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A Method for the Discrete Fractional Fourier
Transform Computation

Min-Hung Yeh and Soo-Chang Pei

Abstract—A new method for the discrete fractional Fourier transform
(DFRFT) computation is given in this paper. With the help of this method,
the DFRFT of any angle can be computed by a weighted summation of the
DFRFTs with the special angles.

Index Terms—Discrete Fourier transform, discrete fractional Fourier
transform, fractional Fourier transform.

I. INTRODUCTION

T THE fractional Fourier transform (FRFT) indicates a rotation of
signal in the time–frequency plane, and it has been widely in-

vestigated with many applications [1]–[3]. Because of the importance
of FRFT, the discrete fractional Fourier transform (DFRFT) has be-
come an important issue in recent years [4]–[11]. In the development
of DFRFT, the DFRFT has been considered to be the combination of
four parts [4]:

1) the original signal;
2) its DFT;
3) circular flipped of signal;
4) circular flipped of its DFT.

Unfortunately, it cannot have similar results as the continuous case
[6]. In 1996, we found that the DFRFT with DFT Hermite eigenvec-
tors can have similar outputs as those of the continuous case [7], [8].
These DFRFTs use the DFT Hermite eigenvectors as their eigenvectors
and have similar a eigendecomposition form as the continuous FRFT
kernel. The eigendecomposition method has been proved and justified
in [9], and it has been successfully used in many applications [3].

The DFRFT discussed in this paper is for the eigendecomposition
method [7], [8]. Although the eigendecomposition method can have
similar results as in the continuous case, its computation cost is very
large. The goal of this paper is to introduce a new computation method
for the DFRFT.

II. REVIEW OF THEDISCRETEFRACTIONAL FOURIERTRANSFORM

A. The Definition of DFRFT

The DFRFT is developed based on the eigendecomposition, and its
transform kernel is written as [7]–[9]

F
2�=� = VD2�=�

V
T (1)

where� indicates the rotation angle of DFRFT.V = [v0jv1j � � �
jvN�2jvN�1] for N is odd,V = [v0jv1j � � � jvN�2jvN ] for N is
even, andvk is thekth-order DFT Hermite eigenvector.D2�=� is a di-
agonal matrix with eigenvalues of DFRFT in the diagonal entries. The
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TABLE I
EIGENVALUES ASSIGNMENT RULE OF

DFRFT KERNEL MATRIX

methods for finding the DFT Hermite eigenvectorsvk are presented in
[7] and [8]. In Table I, there exists a jump in the last eigenvalues for the
two even-length cases. Therefore, there are some differences in com-
puting the DFRFT kernels between even- and odd-length cases. For the
odd- and even- length cases, (1) can be written as follows:

F
2�=� =

N�1

k=0

e�jk�vkv
T
k (N is odd) (2)

F
2�=� =

N�2

k=0

e�jk�vkv
T
k + e�jN�

vNv
T
N (N is even): (3)

The DFRFT output signal is computed as

X� =

N�1

k=0

e�jk�vkv
T
k x (N is odd) (4)

X� =

N�2

k=0

e�jk�vkv
T
k x+ e�jN�

vNv
T
Nx (N is even): (5)

B. Current Implementation Method of DFRFT

The DFRFT is based on the eigendecomposition of DFT kernel ma-
trix, and the DFT Hermite eigenvectors are used for the DFRFT kernel
construction. For a fixed number of point, the DFT Hermite eigenvec-
tors and the transform kernel of DFRFT can be computeda priori, but
regardless of the cases in (4) and (5), an innerproduct operation for the
DFRFT transform kernel and the input signal is still required to com-
pute DFRFT. Unfortunately, the matrix-vector products in (4) and (5)
takeO(N2) time.

III. M ETHOD FORDFRFT COMPUTATION

A. Development of the New Method

In this section, we will develop a new method for DFRFT computa-
tion. The ideal of the developed method is to compute the DFRFT of
any angle by a weighted summation of the DFRFTs in special angles.

Proposition 1: It is assumed thatx is a discrete signal with odd
lengthN . The DFRFT ofx for rotation angle� can be computed as

X� =

N�1

n=0

Bn;�Xn� (6)

where� = 2�=N . The weighting coefficientsBn;� are computed as

Bn;�=IDFTfe
�jk�gk=0;1;2;...;N�1=

1

N

N�1

n=0

e�jk�ej(2�=N)nk:

(7)

1053-587X/03$17.00 © 2003 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 03:07 from IEEE Xplore.  Restrictions apply.



890 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 3, MARCH 2003

Proof: Because Bn;� is equal to the inverse DFT of
fe�jk�gk=0;1;...;N�1, the DFT of Bn;� will reach the sequence
fe�jk�gk=0;1;...;N�1

e�jk� =

N�1

n=0

Bn;�e
�j�nk =

N�1

n=0

Bn;�e
�j(2�=N)nk: (8)

Then, the definition of DFRFT in (4) will become

X� =

N�1

k=0

N�1

n=0

Bn;�e
�j(2�=N)kn

vkv
T
k x

=

N�1

n=0

Bn;�

N�1

k=0

e�j(2�=N)kn
vkv

T
k x

=

N�1

n=0

Bn;�Xn� (9)

Equation (7) indicates thatBn;� can be computed from the inverse
discrete Fourier transform (IDFT) of the valuesfe�jk�gk=0;1;...;N�1.
The weighting coefficientsBn;� have a closed-form solution.

Bn;� =
1
N

1�e

1�e
; � 6= k�

�(n� k); � = k�
: (10)

Proposition 1 tells us the DFRFT computation with odd point of
length can be realized by the weighted summation of the DFRFTs
in special angles. The special angles are multiples of2�=N , and the
weighting coefficients are computed from an IDFT operation.

In Table I, there exists a jump in the eigenvalue assignment when the
length of signal is even. Therefore, the above computation method for
DFRFT with odd point cannot work for the even length. It is necessary
to design a new different method for the even point of DFRFT compu-
tation.

Proposition 2: It is assumed thatx is a discrete signal with even
lengthN . The DFRFT ofx with rotation angle� can be computed by
the following equation:

X� =

N

n=0

Bn;�Xn� (11)

where� = 2�=(N + 1), and the weighting coefficientsBn;� are com-
puted as

Bn;� =IDFTfe�jk�gk=0;1;2;...;N

=
1

N + 1

N

n=0

e�jk�ej(2�=(N+1))nk: (12)

Proof: There exist two different points between (11) and (6). In
(11),(N + 1) terms are summed, and the special angles are multiples

of 2�=(N + 1). Based on the same idea as the odd case, the DFT of
the sequenceBn;� is used to express the sequencefe�jk�gk=0;1;...;N.

e�jk� =

N

n=0

Bn;�e
�j(2�=(N+1))nk: (13)

Thus, (5) can be derived as in (14), shown at the bottom of the page.
Similar to the odd length case, the weighting coefficientsBn;� also

have a closed form. The closed form ofBn;� is shown as follows:

Bn;� =
1

N+1
1�e

1�e
; � 6= k�

�(n� k); � = k�
: (15)

By Proposition 1 and 2, we can conclude that the DFRFT of any
angle can be computed by the weighted summation of the DFRFTs
with special angles. The special angles are multiples of2�=N for the
odd case and are multiples of2�=(N + 1) for even length. Regardless
of even- or odd-length cases, the weighting coefficients are obtained
from an IDFT operation. TheN -point IDFT is needed for odd length,
and the(N + 1)-point is computed for even length. Both in odd- and
even- length cases, an odd-point IDFT is computed to get the weighting
coefficients. The popular FFT algorithm can only be applied while the
length is power of 2; therefore, it cannot help us get the weighted coef-
ficients. It is lucky that the DFT or IDFT with a prime point of length
can have the Winograd Fourier transform algorithm [12]. Thus, we can
use it with the DFRFT with prime length.

B. Discussion

The original method in (4) and (5) requiresN2 storages to store
the transform kernel. If the computing angle is changed, the transform
kernel is also changed and needs to be recomputed. In our new algo-
rithm, only the DFRFT of the specified angle is stored. Any angle of the
DFRFT can be obtained by a weighted summation of these specified
DFRFTs. The weighted computation in this new algorithm still takes
O(N2)multiplications; therefore, its computation load is stillO(N2).

IV. TWO IMPLEMENTATION METHODS FOR THENEW ALGORITHM

In this section, we will introduce two implementation methods for
the DFRFT computation algorithm shown in the previous section. One
is called theparallel method, and the other is thecascade method. The
principle of parallel method is straightforward, and it uses the results
in Propositions 1 and 2 directly. It must be noted that the special angles
and numbers of terms are different for the even- and odd-length cases.

Because the angle additivity is existed in the DFRFT, a DFRFT with
angle� performed by a DFRFT with angle� will be a DFRFT with
angle(� + �). Using this angle additivity in the DFRFT, the DFRFT
in (6) can be rewritten in the following form:

X� =BN�1;�F
(N�1)2�=�

x +BN�2;�F
(N�2)2�=�

x

+ � � �+B1;�F
2�=�

x+B0;�x (16)

X� =

N�2

k=0

N

n=0

Bn;�e
�j(2�=(N+1))kn

vkv
T
k x +

N

n=0

Bn;�e
�j(2�=(N+1))Nn

vNv
T
Nx

=

N

n=0

Bn;�

N�2

k=0

e�j(2�=(N+1))kn
vkv

T
k x + e�j(2�=(N+1))Nn

vNv
T
Nx

=

N

n=0

Bn;�Xn� (14)
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=F2�=�(� � � (F2�=�(F2�=�(BN�1;�X� +BN�2;�x)

+BN�3;�x) +BN�4;�x) + � � �) +B0;�x: (17)

Equation (17) shows us that the DFRFT with any angle can be real-
ized by the DFRFT withonly onespecial angle. Similar to the par-
allel method, the special angle and numbers of terms of cascade forms
are also different for the even and odd cases. The cascade form of the
DFRFT in even case is written as

X� = F2�=�(� � � (F2�=�(F2�=�(BN;�X� +BN�1;�x)

+BN�2;�x) +BN�3;�x) + � � �) +B0;�x: (18)

Both the implementation methods can have the advantages for the
DFRFT computation. The parallel method is suitable for the signal
whose DFRFTs in special angles are already known. The computation
of the DFRFT will become only a linear combination of the DFRFTs
in special angles. It has been shown in [2] and [8] that a chirp signal
can have an impulse output for an FRFT or DFRFT with a appropriate
angular parameter. Therefore, the FRFT and DFRFT can be used for
chirp signal detection and optimal filtering in fractional Fourier do-
mains [13]. Using this proposed method, the DFRFTs of special angles
of the desired signal can be computeda priori. The chirp detection and
optimal filtering in the fractional Fourier domain can be resolved by
adjusting the rotation angle�.

In other way, the cascade method means that the computation of the
DFRFT can be realized from the DFRFT with only one specified angle.
If the DFRFT with the specified angle can be computed efficiently, the
computation of the DFRFT will become efficient. Such an architecture
is very suitable for VLSI implementations.

V. CONCLUSIONS

In this paper, we develop a new method for DFRFT computation. By
this new method, the DFRFT of any angle can be computed by a linear
combination of the DFRFTs with special angles. The weighting coef-
ficients of the linear combination are obtained from an IDFT computa-

tion. Moreover, this new method can be realized by two methods: par-
allel and cascade. The parallel method is suitable for the signal whose
DFRFT in special angles are already known. The chirp signal detec-
tion is a common one, and the cascade method has a regular structure;
therefore, it is very suitable for VLSI implementation.
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