yet determined z-map (for "zero" map or, perhaps more appropriately at this stage, 
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for "Zauber" map) in a way such as to reduce the limiting entire function to one of 

the familiar elementary functions of mathematical physics. Three such limiting cases 

resembling the infinite series generated by the quadratic map could be, for example, 

X 2 X 4 X 6 

cosh(x) = 1 + ~.t + ~.v + ~.t + " "  (1.5a) 

X 2 X 4 X 6 

cos(x) = 1 - ~ + 4--~ - 6-"~ + ' ' "  (1.5b) 

X 2 X 4 X 6 
sin(x) = 1 -  + - - - - - +  . . . .  (1.5c) 

x ~ 5! 7! 

The infinite series corresponding to a Tchebicheff polynomial or to elliptic functions 

are more sophisticated examples. From the expressions above one recognizes that by 

appropriate choice of  coefficients the same formal expansion in powers of x 2 may 

produce several different final "dynamics", characterized here by the properties of the 

well-known functions on the left-hand side of the equations. An interesting question 

seems then to be under which conditions it is possible to write simultaneously all 

coefficients recursively as functions of  a very small number of parameters. Then, after 

this is done, to investigate for which values of these parameters one finds "resonances" 

between all coefficients of the infinite series such as to produce properties of interest. 

If  such resonances might indeed be obtained by iterating some underlying z-map, the 

difficulty in determining the map would be mainly due to the fact that one does not 

know on how many parameters it might depend and which specific values of them 

should be used to produce particular limits such as those exemplified by Eqs. (1.5a- 

c). How can we find z-maps? How to solve the Umkehrproblem i.e. the problem of 

reversing an infinite power series into a z-map? Is it possible to "back-telescope" an 

infinite series into an elementary nonlinear seed which when iterated reproduces the 

whole power series? We have observed that all these questions are very much related 

to group properties of  the set of zeros of the aforementioned invariant entire function 

and of the functions leading to it. Thus, it seems important to investigate the dynamical 

properties of the infinite number of zeros of these functions as they arise, generation 

after generation, in iterates of familiar maps. 

The purpose of this paper is to discuss (in the next section) a systematic method 

for monitoring simultaneously the movement of all zeros of any arbitrary functiOn, and 

to apply it to situations of particular interest in the study of dynamical systems. As 

shown by the examples below, the method is easy to apply and very helpful. This paper 

may be also considered as an attempt towards understanding (i) whether sequences of 

algebraic or transcendental functions generated by iterating z-maps may eventually lead 

to limiting entire functions which, in spite of being different, would share classes of 

identical properties under transformations, and (ii) whether limiting functions might be 

reduced to familiar infinite series (representing elementary functions such as those in 

Eq. (1.5), for example) or even to finite series, i.e. to polynomials. To this end we 

will consider here the dynamical evolution of the set of all generations of zeros on the 

complex plane for families of algebraic functions generated by some well studied maps. 



60 J.A.C. Gallas / Physica A 211 (1994) 57-83 

2. The simultaneous interplay of  all zeros 

The choice of using real variables and parameters in Eq. ( 1.1 ) is primarily intended 

to reflect the real character of an actual measurement of an interesting quantity for some 

natural phenomena. There is, however, no intrinsic need for the dynamics to be restricted 

a priori  over the reals. A more natural choice seems to be one similar to that done when 

dealing with, for example, electromagnetism, fluid dynamics or quantum mechanics: to 

base the analysis directly on a formulation constructed over the complex field along with 

a prescription on how to extract and interpret real and imaginary quantities associated 

with it. This is the key idea that will be explored in the paper. The remainder of this 

section is dedicated to the problem of calculating all zeros for arbitrary equations of 

motion. We start by first considering the calculation of zeros corresponding to period-1 

dynamics (fixed points) for the quadratic map. 

For the quadratic map the two possible period-1 zeros might be easily obtained by 

solving the quadratic equation x 2 + x - a = 0 for x: 

xs = ( - 1  + ~/1 + 4a ) /2  and x~ = ( - 1  - ~/1 + 4 a ) / 2 .  (2.1) 

These zeros might be either real or complex, depending on a. They were easy to obtain 

because according to Neugebauer [2], at least from around 1700 B.C. one knows how 

to solve a quadratic equation. But as nonlinear equations similar to Eq. (2,1) are iter- 

ated more and more, we run out extremely quickly of closed formulas for determining 

analytically (i) the possible physical orbits (subsets of the real zeros) (ii) whether 

these orbits are stable or not, and (iii) the extension of their respective domains of sta- 

bility. Not knowing how to proceed analytically, we devise and implement a numerical 

strategy to obtain such important informations. As will become clear from what follows, 

knowledge of the simultaneous interplay of all zeros of the hierarchy of functions pro- 

duced by iterating the equations of motion is essential for understanding the dynamics. 

By "simultaneous interplay" we mean the simultaneous displacements of all zeros in 

the complex plane as parameters are varied. As parameters are changed, zeros which 

were initially separated in the complex plane may collide, thereby producing detectable 

physical phenomena. Familiar bifurcation phenomena involve the transmutation of a pair 

of complex conjugate zeros into a pair of real ones (which remain conjugated quantities 

in a properly extended field). Bifurcations must occur by definition along the real line. 

We want to be able to investigate questions such as, e.g. is it possible to have collisions 

between different pairs of complex zeros happening "deeply" in the complex plane, 

i.e. not on the real axis? Under which conditions do they occur? Are collisions happen- 

ing on the real line accompanied by other collisions happening deeply in the complex 

plane? Are parameter values at which zeros collide determined from the outset by the 

algebraic closure imposed by the equations of motion? Or more precisely, by the field of 

numbers defined by the parameters and initial conditions associated with the equations 

of motion? If independent deep collisions are possible, what type of phenomena do they 

produce along the physical horizon defined by the real axis? Is it possible to recognize 

and detect such events from measurements done exclusively along this horizon? Notice 
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that although in this paper we will concentrate on the dynamics of polynomial mappings 

with real coefficients, the approach used can be trivially adapted to deal with generic 

situations in which coefficients are complex numbers and the models are defined by 

arbitrary functions, transcendental or not. 

Suppose that for a fixed value of a one needs to find all possible values of x that 

satisfy a generic algebraic or transcendental equation 

f ( x , a )  = 0, (2.2) 

though of as representing an equation of motion in what follows. We find that a conve- 

nient way of studying all zeros is to consider all equations of motion as embedded in 

the "generalized" space where the most unconstrained possible dynamics lives. "Most 

unconstrained" means having all variables and parameters considered from the begin- 

ning over the complex field, on an equal footing. For Eq. (2.2) (which to simplify the 

discussion is assumed to depend only on a single variable and on a single parameter) the 

generalized space is four-dimensional, characterized by coordinates (x, a; #, a )  obtained 

by complexifying the dynamics via the replacements x --~ x + is c and a ~ a + itr in 

the equation of motion. Here oL and # are real quantities and i --- v/L-] ". The pair (x, a) 

correspond to the usual real variable and parameter, respectively, while the pair (#, re) 

are their "virtual" duals. The complexification has the effect of conformally splitting 

the original equation of motion into two useful functions: its real and imaginary parts, 

namely, 

f ( x  + i~, a + itr) = U(x,  a; ( ,  or) + iV(x, a; ( ,  ~) ,  (2.3) 

in which, by construction, U and V are always real functions of real quantities. I f  only 

the projection for real parameters is of interest, one sets simply a = 0 and considers the 

dynamics on the particular three-dimensional slice defined by 

f ( x  + i(,  a) = U(x,  a; ~) + iV(x,  a; so). (2.4) 

The functions U and V are useful because they allow employing simple two-dimensional 

diagrams, "snapshots", to study the dynamics of the zeros. In the U x V framework, the 

original problem of finding all zeros of Eq. (2.2) for a given value of the parameter a 

translates into calculating all pairs (x, ~:) which satisfy simultaneously the fundamental 

equations 

U = 0 and V = 0. (2.5) 

By comparing Eqs. (2.2) and (2.4) one sees that s c acts physically like a ghost or hidden 

variable and that the rule of the game over the real field is to make virtual contributions 

V invisible, i.e. to vanish identically permanently. Since the ghost variable # appears in 

both U and V, we may say that the dynamics measured over the real universe U will 

necessarily display echoes from the virtual reality defined by V, and vice-versa. 

Since U and V are constructed to be always real functions, the zeros that we are 

looking for may be obtained by discretizing a region of interest and plotting the parity 
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of U and V in that region. We say that the parity of U is posi t ive  on a point of the 

generalized space if U > 0 at that point, and negative if  U < 0. Similarly for V. The 

problem of plotting the parity of U and V simultaneously on a single two-dimensional 

diagram is then equivalent to a "four-color" problem, i.e. equivalent to painting the 

region of interest with four colors representing the relative magnitudes of  U and V in 

every point of the region. In the figures below we paint each point, "pixel", with a color 

or shading as follows: 

white if ( U >  0, V>  0) - ( + , + ) ,  

black if ( U >  0, V<  0) -= ( + , - ) ,  

purple if (U < 0, V>  0) --- ( - ,  + ) ,  

yellow if (U < 0, V<  0) - ( - , - ) .  

The names "purple" and "yellow" denote colors convenient in that when printed as gray- 

scales with non-color printers, produce high contrast half-tones intermediate between 

black and white. In the figures below, purple produces the shading closer to black while 

yellow produces the shading closer to white. For completeness one should also define 

parities and shadings for those points at which U and/or V vanish identically. There are 

however good reasons to make such definitions not really necessary for our purposes 

here: first, it is in general hard to hit zeros precisely using a numerically discretized 

covering of a continuous domain; second, even if we hit them, such isolated pixels are 

virtually invisible on the figures under the relatively high resolution of 300 dots-per- 

inch used here to produce them as color PostScript bitmaps. Apart from minimizing 

waist of  computer time, as one may easily convince oneself by looking at the figures 

below, four colors are perfectly enough to characterize and follow the dynamics precisely 

and unambiguously whenever the graphical resolution is sufficiently high. The zeros of 

U = 0 correspond to some of the border lines between regions with two different colors. 

Similarly for V. Simultaneous zeros of  U = 0 and V = 0 correspond clearly to those 

very particular poin t s  where regions with f o u r  different colors meet. 

The t = 1 horizontal row in Fig. 1 shows an application of the ideas above to 

investigate the dynamics of the fixed points xs and xu, Eq. (2.1), of the quadratic map 

as the parameter a is varied. In this case 

U ( x ,  a; ( )  = x 2 - (2 + x - a, V ( x ,  a; ~:) = ( 1 + 2x)( .  (2.6) 

Notice the freedom along the line x = - 1 / 2 .  Individual figures show all zeros of  the 

equations obtained after t iterates, as indicated. Each set of four horizontal figures shows 

the zeros for a constant t and for a = - 1 ,  - 1 / 4 ,  0 and 3/4, chosen because the real fixed 

point denoted by  xs is known to be stable only for - 1 / 4  < a < 3/4. For a = - 1  and 

t = 1 there are two complex conjugate zeros, the intersections of the two parabolas with 

the vertical line x = - 1 / 2 .  For a = - 1 / 4  these zeros become real numbers by colliding 

with the physical horizon represented by the axis ( = 0. This event corresponds to 

the characteristic saddle-node bifurcation leading to stable period-1 dynamics. Beyond 



,7= - I  o t= l  

J.A.C. Gallas / Physica A 211 (1994) 5 7 - 8 3  

a= -0.25, t= I 

63 

a= -0.25, t=2 a=0.0, t=2 n = n  7~ 1=-7 

a= -I) 9~ t=~ a=O 7~ t=_ 

a= -1.0, t=5 = - . . . . . . . .  

2 .0  = - "  = = ' "  . . . .  = = "  = 

-2.0' 
-2.0 x 2 .0  

Fig. 1. Evolut ion o f  all zeros for  the first six iterates o f  the quadra t ic  map ,  Eq.  (1 .1 ) .  Zeros  are the points  

where  doma ins  o f  four  different  colors  meet .  The mean ing  o f  the colors  is expla ined in Section 2. The  scales 

and  var iables  shown  for  a = - 1 , t  = 6 are the same for  all o ther  values o f  a a n d / o r  t in the figure. Each  

square  in this and  s imilar  pictures  fur ther  on conta ins  4 5 0 x 4 5 0  pixels. 
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a = - 1 / 4  the stable fixed point Xs moves towards the right while the unstable one, 

x,, moves towards the left, always along the ~: = 0 axis. Now, we ask: what happens 

in this same interval of parameters to all other zeros which correspond to motions of 

higher periodicities (and which are all unstable in this interval)? In other words, were 

are the zeros of the equations corresponding to period-2, period-3, etc. located in the 

x x ~: plane for the interval of parameters where period-1 is stable? The situation for the 

generations t = 2, 3, 4, 5 and 6 may be seen along the other horizontal rows of Fig. 1, as 

indicated. The detailed dynamics of these generations will be discussed below. We start 

by discussing in the next section the behavior as seen along the a = 0 vertical column. 

For a = 0 the fixed point at finite distance with the largest basin of attraction along the 

real axis is the superstable fixed-point x = 0 which, therefore, is the most likely finite 

attractor to be detected experimentally. Note that x = - 1  is another possible real orbit 

having, however, a measure-zero basin of attraction along the real axis consisting of just 

two isolated points: x = - 1  and x = 1. But the real axis is the "wrong" direction of 

attraction for x = - 1 .  

3. The quadratic map for a = 0 and the Kreisteilung problem 

The purpose of this section is to show that for the particular value a = 0 of the 

quadratic map it is possible to identify analytically on the basin boundary the presence 

of roots of unity which also appear in the very famous Kreisteilung problem studied by 

Gauss (1777-1855), namely the problem of factoring x p - 1 in order to find conditions 

on the power p such that a regular p - g o n  could be constructed using only the tools 

allowed by Euclid, i.e. ruler and compass. The very interesting and long history of the 

problem of dividing a circle into equal parts and its associated cyclotomic equation is 

told in an extremely beautiful and actual little book written one hundred years ago by 

Klein [ 3 ]. We believe the identification of these two problems to be of importance be- 

cause the experience already accumulated while studying cyclotomic equations provides 

very useful ideas on how to attack related problems for different parameter values and 

for much more complicated equations of motion. Of immense interest is the possibility 

of using exact representations of roots of - 1  of all orders to investigate with absolute 

numerical precision the dynamics happening on invariant manifolds of the fixed point 

( x =  -1,~:  = 0). 

Thanks to de Moivre's theorem, the zeros of the cyclotomic polynomials x p - 1 

are known to be points equally spaced on the circumference of the unit circle on the 

complex plane, the vertices of a regular polygon of p sides. This fact allows one to 

decompose xP - 1 into linear factors over the complex numbers as follows: 

i// x P - 1  H ( x  {cos2~ 'k+is in  2~k '~  = - -  - -  X - -  e 2~rik/p . ( 3 . 1 )  

k=O P P }) = k=O 

But rather than this quite general mathematical factorization over the complex field one 
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may also use its linear factors to investigate which suitable combinations of them will 

produce a physical factorization of the stable dynamics over the reals, over rationals 

and in particular and much more interestingly, over some specific rings and finite fields 

on particular algebraic extensions. As mentioned before, the bifurcation diagram corre- 

sponding to the quadratic map has a stable fixed point (period-1 orbit) for all parameter 

values in the interval - 1 / 4  < a < 3/4. For a = 0 one has the so-called [4] "superattrac- 

tive" or "superstable" orbit. (For a recent discussion of the bifurcation diagram for the 

quadratic map see, for example, Section 3 and Fig. 1 of Ref. la.) The t - t h  generation 

of functions underlying superstable a = 0 orbits for the quadratic map is given by 

2 2 t 
Xt+l = - x t  = - X o .  (3.2) 

The associated limiting functions A(0, x) and A(0, x) are in this case 

A ( x , O )  =_ x +  ,~(x ,O)  = x +  lim x z'. (3.3) 
t ----~OO 

The properties of these functions may be studied by considering the limit of the prop- 

erties of subsequent generat ions of functions defined by 

A p ( x , O )  = x + x p+I = x ( x  p + 1), (3.4) 

where p = 2 t - 1. Eq. (3.4) shows clearly that cyclotomic equations appear as fun- 

damental components of the invariant limiting function defining the basin boundary or, 

in other words, of the stable manifold of the fixed point x = - 1  (and ~: = 0). Note 

the important fact that not every possible cyclotomic equation appears as a factor of 

the infinite family of functions generated by the quadratic map. But the zeros of every 

possible cyclotomic equation live on the closure of those zeros of the functions that 

appear as factors, generated by the dynamics of the map. All together, they form the 

basin boundary, or equivalently, the F - se t .  

The a = 0 column in Fig. 1 shows the location on the x x ~ plane of a few families of 

zeros for Eq. (3.4), with the conspicuous presence for every t of the zero at the origin. 

The dynamics of the quadratic map for any real value of a is particularly instructive 

when considered in the x × s c plane. When a = 0 one has the following two-dimensional 

map 

( x , ~ )  ~ (~2 _ x 2, - 2 x ~ ) .  (3.5)  

For conditions located inside the unit circle, iterates of Eq. (3.5) always converge 

asymptotically to the superattracting fixed point at the origin. Initial conditions outside 

the circle lead always to convergence towards the fixed point located at infinity. For 

initial conditions precisely on the circle there are two possible types of asymptotic 

behavior: periodic or aperiodic i.e. "chaotic", depending on the commensurability of the 

initial condition and the infinity of numbers of the form 

2~-k 2~-k 
cos + / s i n  - - ,  (3.6) 

P P 
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for all possible integers k and p = 2 t - 1. The fixed point (x,~:) = ( - 1 , 0 )  belongs to 

the very particular frontier set defined by those points lying exactly on the unit circle 

and which separate the domains of attraction of the two stable points: (0, 0) and infinity. 

The fixed point ( - 1 , 0 )  is a very stable attractor for dynamics happening on the unit 

circle. There is absolutely no mechanism allowing iterates to move out of  the circle if 

one starts the iteration from a point located exactly on the unit circle and performs 

all computations with absolute precision. The equation of the circle guarantees this. 

Therefore, all dynamics occurring within the boundary is perfectly stable as long as one 

moves exactly "parallel" to the border. Any slight perturbation "perpendicular" to it will 

be quickly amplified by the nonlinearity in the equations of motion, forcing the orbit to 

diverge away from the border. From this example one sees that if it were always possible 

to perform computations with absolute precision, then there would be no "unstable" 

dynamics. The basic difference between fixed points is simply that while some points 

are able to attract quite "isotropically" in the space of variables (i.e. along a dense 

set of different directions), others can attract only along very specific directions. This 

observation makes it natural to classify fixed points and periodic orbits according to the 

dimension of their attracting set. 

While it is possible to recognize the aforementioned facts analytically from Eq. (3.5), 

any attempt of following numerically an exact orbit using only finite-precision arith- 

metics on a computer, "shadowing", is bounded to fail due to the accumulation of 

round-off errors, with the dynamics escaping the frontier and "converging" after a rel- 

atively small number of iterates to one of the isotropically attracting fixed points, zero 

or infinity in the present example. Numerical computations using polar coordinates pre- 

vent iterates from escaping the unit circle. But then finite-precision arithmetics has the 

(deleterious) effect of continuously forcing the system to jump between different al- 

lowed orbits living on the circle. Thus, finite-precision arithmetics is the sole responsible 

for the "butterfly effect" of Lorenz: finite-precision arithmetics will always necessarily 

induce intolerable perturbations in the dynamics. The severe limitations imposed by 

finite-precision arithmetics are more easily seen when trying to make "long walks" 

along F-se t s  (i.e. basin boundaries). All behaviors described above for a = 0 continue 

to exist when a ~ 0, the difference being that the frontier set is much more complicated 

to characterize and probe analytically. Further, there seems to be no reason to expect 

different behavior when the number of variables and/or parameters is larger than one. If 

it were always possible to perform computations with absolute precision, the question of 

ascertaining the final attractor would be reduced to a problem of determining in which 

Riemann sheet initial conditions are located, and to which particular field of numbers 

they belong. The passage from any given initial condition to a final attractor presents 

no intrinsic difficulty and is always uniquely defined by the powerful algebraic closure 

imposed by the equations of motion. From a theoretical point of view, the impossibility 

of ascertaining final attractors, i.e. of predicting the future, seems to originate exclusively 

from difficulties in (i) determining accurately the field of numbers to which initial con- 

ditions and parameters belong and, (ii) performing all needed arithmetics with absolute 

precision. In nature, after a trajectory is started from some initial condition, arbitrarily 
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small perturbations of parameters (noise) might induce transitions from the original 

trajectory to another possible one which may have quite different asymptotic properties. 

While it is certainly possible to approximate any irrational number by rational ones, in 

absence of perturbations, a trajectory started from an arbitrary irrational initial condition 

will remain forever bounded to similar irrationals, as imposed by the algebraic closure 

implicitly defined by the equations of motion. 

4. What  are generic basin boundaries between domains of  convergence made of?. 

In 1906, Fatou [ 5 ] addressed the problem of delimiting the frontiers between domains 

of convergence for iterated functions f ( z )  in the complex plane. He concluded stating 

that "L' etude de certains cas particuliers montre qu ' effectivement les frontikres sont en 

gdndral de nature compliqu~e". In 1917 he published two further notes [6,7] discussing 

once again the Frontikre F. Then, it was possible for him to profit from the important 

concept of normal families, introduced by Montel [8]. Fatou remarked [7] then that 

the frontier F had the property that "En un point p de F les fonctions f t n e  peuvent 

pas former  une suite normale, au sens de Montel", which translates into one of the 

definitions in use today[9-16]: 

Definition 1. The F-set consists of those points at which the sequence { f t ( z ) }  is not 

normal, in the sense of Montel. 

In the same note [7] Fatou observed that " . . . F  est le ddrivd de l 'ensemble des 

antdcedents d 'un quelconque de ses points." Subsequently, he further discussed this 

subject in three long Mdmoires [ 17]. Concerning the derived set, Julia wrote in his 

M~moire of 1918, Ref. [18], page 48: "La question qui domine cette ~tude est la 

suivante: un point  z dtant donnd dont les consdquents Zl, z2 . . . . .  zn . . . .  f o m e n t  un 

ensemble e, quelle sont les proprietds de l 'ensemble e r, derivde de l 'ensemble e." The 

derived set is the set of all accumulation points. The set which contains a given set 

along with all accumulation points of the given set defines the closure of the given set. 

Thus, the essence of the above quotations appears in another definition of the F-set: 

Definition 2. The F-set is the closure of the set of repelling periodic points. 

These two definitions discussed by Fatou[5-7,17] and by Julia [ 18] are the definitions 

commonly used today to characterize the frontier between different domains of conver- 

gence of iterated functions ("power series"), as may be seen, e.g., from Refs. [9-16] 

and from the works quoted therein. 

In the ot = 0 slice of the generalized space the dynamics of Eq. ( 1.1 ) is defined by 

the system of equations 

Xt+ 1 =a - x 2 + ~2, (4.1a) 

( t + l  = - -2Xt( t ,  (4.1b) 
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where ~t is the ghost variable associated with xt. Fig. 1 shows several additional x x ( 

slices of the generalized space for a = - 1.0, - 1/4, 0.0 and 3/4 and for t = 2, 3, 4, 5 and 

6. From the evolution of the zeros seen in the columns a = -0 .25  and a = 0.75 of Fig. 1 

it is easy to recognize which geometrical figure the union of the zeros of iterated maps 

build in the generalized space: they build exactly the F-set. From this observation and 

from the discussion in the previous section we find convenient the following alternative 

statement: 

Definition 3. The F-set is formed by the closure of all zeros of the infinite sequence of 

functions { f t  ( z ) } ,  including A, except for those zeros which belong to stable orbits. 

This alternative definition tells in simpler terms which mathematical objects compose 

generic frontiers between domains of convergence of arbitrary power series. One prac- 

tical advantage is that it is not a purely existence statement from which one might not 

construct the whole set, in principle. Starting from t = 1 this last formulation provides 

a clear prescription about how to systematically construct F-sets precisely. Rather than 

the closure, in practical applications a moderately large set of zeros together with some 

of their preimages provides frequently excellent approximations of the F - s e t .  An idea 

of how good this works may be obtained from Fig. 1. In Section 7 below we argue that, 

in essence, analogous zeros are the mathematical objects which underly the so-called 

invariant manifolds of higher-dimensional dynamical systems, responsible for defining 

the boundaries of domains of stability in phase-space of generic physical models. 

5. The genesis of periodic dynamics in the frontiers 

We now describe how periodic motions arise in the frontiers between different domains 

of convergence for some power series generated by infinite sequences of quadratic 

compositions. These compositions are of importance because quadratic terms are the 

most elementary forms of nonlinearities appearing in series expansions of arbitrary 

equations of motion. Thus, results for quadratic compositions can be expected to be 

of relevance for many different practical applications. We present a few results for the 

quadratic map here. 

5.1. Results fo r  a = 0 

In addition to the attractor located at - o¢ ,  for a = 0 the quadratic map has two other 

real fixed points: the stable superattracting point x = 0 and the unstable point x = - 1 .  

"Using f t  (x ,  a) to represent the t-th composition of f ( x ,  a) with itself, these two points 

are obtained by solving the equation 

p l (x ,  0) --- x -  f l ( x , 0 )  = x + x  2 = x ( 1  + x )  =0 ,  (5.1) 

where f l ( x , O )  - f ( x , O ) .  Along the real axis, the only way to reach the attractor 

x = - 1  is by starting iterations exactly from either x = - 1  or x = 1. The attractor 
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x = --1 is totally inaccessible from other initial conditions along the real axis. For 

initial conditions in the open interval - 1  < x < 1 the iterative process generates orbits 

(i.e. sequences of  numbers) which are simply pre-periodic transients leading to the 

fixed point x = 0. The open intervals -cx~ < x < - 1  and 1 < x < cx~ contain all 

real initial conditions producing pre-periodic orbits leading to the fixed point x = - c ~ .  

The characteristic feature here is that initial conditions corresponding to pre-periodic 

transients leading to the fixed points - c ~  and 0 appear as open and dense sets, while 

those of  x = - 1  are not, being isolated points along the real axis. 

An infinite family of  functions is generated by iterating Xt+l = - x  2 further and further. 

Ideally, one would like to consider the properties of  the limiting function obtained after 

infinite iterates. Since in general this liming function is not expected to reduce to a 

known function o f  the mathematical physics, we proceed by investigating the limit of  

the regularities that appear consistently at every new iterate, hoping in this way to 

understand the global picture in the limit of  infinite iterates. Four additional polynomials 

of  the infinite sequence are 

p 2 ( x ,  O) = x + X 4 = X(  1 q- x )  ( 1 - x + x2), (5.2a) 

P3 (x, 0) = x + x 8 = x( 1 + x) ( 1 - x + x 2 - x 3 + x 4 - x 5 + x6), (5.2b) 

p4(x,  0) = x + x 16 = x(1 + x ) ( 1  - x + x2)(1 - x -q--x 2 - x 3 q- x 4) 

× ( l + x - x  3 - x  4 - x  5 + x  7 + x 8 ) ,  (5.2c) 

ps (x ,  0 ) = x + x  3 2 = x ( l + x ) ( 1 - x + x  2 - x  3 + . . . - x  29+x3°) .  (5.2d) 

Apart from the zeros x = - 1  and x = 0 corresponding to the aforementioned real fixed 

points, these expressions contains many other zeros, defined by the additional polynomial 

factors. A relevant question is then to investigate the dynamics observed when using 

such zeros as initial conditions. Since we expect most of  these zeros to be complex 

numbers, it is necessary to consider the dynamics in the x × s c plane of  the generalized 

space. We start studying the dynamics of  the zeros of  p2 (x ,  0) .  

The two not yet determined zeros of  p 2 ( x ,  O) are 

1 - x + x 2 = ( x  1 + V"S3) (x - 1 - x/-L-3) = 0. (5.3) 
2 2 

Although trivial to obtain, the above representation in terms of  square roots is not the 

best suited for our present purposes. A more convenient representation is obtained by 

observing that the zeros o f  Eq. (5.3) may be also represented using cubic roots as 

follows 

l - -  X--}-X2=(X-- S1/3)(X--S5/3)= l - -[S1/3 d-S5/3]X-}-SI/3s5/3x2=O, (5.4) 

where s - - 1 .  For later use we observe that s3 ------ s 2/3 + S 4/3 = --[S 1/3 -'1- S 5 / 3 ]  ---- --1. 

From Eq. (5.4) one recognizes that the four zeros of  p2 (x ,  0) are in fact 

Zl = S 0/3 = 0 ,  Z2 = S 1/3, Z3 = S 3/3 = - - 1 ,  Z4 = S 5/3, ( 5 . 5 )  

and that their dynamics under the map is as follows: 
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f ( z l , 0 )  = Z l ,  f (z2 ,0)  = Z4, f (z3,0)  = Z3, f (z4,0)  = Z2. (5.6) 

Therefore, in addition to the real fixed points already obtained from Pl (x, 0), p2 defines 

a (complex) period-2 orbit z2 ~ z4 which lives in the frontier set in the generalized 

space. 

Repeating the analysis for P3 (x, 0) one finds the following periodic cycles living in 

the frontier: 

period-3: s l /7  ---r $9/7 _.+ $11/7 ~ S1/7, (5.7a) 

period-3: $3/7 ~ 5,13/7 ---r S 5/7 ~ S 3/7, (5.7b) 

in addition to the real fixed points s °/7 and  S 7/7. These cycles produce the following 

factors through a well-defined combinatoric rule: 

~/)1 = (X -- S I / 7 ) ( X  -- S9 /7 ) (X  -- S l i p  ) (5.8a) 

= (x  -4- S 2/7) (x  --1- s 4/7) (x  --I- s 8/7) (5.8b) 

= 1 "1- [$6/7 q_ S10/7 q_ SI2/7]X -I- [S 2/7 dr S 4/7 + $8/7]X 2 -'1- X 3, (5.8C) 

t~2 ---- (X -- S 3/7) (X -- S 13/7) (X -- S 5/7) (5.9a) 

--- ( x  q- $6/7) (x  q- s 10/7) (x  --1- s 12/7) (5.9b) 

= 1 + [s  2/7 -4- s 4/7 --~ sS /7]x  -'1- [86/7 + s 10/7 --1- 812/7]x 2 + x 3. (5.9c) 

Multiplying these two complex-conjugate polynomials one sees the essence of the mech- 

anism which by very suitably combining roots of -1 ,  produces factorization over real 

integers: 

#high2 = 1 + s7x  + [3 + 2s7]x 2 + [2 + 3s7]x 3 

+ [ 3  -F 2s7]x  4 q- [2 + 3ST]X 5 -F x 6, (5 .10)  

in which now the representation 

S 7 ~ ( - -1 )  2/7 + ( - -1 )  4/7 + ( - -1 )  6/7 + ( - -1 )  8/7 

+ ( - - 1 )  10/7 q- ( - -1 )  12/7 ~ --1 (5.11) 

appears. 

Analogously, among the zeros of p4(x, 0) = 0 one finds the following cycles 

period-4: s l / i5  ~ S 17/15 ~ S 19/ls --+ S 23]15 ~ S 1/15, (5.12a) 

period-4: s 7~is ~ s 29/1s ~ s 13~is ~ s l l / l s  ~ s 7~is, (5.12b) 

period-4: s 9/s ~ s 3/s --~ s l / s  ~ s 7/s ~ s 9/s, (5.12c) 

period-2: s ~/3 ~ s 5/3 ~ s 1/3, (5.12d) 

in addition to the real fixed points s °/is and s! s / l s .  T h e  points in the cycle of Eq. (5.12d) 

produce the factor already found in Eq. (5.4). The cycle in Eq. (5.12c) produces 
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1 - x + x 2 - x 3 + x 4 = [ ( x  - s 9/5) ( x  - s 3/5) ] [ ( x  - s 1/5) ( x  - s 7/5) ], 

71 

(5.13a) 

= [s2/5 + ( s  4/5 + sS /5 )x  + x 2] [sS/5 + ( s  z/5 + s 6 / 5 ) x  + x 2 ] ,  

(5.13b) 

= 1 + s s x  + (2 + ss)x 2 + s s x  3 + x 4, (5.13c) 

where in Eq. (5.13c) the factorization over reals is obtained with the help of the 

representation 

S5 ~ ( - - 1 )  2/5 + ( - - 1 )  4/5 + ( - - 1 )  6/5 + ( - - 1 )  8/5 = - 1 .  (5.14) 

The other two period-4 orbits in Eqs. (5.12a) and (5.12b) produce two fourth-degree 

polynomials over the complex field which when multiplied yield the real eighth-degree 

factor in Eq. (5.2c). This situation is totally analogous to what happened with the 

complex quadratic factors in Eq. (5.13b), which combine to give a real quartic factor, 

or already earlier, in deriving Eq. (5.10). The interesting point to notice here is that 

the whole iteration acts as a gear mechanism in which individuals gears, the different 

roots of - 1 ,  resonate to produce a factorization over the reals after the proper number 

of iterates. These resonances depend critically on families of very particular sums of 

certain complex numbers. In the present context, the sums are s3, ss, s7, etc., as defined 

above, in which all individual terms are roots of unity. As it is easy to recognize from 

the expressions above, all polynomial factors over the reals are defined by non-trivial 

combinatorial problems involving such sums. 

The two complex-conjugate factors producing the real eighth-degree polynomial in 

Eq. (5.2c) are 

~ l  = ( x  - s 1/15) ( x  - s 17/15) (x - s 19/15) (x - s 23/15) (5.15a) 

= 1 + [s 14/15 + s 22/15 + S 26/15 q- $28/15]X 

+[S2/5 ..[_ $2/3 .3t_ S4/5 + $6/5 .q_ S4/3 + S8/5]X2 

+ I s  2/15 -'~ S 4/15 -~- S 8/15 q- S16/15]X 3 "q- X 4, (5 .15b)  

t2D2 = (X -- $7/15) (X -- S 29/15) (X -- S 13/15) (X -- S 11/15) (5.16a) 

= 1 + Is 14/15 + s 22/15 + S 26/15 q" $28/15]X 

..[_ [ $2/5 _.[. $2/3 .at_ $4/5 .q_ S6/5 q.. $4/3 .at_ $8/5 ] X 2 

+ [ s  14/15 + s 22/15 + s26/15 + s28/15]x 3 + x 4. (5.16b) 

Multiplying them one obtains a factor over real integers: 

• 1q~2 = 1 + WlsX  + [4 + w15 + 3s5 + 2s3]x 2 + [5w15 +4s3 4- 2ss]x 3 

+ [8  -k- 7s5 + 5s3 -+- 3WlS]X 4 + [5w15 -k- 4s3 + 2ss]x 5 

+ [ 4  + 3s5 + 2s3 + WlS]X 6 + WlsX 7 + x 8, (5.17) 
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where the new thing is the appearance of an alternative representation for the number 

1, showing up again as a very particular sum of complex terms, namely, 

WI5 ~ S 2/15 + S 4/15 -]- S 8/15 -]- S 14/15 + S 16/15 -~" S 22/15 + S 26/15 q- S 28/15 = 1. (5.18) 

From the discussion above one recognizes the fundamental importance of algebraic 

integers in the dynamics and the very special role played by powers p /q  of - 1, for which 

p and q are not relative prime numbers. These results seem to show that dynamics may 

also be regarded as an application of Number Theory or else, that the "static" properties 

observed in Number Theory are in fact consequences of an underlying "hyper" dynamics, 

depending heavily on transformation properties between sets of algebraic extensions of 

numbers. At any rate, the above examples seem to leave little doubt about the existence 

of an extremely strong connection between dynamics and Number Theory. 

5.2. Results for  a 4= 0 

After studying the behavior of the zeros in the frontier for a = 0, the next natural 

question is to ask whether the several regularities found survive changes of parameters. 

To illustrate typical behaviors happening when a parameter is changed, Fig. 2 shows 

the evolution of the zeros corresponding to the t = 4 generation of the quadratic map, 

together with the two fixed points (represented by squares and appearing here along 

the real axis; the open square is the unstable fixed point). The two zeros connected 

by a vertical line segment at x = 0.5 are those corresponding to the period-2 cycle 

which factors as shown by Eqs. (5.4) and (5.12d). They appear in every generation. 

For a increasing, after "colliding" with the real axis for a = 0.75 (left end of period-2 

interval of stability), both period-2 zeros remain confined to the real axis: period-2 

bifurcation. The three period-4 cycles of Eqs. (5.12a-c) are also represented on this 

figure. The cycles producing the factors qh and q~2 (Eqs. (5.15) and (5.16)) correspond 

to movements with well defined orientations around the frontier: 41 produces a anti- 

clockwise circulation while q~2 produce a clockwise circulation. In contrast, Eq. (5.12c), 

containing the non-relative prime multiples of 15, produces a zig-zag pattern, indicated 

in the figure by the four points connected by the dashed line. For a = 0 the complex 

zeros contained in this cycle produce a factor over the reals. 

From Fig. 2 one may recognize that all cycles determined for a = 0 continue to 

exist for a < 0 and for a > 0. This shows the importance of studying the cycles and 

factorizations composing the frontier for a = 0: although for arbitrary values of a it is not 

always possible to compute analytically the dynamics as for a = 0, systematic numerical 

work shows that the same periodic cycles living on the frontier for a = 0 continue to exist 

for rather large intervals of parameters. We conclude this section by observing that the 

above results are intended simply to illustrate possible applications of the methodology 

being proposed and the importance of considering all zeros simultaneously, not as an 

exhaustive discussion of the examples. A more detailed investigation of these and other 

examples will be presented elsewhere. 
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po in ts  de f ined  in Eq.  ( 2 . 1 ) .  In this f igure,  y _= s e. 
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6. The canonical quartic map: one variable and two parameters 

We discuss now the evolution of the zeros for a more general model, Eq. (1.4), 

containing one variable and two parameters. This model was recently shown to be a sort 

of "canonical" model for studying dynamical behavior present in all systems with equa- 

tions of motion reducible to series of quadratic compositions [ 1 ]. As shown in Fig. 3a, 

the parameter space of Eq. (1.4) contains many shrimp-like clusters of stability [ 1 ], 

the most prominent appearing centered along a cardioid defined parametrically by the 

equations 

(a ,b)  = (p4  _p,p2) and (a ,b)  = ( p 2 , p 4  _ p ) .  (6.1) 

In the Appendix below it is shown that all parameter loci corresponding to superstable 

orbits of Eq. (1.4) are self-inverse curves, similarly to what happens with the branches 

forming the cardioid 6.1 displayed in Fig. 3b. From Fig. 3 one sees that the most 

easily discernible shrimps correspond to the period-1 shrimp centered at (a, b) = (0, 0) 

and the two period-3 shrimps located roughly at (0.725561, 1.37824), along the upper 

branch a = b z - x/b of the cardioid, Eq. (6.1a), and (1.37824,0.725561), along the 

lower branch b = a 2 - x/~. Exact values are given by a = [(3 -4- V/5)/2]1/3, the real 

roots of 1 - 3 a  3 + a  6 = 0. We now consider the evolution of zeros on the xt x set plane for 

parameters corresponding to the head of the period-1 shrimp, as shown in Fig. 4. The 

central column in this figure shows the zeros for the head while the other columns show 

the situation for two symmetrical displacements of b -- 4-0.25 along a = 0. Notice the 

rather different disposition of the zeros for t = 1. For b ~- 0 the F-sets look like rounded 

squares, being both, however, homeomorphic to the circle obtained for (a, b) = (0, 0). 

While it is very difficult to anticipate the topology of F-sets, notice that the net effect 

of moving from b = -0 .25  ---* b = 0.0 -~ b = 0.25 is close to a rotation of the domain 

of convergence. Fig. 5 shows the zeros as obtained along the diagonal a = b around the 

tail ( a , b )  = (1 ,1)  of the period-1 cell. Along this diagonal the quartic map is simply 

the second iterate of the quadratic map and depends on a single parameter only. For 

b = a the equation defining fixed points may be factored as 

x -  ( a -  x2)E + a = ( a +  x -  x 2 ) ( 1 - a +  x + x 2) =0.  (6.2) 

For a = 1, this equation yields 

x - ( l - x 2 )  2 + l = x ( x + l ) ( l + x - x  2) 

= x ( x + l ) ( x -  1 +-------~)(x I - v / 5 )  =0 .  (6.3) 
2 2 

The factor 1 + x - x 2 defines the unstable fixed points that live on the F-set and that 

attract the dynamics on it. Notice that ( - 1  + x/~)/2 - 0 .618. . .  is a famous irrational, 

the golden mean, telling how to divide a line segment into two pieces such that the ratio 

of the shorter piece to the larger equals the ratio of the larger to the whole segment. As 

discussed in Ref. la, at the tail of cells of stability one finds hysteretic behavior resulting 
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from the existence o f  more then one Riemann sheet supporting different stable dynamics.  

Since there are two attractors at the tail, there must be now a subdivision of  the space 

of  variables into more than the tWO familiar basins, namely the basin of  the attractor at 

infinity and the basin of  the attractor at finite distances. Fig. 6 illustrates typical basins 

of  attraction for parameters in the tail region of  every shrimp [ 1 ]. In it one sees that 

although the dynamics in the space of  variables is still a period-1 orbit  (fixed point) ,  

for 3 /4  < a < 1 we now find two basins corresponding to attractors at finite distances. 

The remarkable feature of  these basins is that although they are still basins of  fixed 

points, they are both non-homeomorphic to the familiar basin o f  fixed points displayed 

f o r  example in Fig. 4. Further, one recognizes that they are both composed of  an infinite 

collection of  totally disconnected domains. As may be recognized by comparing this 

situation with that depicted in Fig. 1, while non-homeomorphic frontiers imply the 

occurrence of  a bifurcation for unimodal maps, in mult imodal maps non-homeomorphic 

frontiers might  also indicate the existence o f  more than one stable isoperiodic attractor. 

This feature is quite different from all those known for unimodal maps and indicates an 

alternative origin for "sensitivity on initial conditions". 

7. What  are generic invariant manifolds made of?. 

We now argue through an example that the same type of  frontiers discussed for 

the quadratic map also applies to all dynamical  systems of  higher dimensionality.  This 

unification is important  because the current literature on the subject [ 13,16], implici t ly 

or not, still separates "complex analytic dynamics" from "real dynamics",  regarding 

them as two different subjects that sometimes "share analogous features". As discussed 

here, real dynamics are in fact restricted views on particularly interesting planes, sections 

from the generalized mult idimensional  space where the full dynamics lives. As more 

parameters and variables are considered, the richness of  the behavior observed arises 

pr imari ly  from the plethora of  possibil i t ies of  combining collisions of  zeros in higher 

dimensions,  not from something else. It is clear that as the dimension of  the generalized 

space increases, its description becomes more and more involved. To illustrate a typical 

high-dimensional  entangling we now discuss briefly the evolution of  the zeros of  the 

first iterates of  the H6non map [ 19-21] 

Xt+l =a - x~ + by t, (7.1a) 

Yt+l = Xt. (7.1b) 

Fig. 4. Evolution of all zeros of the first three iterates of x ~ (a - x2) 2 - b, Eq. ( 1.4), for parameters close 
to the period-1 head at (a, b) = (0, 0). The meaning of the colors is explained in Section 2. The scale shown 
for a = 0, b = -0.25, t = 3 is the same for all other values of a, b, t. 

Fig. 5. Evolution of all zeros of the first three iterates of x ~-~ (a - x 2 )  2 - b, Eq. (1.4), for parameters close 
to the period-1 tail at (a, b) = ( 1, 1). The meaning of the colors is explained in Section 2. The scale shown 
for a = b = 0.6, t = 3 is the same for all other values of a, b, t. 
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Although this model  looks similar to the two-dimensional model defined in Eq. (4 .1) ,  

there is a crucial difference: while by construction xt and s~t in Eq. (4.1) must always 

obey the Cauchy-Riemann conditions, in Eq. (7.1) xt and Yt are totally free from 

this constraint. Accordingly,  the generalized space corresponding to Eq. (7.1) is eight- 

dimensional,  not four-dimensional as that of  Eq. (4.1).  Call ing r h the ghost variable 

associated with Yt we obtain the following four-dimensional cut, characterized by having 

a and b always real in it: 

2 
Xt+l = a  - x t + byt + ~2, (7.2a) 

yt+l = x t ,  (7.2b) 

~t+l = --2Xt~t + brh, (7.3a) 

rh+l = set. (7.3b) 

One recognizes that ~:~ in Eq. (7.2a) and - 2 x t ~ t  in (7.3a) provide the coupling between 

real and ghost variables. Further, that Eq. (7.2a) is totally insensitive to the sign of  ( t .  

As previously in Eq. (2 .1) ,  Eq. (7.1) also has two fixed points (Xs,Xs)  and (Xu,Xu),  

where now 

X s = ( - l + b + v / ( l + b ) 2 + 4 a ) / 2 ,  x ~ = ( - l + b - v / ( l + b ) Z + 4 a ) / 2 .  

The corresponding interval of  stability for (xs,  x~) is 

-!(14 - -  b)2 < a < 2(1 - b) 2. 

(7.4) 

(7.5) 

For b = 0 the dynamics of  the H6non map reduces to that of  two quadratic maps 

(i.e. remains forever a two-dimensional  system).  

When iterated, Eqs. (7.2) produce a sequence of  functions analogous to those obtained 

for the quadratic map. Eq. (7.2a) produces a family Ft = F t ( x , y , a , b ; ~ )  while (7.2b)  

produces Gt = a t ( x ,  y, a, b; ~) .  As already said, these two functions are not connected by 

the Cauchy-Riemann condit ion and, consequently, allow a considerably richer dynamics.  

There are also two additional sequences of  functions arising from iterating Eq. (7.3) .  

However, since we want to illustrate the method rather then present an exhaustive 

discussion of  the H6non map, here we will only present some results obtained for Ft and 

Fig. 6. Basins of attraction of fixed points of x ~ (a - x2) 2 - b for two sets of parameters along the 
diagonal a = b. Here, the yellow background represents the basin of the fixed point at infinity. For a = 0.6 
there is only one attracting fixed point, x ~ -0.42195444, with its basin of attraction represented in black. 
For a = 1.2 there are two different attracting fixed points, x '-~ -1.17082039 and x ~ 0.17082039 black and 
purple indicating their respective basins of attraction. 

Fig. 7. Evolution of the zeros for some iterates of the H6non map, Eq. (5.1), as seen on the x x y 
cut of the generalized space. The meaning of the colors is explained in Section 2. The scale shown for 
a = 1.4, b = 0.3, t = 8 is the same for all other values of a, b, t. 
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Gt as seen on xt x Yt cuts for s c = 0. Fig. 7 shows the evolution of the first few generations 

of zeros for a = 1.4, and b = -0 .3 ,0 .0  and 0.3. The values ( a , b )  = (1.4,0.3) are the 

same ones discussed by H6non [ 19] and many others since then. The center column 

corresponds to the quadratic map and serves as a reference for comparisons. Although 

such diagrams display restricted views, one may already identify the portions which 

belong to the basin of attraction of the stable attractor in each case. We stress that while 

it is common to refer to the b = 0 limit of the H6non map as "corresponding" to a 

quadratic map, the H6non map remains always a two-dimensional map, even for b = 0. 

8. Conclusions 

As seen from the examples above, the introduction of a generalized space allows the 

investigation of dynamical behaviors to be transformed into an investigation of the topol- 

ogy and properties of the hypersurfaces Ut = 0 and Vt = 0 generated by the iteration. An 

interesting observation is the important role played by the set of zeros on this hierarchy 

of hypersurfaces. These zeros provide a very natural alternative characterization of the 

well-known F-set, a characterization allowing F-sets to be constructed systematically. 

By studying the dynamics of the zeros (and their closures) which build basin boundaries 

(i.e. F-sets) it is possible to realize that under absolute-precision arithmetics, "unstable" 

orbits are in fact quite "stable" orbits of dynamics confined to the F-set. The essential 

difference between what is usually referred to as "stable" and "unstable" orbits is that 

"unstable" orbits can only attract along very particular directions in the configuration- 

space, directions which are non-dense (in fact, frequently very far from dense). All 

"instability" frequently attributed to the dynamics on F-sets is nothing else but a conse- 

quence of performing computations with finite-precision. Instability does not exist in a 

strict mathematical-, sense, when we may pretend to be always able to characterize any 

given number precisely. For example, 1 + ~ and 1 - ~  are irrationals but their 

sum is not. On the other hand, ~- = 3.1415.. .  and e = 2.7182.. .  have been proven 

to be transcendental. But what about the nature of ~- + e? Which physics should one 

expect from, say, a multidimensional polynomial map with rational parameters started 

from initial conditions which are functions, simple or not, of ~-+ e? As in Section 5, the 

knowledge of the precise dynamics seems to be deeply connected with the knowledge of 

numbers and their relative commensurabilities. For suitably chosen parameters, the two- 

dimensional map (x, ~:) ~ ( a+~  :2 - x 2, -2x~:) allows investigations of the dynamics on 

F-sets to be performed with absolute numerical precision. By considering a convenient 

parametrization of all rational numbers living on the unit circle, their dynamics under the 

map and their commensurability properties with certain transcendental numbers one may 

identify analytically "sensitivity to initial conditions" as originating from the structural 

properties of the set of numbers defining parameters and initial conditions (in addition 

to the requirement of performing all arithmetics with absolute precision). Thanks to the 

immutable and powerful algebraic closure imposed by the equations of motion, as soon 

as the "dynamical numbers" (i.e. parameters and initial conditions) are known and fixed 
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in some particular set o f  numbers, the definition o f  the final attractor can be done with 

no uncertainty. These ideas are elaborated elsewhere [22].  
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Appendix A 

In this appendix we show that parameter loci corresponding to superstable orbits in 

phase-space of  x ~ ( a -  x2) 2 -  b, Eq. (1.4), are self-inverse curves. To this end it 

is enough to study orbits passing through the critical points of  the map, i.e. through 

the points where the first derivative of  the map is zero. Eq. (1.4) has three critical 

points: x = - x / ~ ,  0 and x/-a. Orbits through critical points produce two different sets 

of  equations: the unique set Ut - f t ( x  = O, a, b) and the degenerate set Dt - f t ( x  = 

-t-x/d, a, b), where t denotes the order of  the composition. To fix ideas we consider the 

first two compositions of  Eq. (1.4). The arguments, however, are general and apply to 

all other subsequent compositions as well. The first two compositions going through 

critical points are 

U 1 ----- a 2 -- b, U 2 = [a  - (a  2 - b)2] 2 - b, (A.1) 

D1 = - b ,  D2 = (a  - b2) 2 - b. (A.2) 

Critical points inside periodic cells must be periodic too, thereby implying Ut = 0 and 

Dt = -4-v~ for all t. This fact yields at once 

a = , a  ± v " a  = - b ,  

a - (a  2 - b) 2 = q-x/b ¢:~ ~ x / a  = (a  - b2) 2 - b, 

and similar equations for higher-order compositions, demonstrating the self-inverse na- 

ture of  all superstable loci. Studying Ut and Dt it is possible to recognize other interesting 

properties o f  superstable loci recurring within each t -per iodic  cell, for example: (a) 

superstable loci are central projections of  circles, e.g. each period-I locus is a shadow 

cast on the horizontal a × b plane by a light source located at the same level of  the 

uppermost point of  a circle perpendicular to the plane; (b) the effect of  increasing the 

periodicity is to translate and rotate the circles; (c) from Ut and Dt one may extract 
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d e t e r m i n a n t s  A t a l l owing  the  inves t iga t ion  o f  the  par t i cu la r  set  o f  n u m b e r s  ( p a r a m e t e r s )  

se lec ted  by  the  d y n a m i c s  o f  the  zeros o f  the  der iva t ive  o f  the  map.  For  example ,  all  

c ross ings  o f  pe r iod -2  supe r s t ab le  loci  in  pa r ame te r  space  are con t a ined  a m o n g  the  roots  

o f  the  d i s c r i m i n a n t  o f  an 8 x 8 mat r ix :  

A2 = a n ( a  -- 1 ) z [ 1 + a + a 2 ] 2 ( 1 + 2 a  2 -- 3 a  3 + 3a  4 -- 3 a  5 + a 6) 

x ( 1 -- 3 9 a  3 + 3 7 a  6 -- 1 l a  9 + a 12) ( 1 + a 3 -k 9 a  6 -- 7 a  9 + a 12) 

× ( 1 + a 3 q- a 6 - 3 a  9 -k- a 12) 

× [ 1 - 2 a  2 - 6 a  3 + a 4 + 9 a  5 + 5 a  6 - 3 a  7 - 2 a  8 + 3 a  9 + 6 a  1° + 3 a  1~ + a 12] ; 

( d )  A3 is the  d e t e r m i n a n t  o f  a 48  × 48 mat r ix ;  ( e )  the  loca t ion  o f  in te r sec t ions  o f  

supe r s t ab le  loci  c o r r e s p o n d i n g  to o rb i t s  o f  any arbitrary periodicity are g iven  by  s imi la r  

de t e rminan t s .  

These  and  s o m e  o the r  cons equences  o f  the  great  s y m m e t r y  a m o n g  all Ut and  Dt wil l  

be  d i scussed  e l sewhere .  

References 

[1] J.A.C. Gallas, (a) Physica A 202 (1994) 223; (b) Phys. Rev. E 48 (1993) R4159; (c) Preprint HLRZ 

66/93. 

[2] O. Neugebauer, The Exact Sciences in Antiquity (Princeton University Press, 1952, reprinted by Dover, 

NY, 1969). 

[3] E Klein, 1894 Easter lectures at the University of Grttingen, published as Vortr~ige iiber Ausgew/ihlte 

Fragen der Elementargeometrie, 1895; English translation: Famous Problems of Elementary Geometry 

(reprinted by Dover, NY, 1956). 

[4] (a) E. Schrrder, Math. Ann. 2 (1870) 317-365; 3 (1871) 296-322; 

(b) B. Derrida, A. Gervois and Y. Pomeau, J. Phys. A 12 (1979) 269-296; 

(c) P. Collet and J.P. Eckmann, Iterated Maps on the Interval as Dynamical Systems (Birkh~iuser, Basel, 

1980); 

(d) S. Chang, M. Wortis and J.A. Wright, Phys. Rev. A 24 (1981) 2684; 

(e) L. Glass and R. Perez, Phys. Rev. Lett. 48 (1982) 1772-1775; 

(f) L. Glass, Chaos 1 (1991) 13-19. 

15] P. Fatou, C. R. Acad. Sci. 143 (1906) 546-548. 

[6] P. Fatou, C. R. Acad. Sci. 164 (1917) 806-808. 

[7] P. Fatou, C. R. Acad. Sci. 165 (1917) 992-995. 

[8] P. Montel, (a) C. R. Acad. Sci. 153 (1911) 996-998, 1455-1456; (b) Ann. E, col. Norm. Sup. 33 

(1916) 223-302; (c) Leqons sur les famillies normales de fonctions analytiques et leurs applications 
(Gauthier-Villars, Paris, 1927). 

191 H. Brolin, Arkiv frr Mathematik 6 (1965) 103-144. 

[10] M.V. Jakobson, Math. USSR Sbornik 6 (1968) 97-114. 

[ 11 ] M.K. Oba and T.S. Pitcher, Trans. Am. Math. Soc. 166 (1972) 297-308. 

[12] P. Blanchard, Bull. Am. Math. Soc. 11 (1984)85-141. 

[13] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, second edition (Addison-Wesley, 

Redwood City, 1989). 
[ 14] A.F. Beardon, Iteration of Rational Functions (Springer Verlag, NY, 1991 ). 

[ 151 D. Gulik, Encounters with Chaos (McGraw-Hill, NY, 1992). 

[ 16] N. Steinmetz, Rational Iteration (Walter de Gruyter, Berlin, 1993). 

[17] P. Fatou, Bull. Soc. Math. Fr. (a) 47 (1919) 161-271; (b) 48 (1920) 33-94; (c) 48 (1920) 208-314. 

[18] G. Julia, J. Math. Pures et Appl. 4 (1918) 47-245. 



J.A.C. Gallas / Physica A 211 (1994) 57-83 83 

[ 19] M. H6non, Commun. Math. Phys. 50 (1976) 69-77. 

[20] J.A.C. Gallas, Phys. Rev. Lett. 70 (1993) 2714-2717. 

[21] L. Morn and M. Viana, Acta Math. 171 (1993) 1-71. 

[22] J.A.C. Gallas, preprint HLRZ 01/94. 


