
INTRODUCTION

TRANSIENT AROUSALS OFTEN LAST ONLY A FEW
SECONDS and do not generally cause awakenings or sleep
stage shifts; rather, they belong to a group of microstruc-
tural patterns characterizing non-stationary EEG segments
that, according to conventional scoring, are commonly
found either in stage 2 or in REM sleep.1,2 A certain num-
ber of spontaneous arousals seem to be an intrinsic compo-
nent of physiological sleep.3,4 Arousals may be induced
either by exogenous or by endogenous stimuli and can be
associated with unstable sleep conditions. In respiratory
sleep disorders and nocturnal myoclonus the arousing stim-
ulus may be identified in snoring, apnea or leg movement
and results in sleep fragmentation. In severe clinical condi-
tions arousals become increasingly frequent and are associ-
ated with daytime sleepiness.5,6 A number of experimental
studies, in which arousals were purposely induced by the
presentation of tones, confirmed that sleep fragmentation
raises daytime sleepiness;7,8,9 others reported that sleep
fragmentation may also influence the impairment of cogni-
tive functions.10

Standard staging rules11 do not highlight sleep fragmen-

tation caused by such transient changes in arousal level;
therefore, an alternative approach is required when taking
such microstructural features into account. A set of guide-
lines for arousal scoring has been proposed by the
American Academy of Sleep Medicine.12 However, the
visual inspection of the microstructure of sleep is cumber-
some and time consuming; in this respect the support of
automatic or semi-automatic pattern recognition proce-
dures could foster the extensive application of arousal anal-
ysis.

A computerized method for the detection of episodes of
wakefulness during sleep based on the alpha slow-wave
index has been proposed;13 however, the work in question
still considered 30-second epochs with accordance to con-
ventional sleep staging. An adaptive segmentation
approach in which the signal is "continuously" analyzed
and the boundaries between segments are set when signifi-
cant changes are detected,14,15 appears to be more suitable
for the analysis of transient patterns, such as arousals.

A preliminary study was performed16 to select a set of
indices marking EEG changes accompanying arousal. This
study suggested that parameters related to the EEG fre-
quency were the most suitable for arousal detection.
Another approach was proposed17 in which the relative
power of EEG was computed for five bands and acted as
the input within a multilayer neural network.

The main aim of this study was the development of an
automatic procedure for arousal detection according to
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AASM criteria and its testing on a group of subjects in dif-
ferent pathological conditions. The algorithm was tuned by
means of a training set of polygraphic recordings on which
two experts had previously marked the start and duration of
each arousal, based on visual inspection. Another set of
previously classified recordings was used to test the
method and simultaneously verify the interscorer agree-
ment.

MATERIALS AND METHODS

Subjects

In order to explore a wide range of arousal patterns, a set
of recordings belonging to 11 subjects affected by different
pathological conditions, was extracted from the database of
the Center for Sleep Disorders (University of Genoa). Five
subjects suffered from breathing disorders, one from noc-
turnal myoclonus, two were epileptic patients, two were
affected by psychophysiologic insomnia and one was a nar-
coleptic patient. The age range was 19 - 67 years (mean:
45). More details about the subjects are reported in Table 1.

TABLE 1. Patient information for each recording in the training set (1-3) and in
the testing set (4-11).

Recording Sex Age Diagnosis
1 F 67 OSA (AI: 84)
2 M 63 Nocturnal myoclonus
3 F 19 Partial epilepsy
4 M 49 OSA (AI:55)
5 M 60 OSA (AI:54)
6 M 31 Partial epilepsy
7 M 39 Psychophysiological 

insomnia
8 M 63 Simple snoring
9 M 49 OSA (AI:14)
10 M 24 Narcolepsy
11 M 31 Psychophysiological 

insomnia

OSA: obstructive sleep apnea.  AI: apnea index.

Data Recording

Each subject underwent an overnight recording in our
sleep laboratory, where the data were collected by a digital
polygraph (Galileo, ESAOTE). The EEG was acquired
from at least four electrodes in common reference (F4, C4,
T4, O4, according to the 10-20 international electrode
placement system), the time constant was set at 0.1, the
low-pass filter at 70 Hz and the notch filter was switched
on. Two EOG channels (time constant: 0.3 sec, filter 30 Hz)
and one submental EMG (0.01 sec, 70 Hz) were recorded
in each case. Additional data were collected, whenever
requested, to evaluate breathing disorders and leg move-
ments, including oronasal flow, thoracic respiration and
tibialis EMG. All signals were sampled with 512-Hz fre-
quency and 12-bit resolution and stored with 128-Hz fre-

quency and 8-bit size, after the application of an antialias-
ing digital filter and a procedure for the dynamic adjust-
ment of a scale factor for the signal amplitude.

Each record was scored by an expert in accordance to
conventional rules for sleep staging11 and the hypnogram
was filed, with a link to the recording.

Computer data analysis

The software program analyzed the data from two bipo-
lar EEG channels (F4-C4 and C4-O2) and one EMG.

EEG analysis. The processing of the EEG data pro-
ceeded from the wavelet transform - a technique that
enables the representation of a signal in the time frequency
domain.18,19 The algorithm for arousal detection performed
the wavelet transform of thirty-two-second overlapping
epochs, analyzing the time course of the signal in different
frequency bands, with variable frequency and time resolu-
tion, as described in the Appendix (a). The program then
processed the transformed data to evaluate the signal
power, with a time resolution of 0.125 sec, for six frequen-
cy bands: 0.0-0.5 (slow delta), 0.5-4 (delta), 4-8 (theta), 8-
12 (alpha), 12-16 (sigma), and 16-64 (beta).

The result of the time-frequency analysis was then used
to evaluate a set of indices describing the EEG changes
accompanying arousals, mainly consisting in an abrupt
shift in EEG frequency and an increase in theta, alpha
and/or beta activity. In order to detect these variations, a
long-term weighed moving average of power was comput-
ed for each band to estimate a background reference value,
while a short-term moving average stood for the actual
trend. The first six indices were the ratios between short-
term and long-term average, indicating the actual variation
for each band; the other indices involved average power in
different bands and evaluated particular features that may
be important in arousal detection (see section b of the
Appendix for details).

The selection of these indices was performed by using
heuristic criteria in the early stage of the program develop-
ment. After that, by using a training set of sleep recordings
previously scored for arousals, a stepwise discriminant
analysis was performed to verify usefulness of such indices
in arousal detection. For this purpose the Stepdisc proce-
dure of the SAS package was used.20

A linear discriminant function was then estimated and
inserted in the algorithm. In analyzing an EEG channel for
arousal detection, the program evaluated the discriminant
function for each 0.125-sec epoch and a possible arousal
was marked when it remained positive for more than three
and up to thirty seconds (after which an awakening was
detected). A score was assigned to the arousal resulting
from the mean value of the discriminant function.

EMG analysis. The EMG signal was processed in par-
allel and filtered digitally to eliminate low frequency com-
ponents. The time course of its power was estimated by
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using the same weighed moving average operator as per the
EEG case; the ratio between short-term and long-term aver-
age was utilized to detect transient increases in muscle
activity, which were marked when lasting more than one
and less than 30 seconds. A score was also evaluated as a
function of the mean value and duration of the increase.

Multi-channel data integration. In the next stage the
patterns marked in the three channels were compared: over-
lapping events were linked; a weighed sum of the scoring
was performed and compared with a threshold to select
probable arousals. These were then filed with their start,
duration and score. The weights and threshold were tuned
during the training phase, with the constraint that no
arousals could be detected without EEG changes as the
increase in EMG alone was not enough. Tuning was per-
formed by running the program through a number of times,
during which the threshold was arbitrarily fixed at one
hundred; four values were tested for the weight of the
EMG, whereas the weight of the EEG was slowly changed
within a wide range. Sensitivity and selectivity were com-
puted at each step, as described in the Appendix (c). As
expected, the number of detected arousals increased togeth-
er with the weight of the EEG or the EMG, thus generating
both correct and incorrect detections. Sensitivity conse-
quently increased while selectivity decreased. The analysis
of the sensitivity-versus-selectivity pattern enabled the
selection of suitable weights.

Arousal sequence revision. In the last step the program
reviewed the sequence of arousals to delete some possibly
incorrect detections:

- the events occurring during REM sleep without a tran-
sient increase in muscle activity: the data from visual sleep
staging were used for this purpose;

- each event less than ten seconds distant from a previ-
ous one.

Visual inspection and validation

Two researchers with experience in the clinical analysis
of polygraphic sleep tracings separately inspected every
recording included in this study to score arousals. Each
event was filed on the computer memory and linked to the
tracing with its start and duration. According to AASM cri-
teria, arousal scoring was independent of Rechtschaffen
and Kales epoch scoring; consequently an arousal could be
marked within an epoch classified as wake. For that reason
the arousal index of each tracing was computed as events
per hour of recording.

Three recordings involving different pathological condi-
tions and arousal patterns were selected. These were then
revised by the two scorers jointly to solve disagreements
and set up the training set for the program, consenting to
the tuning of the algorithm, the estimation of the coeffi-
cients for the linear discriminant function and the choice of
weights and threshold for the arousal detection. The

remaining eight recordings were then processed by the pro-
gram, arousals were detected by the tuned algorithm and
filed with a start, a duration, and a score associated to each.

At this stage, the agreement between the two experts
was evaluated — for the testing set — as the rate between
the number of arousals detected by both raters and the total
number of arousals marked by either one. The agreement
between each expert and the computer was estimated in the
same way.

A further step was then performed with the aim of
checking the disagreements and setting up a "gold stan-
dard" reference set. A computer program collected all the
marked arousals from each recording into a single set that
concealed the source of the detection — either computer or
human — and merged overlapping events, (i.e., marked by
different scorers), into one. When revising this unified
event set the human experts, by mutual consent, marked
each arousal as definite, possible (uncertain) or wrong.
They also reviewed each recording entirely for arousals
that had been overlooked by all during the first pass and
marked them as definite or possible. This validated arousal
set provided the reference evaluation to estimate the sensi-
tivity and selectivity of human and computer scorings.

Global sensitivity and selectivity, evaluated for the pro-
gram and the two experts, was compared by means of the
chi-square test: the distribution between true positive and
false negative, arranged into a 3 x 2 table, was analyzed to
evaluate differences in sensitivity. The distribution between
true and false positive was instead used to evaluate differ-
ences in selectivity.

The procedure adopted for the validation of arousals did
not take the exact start and duration of each event into con-
sideration; consequently, an exhaustive analysis of time
relationship between overlapping events was not per-
formed. Nevertheless, a preliminary analysis was carried
out solely on events in the training set, as each arousal in
this set had a definite start and duration. The difference
between the computer and the experts' evaluation of the
start and duration of each overlapping event was computed
and the distributions of such differences are reported.

RESULTS

The training set included different arousal patterns,
which are briefly illustrated with example results of the
wavelet analysis.

One recording concerned a patient with severe breathing
disorders (AI=84), whose very frequent obstructive apneas
or hypopneas were mostly overcome by arousals. The
arousals were characterized by the disappearance of delta
waves, the increase in beta activities and, often, by a tran-
sient increase in muscle activity (see Fig. 1a,   ). These
changes in the frequency composition of the EEG signal
are reported in Fig. 1b. The second recording involved a
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B

Figure 1 — Arousal in a patient with severe breathing disorders. a) 40-sec epoch of the polygraphic recording, including two EEG derivations, two EOG, one
EMG, the airflow and thorax movement. The arousal, marked by the upper bar, ends an obstructive apnea and includes an increase in muscle activity. b) Wavelet
decomposition of the first EEG derivation (F4-C4) presented in the form of the output of a filter bank. The first trace is the original signal: 20 seconds surrounding
the arousal; the following lines present the signal band-pass filtered for each frequency band. The arousal, marked by the upper bar, is characterized by a fre-
quency shift: slow waves disappear while fast activities increase, especially in 16-32-Hz band.
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Figure 2 — Arousal in a patient with periodic leg movements  a) 40-sec epoch of the polygraphic recording, including two EEG derivations, two EOG, one chin
and one tibialis EMG. The arousal, marked by the upper bar, is associated to a leg movement. b) Wavelet decomposition of the first EEG derivation (F4-C4) pre-
sented in the form of the output of a filter bank. The first trace is the original signal: 20 seconds surrounding the arousal; the following lines present the signal
band-pass filtered for each frequency band. The arousal, marked by the upper bar, is characterized by an increase in the theta, alpha and beta bands.
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patient with rare hypopneas and a nocturnal myoclonus: the
hypnogram showed poor slow-wave sleep and arousals
were characterized by an increase of the alpha, theta and
beta power, often accompanied by a transient increase in
submental and/or tibialis muscle activity (see Fig. 2a and
2b    ).  The third recording, from an epileptic patient,
showed a regular sleep macrostructure. Arousals were char-
acterized by a significant increase in alpha activity, occa-
sionally accompanied by an increase in the EMG. The train-
ing set included two hours from the first recording, with
158 arousals (79 arousals per hour), six hours and forty
minutes from the second recording, with 96 arousals (14.4
per hour) and eight hours from the third recording, with 89
arousals (11.1 per hour); the mean arousal length being
10.9 sec.

Table 2 — Distribution of the arousals in the training set and performance of
the tuned computer program.

Reference Computer
arousals detected

Recording Minutes # Index # Index Sensitivity Selectivity
1 120 158 79.00 160 80.00 97.47 96.25
2 400 96 14.40 100 15.00 94.79 91.00
3 480 89 11.13 97 12.13 93.26 85.57

The stepwise discriminant analysis indicated that all
indices contributed to the detection of arousals: the esti-
mated discriminant function, when applied to the training
set of fixed length basic epochs, resulted in 90.2% sensi-
tivity, 39.5% selectivity and 90.6% specificity.

Table 3 — Distribution of the arousals in the testing set obtained from the vali-
dation process in which the events indicated by experts and/or the computer
program have been marked as definite, possible (uncertain) or wrong.

Definite Possible Definite + 
arousals arousals possible

Recording Minutes # Index # % # Index
4 345 243 42.26 60 19.80 303 52.70
5 300 241 48.20 35 12.68 276 55.20
6 471 91 11.59 13 12.50 104 13.25
7 336 66 11.79 27 29.03 93 16.61
8 430 157 21.91 35 18.23 192 26.79
9 418 65 9.33 20 23.53 85 12.20
10 454 165 21.81 27 14.06 192 25.37
11 480 78 9.75 38 32.76 116 14.50

The resulting set of coefficients for the discriminant
function was fed to the program which repeatedly pro-
cessed the three records of the training set by using differ-
ent values for the weights assigned to the EEG and the
EMG. The resulting patterns of sensitivity versus selectivi-
ty are shown in Fig. 3a: selectivity slowly decreased while
sensitivity increased to 90-95%, then selectivity fell under
80% and quickly dropped. The evaluation of the trend
depicted in Fig. 3a does not account for the final stage of

the program, in which a number of events were cancelled
because occurring either in REM stage (and without mus-
cle activity) or too close to each other. The effect of this
correction is depicted in Fig. 3b for the selected weight of
the EMG (0.75). On this basis a value was chosen for the
EEG weight producing 95.6% sensitivity and 91.9% selec-
tivity in the training set. The number of arousals detected in
the recordings of the training set is reported in Table 2 with
corresponding indices.

Table 4 — Sensitivity and selectivity resulting for each observer and each
recording in the testing set, with reference to the arousal set resulting from the
validation process: a) considering only definite arousals as true arousals; b)
considering both definite and possible arousals as true arousals.

a) definite arousals

First expert Second expert Computer

Recording Sensitivity Selectivity Sensitivity Selectivity Sensitivity Selectivity
4 81.07 79.12 90.95 82.46 92.59 76.79
5 83.40 86.64 90.04 82.82 89.63 81.82
6 71.43 86.67 64.84 98.33 89.01 72.32
7 40.91 72.97 46.97 83.78 93.94 58.49
8 76.43 83.92 84.71 79.17 88.54 72.40
9 80.00 83.87 69.23 77.59 81.54 80.30
10 66.67 93.22 70.30 80.56 88.48 76.44
11 55.13 65.15 76.92 75.95 88.46 64.49
Total 73.69 82.99 79.75 81.97 89.60 74.46

b) definite + possible arousals

First expert Second expert Computer 

Recording Sensitivity Selectivity Sensitivity Selectivity Sensitivity Selectivity
4 78.88 95.98 86.14 97.39 89.44 92.49
5 80.80 96.12 89.13 93.89 86.96 90.91
6 68.27 94.67 57.69 100.00 90.38 83.93
7 39.78 100.00 37.63 94.59 92.47 81.13
8 71.35 95.80 80.73 92.26 85.94 85.94
9 70.59 96.77 63.53 93.10 74.12 95.45
10 59.38 96.61 67.71 90.28 85.94 86.39
11 54.31 95.45 66.38 97.47 79.31 85.98
Total 69.36 96.13 74.80 94.61 86.41 88.35

The tuned program was applied to the eight polygraphic
recordings of the testing set, for which the overall agree-
ment between the program and the experts was 56.2% and
58.3% respectively, while the agreement between the two
experts reached 68.8%. The whole set of arousals detected
by the program and by the experts then underwent the val-
idation process, which resulted in 1125 definite arousals
and 266 possible ones (mean arousal index: definite: 20.9
per hour, definite+possible: 25.8 per hour). The number of
arousals detected for each recording and corresponding
indices are reported in Table 3. Sensitivity and selectivity
were computed for each observer with reference to the val-
idated arousal set and results are reported in Table 4a and
4b for each recording. Considering only definite arousals
the overall sensitivity resulted in 72.4% and 78.4% for the
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B

Figure 3 — Variation of selectivity versus sensitivity of the automatic system following variations in system parameters. a) The weights of EEG and EMG vary
according to a fixed threshold for arousal detection: each curve refers to a particular value for EMG weight, while EEG weight slowly changes in a wide range.
The number of arousals detected increases with the weight of EEG, generating both true and false positives, so selectivity decreases while sensitivity increases.
When sensitivity approaches one, the selectivity quickly drops. b) A revision procedure enables the elimination of many false positives, resulting in higher selec-
tivity values for a wide range of sensitivity: a set of weights is thus chosen leading to 95% of sensitivity and 91% of selectivity in the training set.
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B

Figure 4 — Time relationship between overlapping events as resulting from the comparison of reference and system detected events in the training set. a)
Histogram of the differences in arousal start. b) Histogram of the differences in arousal length.
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two experts and 88.1% for the computer program while
selectivity was 83.0% and 82.0% for the experts and 74.4%
for the program. By including possible arousals in the ref-
erence sensitivity decreased to 67.9%, 73.2% and 84.5%
while selectivity increased to 96.1%, 94.6% and 88.4%.
Among events added during the validation phase, but
missed by all during the first pass, 19 were classified as
definite (1.69%), and 11 as possible (4.14%).

When considering only definite arousals, the null
hypothesis of no difference in sensitivity was rejected at
0.001 level, and the further analysis of the distribution
between true positive and false negative indicated a signif-
icant difference between the two experts and between each
expert and the program. Differences in selectivity were also
significant as a whole (at 0.001 level), but not between the
human experts: the selectivity of the program was signifi-
cantly lower than that of each human expert.

The mean arousal length, limited to the training set,
resulted in 10.9+/-6.4 sec. As concerns the training set, the
distribution of the differences between the computer and
the experts in the evaluation of the arousal start, is shown
in Fig 4a: in 35% of events the difference was lower than
0.25 seconds while in 64% of events it was lower than 1
second; the computer program tended to advance the
arousal start slightly. The distribution of the differences in
the evaluation of the arousal duration is shown in Fig. 4b;
a greater divergence appears in this case: 19% of events
coincided almost exactly (less than 0.25 seconds differ-
ence) and 36% of events were within 1 second difference,
while in most cases the computer tended to assign a longer
duration.

DISCUSSION

The analysis of the testing data set indicates that the sen-
sitivity of the automatic system is higher than that of
human experts while its selectivity is lower.

Unlike conventional analysis of sleep macrostructure,  in
which the stages are assigned to fixed length epochs, the
main object of sleep microstructure analysis is the detec-
tion of transient events, among which arousals, and the
analysis of their distribution in time, duration and other sig-
nificant features. The system therefore used context and
multichannel information to detect arousals as individual
phasic events. The evaluation of the agreement between an
observer and the reference set of arousals was therefore
based on the identification of individual events, admitting
for partial overlapping. The time relationship between
overlapping events was considered of minor importance at
this stage. However, the preliminary analysis performed on
the training set indicates a fair agreement between comput-
er and experts on arousal starting time but a greater diver-
gence regarding arousal duration. This problem requires
appropriate analysis that may lead to further development

of the method.
The first comparison between the arousals marked by

different observer in the testing set showed little agreement
between the experts and an even lower agreement between
each expert and the computer program. The inter-expert
agreement is considerably lower than that obtained in a
recent study concerning arousals in normal sleep,4 although
it is closer to the level of agreement reported by another
study on arousals in respiratory sleep disorders and involv-
ing a number of sleep laboratories.21

In order to better the evaluation of the disagreements and
the estimate of sensitivity and selectivity of each observer,
a final stage of validation of the detected arousals was per-
formed by the two human experts. The numerous events
detected by the automatic system, but not by the experts,
were thus analyzed enabling the distinction between true
arousals, which escaped the human reader, and false posi-
tive ones. The experts also revised each tracing completely
to look for events missed by all during the previous steps,
though only few unmarked events were detected. The vali-
dation was performed three months after the previous scor-
ing, by mutual consent of the two experts, in compliance to
AASM criteria. No information was directly available con-
cerning who had detected each arousal, individual patterns
could hardly be remembered and only a vague perception
of personal style could influence the reviewers, mainly typ-
ical errors made by the automatic system. In a way the val-
idation process forced the readers to a closer examination
of the detection criteria. The low inter-scorer agreement
resulting from the first scoring and the persistence of a por-
tion of uncertain events indicated certain objective difficul-
ties in arousal characterization. Some of these difficulties
concerned events that scarcely met AASM criteria but
could definitely be included in the activation phase of what
has been described as a cyclic alternating pattern - CAP 2.
Another source of uncertainty was the presence of effects
of drug use by some patients originating bursts of beta
waves. The prevalence of fast activities, especially in trac-
ing number 7, induced the experts to neglect several events
in their first analysis since they considered them as not hav-
ing the same origin as arousals. However, in the validation
phase a stricter application of the rules for arousal detection
brought to the inclusion of all those events that met the con-
ventional criteria marking borderline cases as possible.

When exploring the differences between the arousals
detected by the automatic system and the reference set we
came across several cases in which the arousal was marked
during the wake state, owing to the misinterpretation of
artifacts or changes in the vigilance level. The addition of a
sleep onset detector could possibly lead to a better perfor-
mance in such situations.

However, our results indicate the usefulness of wavelet
analysis in the detection of EEG changes accompanying
arousals, and, probably, in the characterization of other
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microstructure EEG patterns. Several indices are required
to take the different arousal patterns into account: some of
these patterns are characterized by an increase in the alpha
band and could be detected by using a single index such as
the alpha slow-wave index (ASI), previously used for the
detection of episodes of wakefulness during sleep.13 Other
patterns are dominated by EEG desynchronization, with
low or absent alpha: a measure of mean frequency seems
more appropriate in this case, as already suggested by
Drinnan,16 though overlapping slow waves may be includ-
ed in arousal patterns with considerable effects on slowing
the mean frequency down. The evaluation of various
indices, supported by the discriminant analysis, enables the
detection of patterns in which different features are present
and differently combined. A further step can be made in the
analysis of microstructural events by associating the
wavelet analysis with other tools, such as artificial neural
networks, for the automatic extraction of the main features
of the patterns of interest in the training set.1,22

The performance of the automatic system is, however,
interesting for its applications, as the arousals can be
detected with high sensitivity and then validated by a
human expert for the rejection of false positives. This could
substantially decrease the time taken by the expert to score
the records for arousals.

Although this study was only designed for methodolog-
ical purposes, some impressions concerning the distribu-
tion of arousals in different pathological conditions may be
drawn from the results. Patients with breathing disorders
had a higher arousal index than normative physiological
values for their age-span.4 The arousal index increased with
the apnea index, reaching values just over one per minute -
commonly reported as extreme arousal rate.12 In these
cases conventional sleep staging was hardly applicable, as
sleep onset and arousal alternated continuously. As for the
remaining pathologies, we found the arousal index value to
be higher than normal in the narcoleptic patient while
almost physiological values were detected in the other
recordings. This seemed to reflect the regular sleep struc-
ture found in the two patients with partial epilepsy, but was
surprising in patients affected by sleep disturbances (psy-
chophysiological insomnia and nocturnal myoclonus).  Of
course, the comparison with normative data requires cau-
tion, considering the low inter-scorer agreement reported to
date.21 Moreover, further development of automatic sys-
tems may help in providing a homogeneus basis for the
confrontation of data. However, our data may suggest that
sleep fragmentation and instability are more complex than
what is reflected by the arousal index alone and that other
microstructural features, such as the cyclic alternating pat-
tern,23 could support clinical purposes.

APPENDIX

Details concerning the detection algorithm, preceded by

a brief introduction to the wavelet transform (i.e., the
method we used to evaluate the time frequency structure of
EEG) are supplied in this appendix. A wider introduction of
wavelet technique can be found elsewhere, as in24,25,26 for a
general presentation and in18,19 for its applications to EEG
analysis.

a. The wavelet transform

The analysis of the frequency composition of a signal is
mostly performed by the Fourier transform, which enables
the evaluation of statistical features of a stationary signal.
The Fourier transform was adapted to the analysis of non-
stationary processes by introducing the window Fourier
transform, in which the signal is seen through a sliding
window of limited extent, considering it as approximately
stationary for such a short period of time. The size of the
window determines the analysis time and frequency reso-
lution.

In the wavelet transform a family of functions is used to
decompose the signal: each function is the translation and
dilatation of a unique prototype ψ(t), with few oscillations
concentrated in time. The wavelet transform is then defined
by:

where s is the scale factor, which, in this formulation,
replaces frequency — the higher the value of s, the lower
the frequency explored. As opposed to the windowed
Fourier components, in which a fixed time window is used,
the scale factor expands or contracts the whole wavelet, so
that high frequency components are more concentrated in
time than low frequency components. Consequently, the
wavelet transform enables a multiresolution analysis in
which the precision of time and frequency localization is
automatically adapted to the frequency content of the
explored patterns.

The discrete wavelet transform, in the form we apply to
digital EEG, can be described as the recursive application
of a pair of half-band mirror filters, which decomposes the
signal into two series at each step: the low-pass filter orig-
inates the coarse approximation (slow component), while
the high-pass filter originates the series of additional details
(fast component). Both series are then sub-sampled by a
factor two, thus halving the time resolution.  In the mul-
tiresolution approach the pair of filters is applied first to the
raw signal and then repeatedly to the approximation series
only; the result may be viewed as the output of a filter bank
with a constant relative bandwidth. The decomposition pro-
cedure may be adjusted, following the "wavelet packet"
scheme, in order to enhance the discrimination of particu-
lar patterns.

In our application to the EEG the discrete wavelet trans-
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form was implemented by the Daubechies wavelet filter
with 12 coefficients, analyzing 32-sec overlapping epochs
with 128-Hz sampling rate: this originated the set of bands:
32-64, 16-32, 8-16, 4-8 ... 0.-0.0325Hz with a bandwidth
ranging between 32 to 0.0325Hz. In order to obtain a bet-
ter detection of the relevant EEG patterns, we stopped the
decomposition with the 0.0-0.5 band and conversely fur-
ther halved the 8-16-Hz band to differentiate the alpha
activity from the sleep spindles. The time resolution result-
ed in 0.125 sec for the 4-8, 8-12 and 12-16-Hz bands; but
grew for the beta band and decreased for the delta band,
which turned out to be suitably decomposed into four sub-
bands.

b. The EEG indices for arousal detection

The results of wavelet transform were used to evaluate a
set of indices describing the EEG changes accompanying
arousals, mainly consisting in an abrupt shift in EEG fre-
quency and an increase in theta, alpha and/or beta activity.
In order to detect these variations, the power was comput-
ed for the following six frequency bands: 0.0-0.5 (slow
delta), 0.5-4 (delta), 4-8 (theta), 8-12 (alpha), 12-16
(sigma), and 16-64 (beta). The time resolution was 0.125
sec, proper of the theta, alpha and sigma bands. A long-
term weighed, moving, average of power was then com-
puted for each band to estimate a background reference
value, while a short-term moving average stood for the
actual trend; in both cases the average value was estimated
as:

where {xi} represents the input series of band powers, {yi}
the output series of moving averages and N is a coefficient
qualifying the time constant of the exponentially decaying
window, thus differentiating short-term from long-term
averages.

The first six indices were the ratios between short-term
and long-term average, indicating the actual variation for
each band; the other indices involved average power in dif-
ferent bands and evaluated particular features that may be
important in arousal detection. They were defined as fol-
lows:

· the ratio between short-term and long-term mean fre-

quency, where the mean frequency was computed as:

where fi is the central frequency of the band and pi is its
power; the index was sensitive to the frequency shift;

· the ratio between delta and alpha plus beta power, com-

puted for both short-term and long-term average; this could
indicate the presence of slow wave sleep;

· the ratio between short-term and long-term alpha relative

power, which highlighted variations in alpha activity;

· the ratio between long-term alpha plus slow-delta and

theta plus delta power; it could indicate that the subject was
already awake;

· the ratio between sigma and alpha plus beta power, which

could suggest the presence of sleep spindles;

· the ratio between beta and delta variations (each

expressed as the ratio between short-term and long-term
average power), which could suggest a desynchronization
of the tracing.

The linear discriminant function was estimated by max-
imizing the sensitivity and the specificity when applied to
the training set of fixed length basic epochs. It has the form:

where X is the index vector {xi}, {wi} is the weight vector
and θ is the threshold.

The algorithm for arousal detection evaluated the set of
indices for every 0.125-sec basic epoch. When the discrim-
inant function became positive an arousal detection mode
was activated in which long-term averages were not updat-
ed. Possible arousals were marked when the discriminant
function remained positive for more than three and up to
thirty seconds (after which an awakening was detected); a
score was then assigned to each arousal resulting from the
mean value of the discriminant function.

The program proceeded by analyzing EMG data and by
combining the results from the different channels as
described in the Method section.

c. The measure of sensitivity, selectivity and specificity.

The performance of a particular run of the program or a
particular reading by an expert were evaluated in terms of
sensitivity, selectivity and specificity, where:
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The specificity was computed only in the context of the
discriminant analysis, in which each fixed length basic
epoch was classified as true positive (TP), false positive
(FP), true negative (TN) or false negative (FN). In subse-
quent analyses, variable length arousals, marked by one
observer, were compared to the reference set and the indi-
vidual events were considered as TP (if an overlapping
occurred), FP or FN. We believed that in this case TN
counting, and consequently specificity evaluation, was
nonsensical.
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