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Abstract—This paper describes a synthesis method that auto- to use state machines. In fact, most synthesis methods for
matically derives controllers for timed discrete-event systems with  sypervisory control theory have been done in the context

nonterminating behavior modeled by timed transition graphs . . . .
and specifications of control requirements expressed by metric in which both the unrestrained and legal behaviors of a

temporal logic (MTL) formulas. Synthesis is performed by using Process are modeled with automata [16], [24], [37], [40].
1) a forward-chaining search that evaluates the satisfiability of Besides, temporal logics have long been recognized as a
MTL formulas over sequences of states generated by occur- ysefyl formalism for specifying properties of reactive systems

rences of actions and 2) a control-directed backtracking technique - S
that takes into consideration the controllability of actions. This [19], [30]. One key characteristic of such logics is that they

method has several interesting features. First, the issues of con-are declarative and involve simple syntax and semantics.
trollability, safety, liveness, and real time are integrated in a Although mostly used in the verification of concurrent systems,
single framework. Second, the synthesis process does not requireiemporal logics have been applied to supervisory control

explicit storage of an entire transition structure over which .
formulas are checked and can be stopped at any moment, giving theory (e.g., [21], [26], [27], [32], [33], [41] for linear temporal

an approximate but useful result. Third, search and control logic frameworks and [5] for a branching temporal logic
mechanisms allow circumvention of the state explosion problem. framework). Real-time interval logics have also been used in

Index Terms—Discrete-event systems, metric temporal logic, the verification of control systems (e.g., [38]).

supervisory control, synthesis algorithm,.-languages. The synthesis method advocated in this paper uses specifica-
tion formalisms and integrates temporal aspects by associating
| INTRODUCTION durations to transitions and time constraints to modal op-

. erators. More specifically, the dynamics of processes and
CONTROLLER can be viewed as a program that res'IEJecifications of control requirements are representdihisd

strains the behavior of a process in order to satisfy 9VeIhnsition graphs(TTG’s) and metric temporal logic(MTL)
constraints on sequences of actions executed by the process.

Supervisory control theorynitiated by Ramadge and Wonhamormmfﬁ’ls [4]. [23], respectively. Such an. approach is very'
[36], addresses the problem of synthesizing controllers fgfractive. On the one hand, the dynamics of a process is
discrete-event systems (DES) by focusing on the formulatidfC"e understanfjable. from a state mrs}chlneT because it explicitly
of conditions for the solvability of different control problemsShows the atomic actions, the states in which they are enabled,
and on the investigation of algorithms for computing corgnd their effects. On the other hand, constraints on a process
trollers from formal specifications. One of the main issue¥/€ often more understandable from declarative statements.
of this theory concerns theontrollability of a specification, ~ Our synthesis method is closely related to the recent work
which has similarities with the issue akalizability [1], by Brandin and Wonham [15]. In their model, both the dy-
[34]. In opensystems, the process to be controlled interferemmics of processes and specification of control requirements
with other processes in its environment. This interaction &re described by TTG's. Transitions represent instantaneous
essentially of a reactive nature. A controller can be realized byents and time progresses in states that represent actions.
taking into account changes caused by uncontrollable everisour case, transitions represent actions with durations. As
generated by the environment. discussed in [11], both models are dual but lead to different
Specifying the dynamics of a process and control requ”?ggthesis methods. However, our approach can also handle
ments represents a challenge for engineers who want|i{p,nessconstraints, that is, constraints over nonterminating
apply formal methods such as controller synthesis. This taﬁghaviors or behaviors that have a very remote or indefinite

can be accpmphshed by using speuﬂcatlon Ianguaggs t ination point. Thus, the control requirements expressed by
are expressive and readable. Expressiveness deals with com- L .
MTL formula refer to infinite behaviors.

lex properties, while readability facilitates the explanation o . .
plex prop y b Our method is also closely related to recent works by Thistle

specifications. One method of writing down specifications is
P ¢ P and Wonham [42], [43]. We adopt the same model for the
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ministic Rabin automat&.This representation also allows thewve have the following operations:

expression of liveness constraints, but it does not deal with

time constraints. pre(U) :={k € A*: (Ju € U)(k < u)}
The most substantial difference with these two previous - ,_ w.

works and many others that consider the problem of finding () ={w € A% pre({w}) € K}

a winning strategy for finite or infinite games (e.g., [7],

[29]) lies in the synthesis algorithms. As in the original

method proposed by Wonham and Ramadge [47], they profollowing Ramadge [35], a DE& is modeled by a pair of

mote synthesis methods based on a fixpoint characterizati@guages. € A* and L, C A, such thatl = pre(L) (L is

of the supremal controllable sublanguage of a given legaiclosed) andre(L,) C L. The languages andL,, are used

language. In addition, they include an induction on the atP describetransientand persistenttraces of actions that the

tomaton structure to compute a controller that generates ff@cess can execute.pie(L,,) = L, thenG is deadlock-free.

supremal controllable sublanguage. In contrast, our approachet {A., A..} be a partition of4, whereA. andA,,. denote

simply consists of seeing sequences of actions as pathstifset otontrollableactions and set afncontrollableactions,

a TTG. By searching through the space of possible patfigspectively. Lel’ := {y € 24: A,. C ~}. A supervisor is a

MTL formulas representing constraints are verified over thefignctionS: A* — I" that maps each finite sequence of actions

paths to determine points at which controllable actions muét & set of enabled actions.

be disabled. This is done incrementally in a single phaseA controlled DES is one constrained by a supervisor. Given

so that a controller can be obtained without exploring thie DESG = (L, L.,) and a supervisof, the corresponding

entire state space because unsatisfactory paths are prugstirolled DES is noteds® = (L°, L7), where:

and most of the vertices on these paths are not expanded) L° is defined recursively asc L° and for allk € A*

further [22]. A depth-first exploration obviates storing the anda € A, ka € L7 iff k € L°, ka € L, anda € S(k);

entire graph in memory. Furthermore, heuristics and searct?) L° := lim(L°) N L.

control mechanisms, reminiscent of familiar techniques in thewe assume that the supervissris complete, that isL*

field of artificial intelligence search, can be used to contrd a subset of the domain . A supervisorsS is said to be

the state explosion problem. One can reasonably expect thahdlock-free for if pre(LZ) = L°. The control problem

our algorithm is less greedy for memory and performs bettggidressed herein can now be formalized as follows.

on average. Problem 1: Given a DESG = (L, L. ) andW C A“ such
The rest of the paper is organized as follows. Sectionthat W C L, construct a complete deadlock-free supervisor

summarizes Thistle and Wonham's framework and situates thefor ¢ such thatLS C W.

control problem addressed in this paper with regard to theirThistle and Wonham [43] give necessary and sufficient
model. Section Ill describes the syntax and semantics of MTéenditions for the existence of a maximal solution to this
gives a characterization of safety and liveness constraints, gjt@blem. Their result is mainly based ercontrollability and
introduces basic properties of temporal operators that allowclosed properties. If the-closed property is not satisfied for
transformations of formulas into appropriate forms. Section I¥ particular instance of Problem 1, the maximal solution does
presents the foundation of our synthesis method by abstractifit exist because of the open-ended nature of liveness prop-

over implementation details. Section V contains some simpigties [43]. Besides, our goal is not to derive the maximally
examples iIIustrating the method’s most important aSpeCF‘fermissive controller, but a useful controller.

Section VI introduces fundamental properties that will be used|n this paper, we provide a solution for a particular case
to show the correctness of a new synthesis algorithm detailgdproblem 1. We assume thét, = lim(L), that is, L., is
in Section VII. Section VIII presents a simple application t@ompletely determined bg. We also suppose that the control
an antenna rotor control system. Finally, Section IX discussesuirements are given by an MTL formula Thus, the
related works from a more technical point of view angegal languagé? can be interpreted as transformigignto a
concludes the paper. nondeterministic Bchi automaton by using thableau method
[45], then taking the intersection of the language accepted by
the Blchi automaton with the languade,. In reality, we do
Il SUPERVISORY CONTROL OF DES not construct the Bchi automaton. Rather, our method works
The atomic actions of a DES are represented by a nonemjitgrementally onf and a representation df so that only the
set of symbolsA, called an alphabet. Leti* and A~ be part of the Bichi automaton relevant tf is built. Finally, we
the set of finite words and the set of infinite words ovgr assume that the DES is modeled as a T#G= (X, P, A, A4,
respectively. The empty word is noted An w-word over T, &, xo), where X is a finite set of statesP is a finite set
A is written asa = a[0]afl] --- and represents an infiniteof propositional symbolsj: X — 27 is a labeling function
execution of actions. Led™ := A* U A¥. For any two that assigns to each state the set of propositional symbols true
wordsk € A* andu € A, the expressiot < « means that at that state;4 is a finite set of actions partitioned intd..
k is a prefix ofu. Given K C A*, U C A®, andW C A¥, andA,.; m: A — RT is the time duration function such that
m(a) > 0 forall e« € 4; & X x A — X is the transition

1Biichi and Rabin automata are finite automata equipped with an acceptaﬂ'é@aion; anda:q € X is the initial state. The.k'language
condition that is appropriate for infinite words [44]. generated by7 is L(G) = {k € A*: {(xo, k) is defined

clo(W) := lim(pre(W)).
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and thew-language accepted b is £,(G) = im(L(G)). Although positive real numbers are used for specifying time
Therefore,L = £(G) and L, = lim(L(G)). constraints, the control requirements will be sampled only at
Given a sequence of states we notec|i], the ith state time points that interact with discrete transitions.
on the sequence. A trajectory ¢! on anw-word « € L,
is an infinite sequence of statessuch thats[0] = 2o and B. Semantics
; _ L N ) ) .
oli + 1] = £(ofd], ofd]) for ¢ > 0. Since the execution \.ry o 1as are interpreted over models of the form
of a process never terminates add is finite, successive
T . ) oo M = {o, n, T), where
applications of introduce simple cycles with distinct states on i i _
them (except one that begins and ends the cycle). Nevertheless) o IS a trajectory; _ _ _
finite executions can be simulated by using a terminal state?) ™ N x P — {true, false} is a binary function that
in which the processes continually executevait action that evaluates a propositional SYthO['L]' that '_S’”_('L’ p)
lasts, for example, one time unit. If this action is controllable, re.turnstruin‘_ p holds atofi], false otherwise;
selfloops labeled byait can be used in conjunction with some 3) £ IN — IR™ is a function that assigns the time stamp
T(i) to positionz.

control requirements to introduce specific delays at the process
level. We write (M, ¢} |= f if formula f holds at positior: in

A realization of a supervisoss for a DES @ is a pair the trajectoryo of M. When the model is understood, we
(M, ¢), where M = (Q, A, 6, qo) is a transition structure simply write o[¢]|= f. In addition to the standard rules for
and ¢: Q — T a feedback function such that for eactBoolean connectives, we use the following rules for temporal
ke L%, ¢(8(qo, k)) = S(k). In this paper, a realization of aconnectives. For a positiof) ¢ > 0, a propositional symbol
supervisor is called a controller. The combination of a DES formulas f, fi, and fz:
and a controller constitutes a closed-loop system. As usual, thd) o[:] |=p iff #(i, p) returnstrue;
transition structureM mimics the behavior off and function  2) o[i] |= O~ f iff T(i4+1) ~ T(¢) +t ando[i + 1] |=f;
¢ determines the set of permissible actions@m each step  3) ofi] |=0..f iff for all j, 7 > 4, o[j]|=f whenever
of the execution of the closed-loop system. () ~TE) + ¢t
t]|= iU+ f2 iff there existsj, j > 4, such that
(§) ~T(@)+tando[j]|= f2, and for allk, : < k < j,

The temporal logic that we have adopted to specify the olk]|=f1 wheneverI'(k) ~ T(i) TH' o
control requirements is MTL [4], [23]. In this logic, time Finally, we say that moded (or trajectoryo) satisfies a
constraints are associated with modal operators. It allof@mula f if o[0]|= f.
expression of various properties such as “eventually, within
t time units, property will be satisfied” or “propertyp must C. Safety and Liveness Properties

Q

4)

NS N

I1l. CONTROL REQUIREMENTS

always be satisfied aftertime units.” In general, the control requirements include interconnected
safety and liveness properties [25]. A safety property is
A. Syntax expressed by formulas of the ford)...f, O f, fiU<tf2,

MTL formulas are constructed from a finite set of propoor fiU<:f2. It is characterized by the fact that, when it is
sitional symbolsP; the Boolean connectives (and) and - Violated, the violation occurs on a finite prefix of a trajectory.

(not); and the tempora| ConnectivesNt (nexby Ot (a|Way3, For example, the violation of a deadline, Conveyed by the
andU., (until), where~ denotes<, <, >, or > and¢ € IR*. until connective with a constraint<¢,” occurs when a finite

The formula formation rules are: number of transitions, for which the sum of durations is greater

1) every propositional symbagl € P is a formula; tha_nt., has bgen traversed without satisfyifig while f; was

2) if f, fi, and f» are formulas, then so aref, fi A fa, satisfied. A liveness propert.y is expres;ed by formulas of the
Ontf, O f, and fLU. 1 fo. form fiUs. fo or fiUs, fo. It is characterized by the fact that

ir'_[]%can only be violated on an infinite trajectory [2]. For such

_ - aTormula with a constraint* ¢,” there are no bounds on the

hV 2 ==ChAaR) (orf) i = =20V R o0 whenf, should occur aftet time units. In other words,

(f1 implies f), and Oy f = true Us.f (eventually f). it must be checked over the infinite open time interi¢aloo).
The language also includes the constant propositional symbgl course, such formulas also involve the safety property of

true andfalse which denote valid—p Vv p) and inconsistent maintaining f; true as long ag is not made true.

(—p A p) formulas, respectively. . o . L
The intuitive meaning of MTL formulas is captured by This characterization of safety and liveness properties is

. . . . important in the description of the synthesis algorithm. In fact,
using the natural language interpretation for connectives e ; i
. . o aam . - the difficult part of the algorithm deals with the management
by noting that, when a time constraint‘t” is associated with

a temporal connective, the modal formula must hold within%{c formulas that express liveness properties.
time period that satisfies the relatient. For example(D~ f
is read as “the next state is in the semi-open time inten/3t
[t, o0) and satisfieg”; O<. f as “alwaysf on the closed time  Safety and liveness properties can be syntactically deter-
interval [0, ¢]”; and $ ., f as “eventuallyf on the semi-open mined by checking their main temporal connectives. One must,
time interval [0, ¢).” however, take into account the fact that thet connective

In addition to these basic rules, we use the abbreviatio

Positive Normal Form
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changes the temporal modalities as indicated by the followikg Disjunctive Normal Form

equivalences: The goal of the decomposition is to obtain formulas of the
~(Orf) & S f (E1) Torm'\/i(r}rfsentié/\ C?jdfuturei), Whe_re pr_esentfi Iis alcon-d
junction of literal$ and future; a conjunction of literals an
(Ui fo) & (O f2) V(U (5fi A= f2)) (B2) 50 ias for which the main connective @®, O, or U. This
To avoid checking these equivalences, we assume that Ehélone by 1) recursively using equivalences (E4)—(E8) and 2)
initial formula representing the control requirements is writtefiansforming formulas in positive normal form into equivalent
in positive normal fornf This can be done by using theformulas in disjunctive normal forn§ This transformation,

usual De Morgan laws, equivalences (E1) and (E2), and th&ich also preserves the positive normal form, requires the
following equivalence: usual distributive laws between the connectiveandV and

the following equivalence:
Ot [ & (Omt~f) V O=i true

, , Oudlfi A f2) & (Oafi A Oaf2)- (E9)
where~ denotes the converse of the ordering relation
In the sequel, the decomposition of a formilavith respect
E. Decomposition of Formulas to a transition of duratior will be noted as follows:

n

The assessment of an MTL formula over a trajectory is W, P
based on the observation that a formula specifiqgeesent \/(plel A Oa futy).
requirement that must be satisfied in the current state and =t
a future requirement that must be satisfied in the next state
in the trajectory. In order to formalize this observation, the
Oq-formulais introduced, where! is a strictly positive real Let G = (X, P, A\, A, 7, &, xo) be a TTG describing
number representing the duration of a transition between t#it¢ behavior of a process anfl an MTL formula in dis-
consecutive states in a trajectory. A subformula hagihgas junctive normal form representing the control requirements.
main operator represents a future requirement that must hold'iie process of synthesizing a controliett, ) for DES
the next state. This operator is not included in the requiremefitsand formulaf involves simultaneous operations that are
specification language, but it helps to explain how a formuRerformed incrementally based on a forward-chaining search
is decomposed. The semantic rule for this formula is and a control-directed backtracking mechanism.

) The basic operation is the expansion of a finite labeled
olil|= Oa f iff T(i+1) —T(:) = d andoli + 1] |= /. directed graph that represents a combinationfoéind tra-

The decomposition of an MTL formula is based on thijtorieS. OfG,' This expgnsior) involve.s a verification gf
following equivalences over trajectories of7. During thl§ operation, dead ends or bad

cycles may be detected according to the nature of the formula
Omrf @{Odf, if de~t E4) © be checked. Violations of safety properties lead to dead

- false, otherwise ends, while violations of liveness properties lead to bad cycles.

When a dead end or a bad cycle is detected, a backtracking

IV. SYNTHESIS METHOD

U<t f (:){fAOdDﬁ_df’ Iftrc]lSt_ (E5) mechanism goes further back on an uncontrollable path of
f, othenvise arbitrary but finite length to select an alternate path. Finally,
QOadsi—af, if d<t a controller is obtained by extracting a subgraph, representing

Os.f o { QuOsof, if d>tandt+#0 (E6) the transition structuré 1, from satisfactory trajectories @¥
FAODsof, ift=0 and by updating, for some vertices, the value of the feedback

function ¢ during the backtracking operation.

P gy e { oV 0 Ot e €D

2, otherwise A. Expansion of a Graph

QafiUst—afas if d<t Let D = (V, E, A) be a labeled directed graph, whére
fUsifo © < QafiUsof2, if d>tandt#0 is a finite set of verticesE is a finite set of directed edges,

£V (fi AOafiUsof2), ift=0. and A is the set of actions labeling the edges. Every vertex

(E8) v € V' is labeled with a state of7, a formula, and a set of
unbounded-time eventualities. These labels are denoté&q
It should be noted that, when equivalences (E4)—(E8) aveF, andwv. &, respectively. The first label is used to record
applied recursivelyto a formula in positive normal form, the trajectories ofG. The second label is a subformula pfthat
result is an equivalent formula in the same form because must be satisfied over trajectories 6f starting fromwv. X

negation is introduced by these rules. The last label allows the verification of liveness properties.
2In this form, only propositional symbols are negated. 5A literal is a propositional symbol or the negation of a propositional
SWe only give the equivalences for temporal connectives with time cosymbol.

straints< and>. The equivalences fox and > are similar. 6A formula in disjunctive normal form is a disjunctian V - - - V ¢,, such

4The recursion is applied to subformulas not in the scope of the connectiat each disjuncy; is a conjunctionz; A --- A h.,,, where each conjunct
Ou- h; is a literal or a formula whose main connective(is O, or U.
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A formula in the set of unbounded-time eventualities is the ay s

second operand of a formula of the forglh/soh’ that must
be eventually satisfied from. X'. Initially, a vertexy, labeled

with xg, fo a disjunct off, and an empty set of eventualities 12 SR 7 SR )

.(UO'X 2_370, vo-~ = fo, andv. £ : (Z)) IS Created and Fig. 1. The processL = (ajaz + aza4)*(e + a1 + az); L, =
inserted intoV. There are as many initial vertices as therg, q, 4 aya,)~.

are disjuncts inf. Only one is selected at a time. Let
be a vertex of the graph such that # # false. For an
actiona such that{(v;. X, a) is defined, a successoy,; is
generated and an edge from to v;11 labeleda is added
in £. The state labeling; 1 is &(v;. X, a). The two other Lo AV f (S1)
labels are obtained by progressing.F andv;. £ with respect

conjuncts ofv. F. Themodus ponensand introduction; and
following axiom schemata are used by the inference procedure:

) . : ; X it — Onr if t~t 2
to information contained in the edge from to v;4; (this Onif = O~ [, I t, t (52)
is further discussed in the next section). The vertgy is Oeef —=Uerf, if ¢ ~t (S3)
inserted intoV if it is not already there. filU<ifo — fiU<y fo, ift <t (S4)

fiUsifo — fiUsi fo. (S5)

B. Progression of Formulas and Sets of Eventualities N ) )
Intuitively, the inference procedure replaces each conjunct

of f, whose main connective §), O, or U, by true or false
according to the fact that one of the schemata (S2)-(S5) can be
applied to a conjunct of.. F (left pattern) and the temporal
subformula of f (right pattern). A conjunct off that is a
propositional symbol is replaced kgue if it is a conjunct of

v. F. Otherwise, it is replaced bfalse Then, the obtained
propositional formula is evaluated. If it is true, thehis

Let a be the action labeling an edge from to v;;. Let
us suppose that;. X = z;, v;. F = f;, wheref; is a disjunct
of the form f{ FANRERIVAN frini, v;.E = E;, Vig1- X = Tiy1,
andr(a) = d;. The truth value off; on trajectoryx;z; 1 - - -
is established by evaluating a present requirement; a&nd
postponing a future requirement to be checked:;at. This
is accomplished by:

1) applying recursively equivalences (E4)-(E8) fin locally entailed byv. This inference procedure is sound but
2) transforming the obtained formula to get a formula ghcomplete because temporal subformulas are not decomposed
the form (see Section IlI-F) further and a limited number of axiom schemata are used.
n; However, as it is proven later, this completeness property is
\ (pref A Qg fut]") (A1) not required for the completeness of the synthesis algorithm.
=1 A cycle is satisfactory if it contains at least one vertex

. . f. £ ) labeled with an empty set of eventualities. A cycle that does
3) selecting the disjungsre;’ A Og,fut;” In the previous o eet this criterion is defined as a bad cycle. In other words,
formula, for somer (1 < 7 < n;). a cycle is satisfactory when its infinite execution does not lead
To check f; at statez;, the present requirememte/: is g pending unsatisfied eventualities.
assessed at;. If the present requirement is violated, then

vi+1-F = false (since false A f < false, for any f),
otherwisev; 1. F = fut/i. If there is no future requirement, . ,
thenuviy,. F = true. A vertex labeled witHalseis defined as _ L8t US consider a process modeled as the TTG of Fig. 1.

V. EXAMPLES

a dead end during the expansion Bf Every action lasts one time unit, that is(a;) = 1 (1 <
The set of unbounded-time eventualitiBs,, labelinguv,y, ¢ = 4)- There are three states, namely, x, andx3 with
is defined as follows: AMzi) = {pi} (1 <1 < 3); 21 is the initial state.
Eip1 = {5({f{’, s S ), i E=10 (A2) A. Stability Property
L, —E(E;), otherwise

In this example, the control requirements are formally

where E({fi, -- -, f;‘m}) returns the set of formulas such specified by the following bounded-time MTL formula in

that there exists’’ (1 < p < m;) of the form gl/soh with » disjunctive normal form:

not locally entailedby the edge fromy; to v;y1; and £(E;)

returns the set of formuldsincluded inE; andlocally entailed

by the edge fromy; to v;41. A formula & is locally entailed By recursively applying (E6) and (E7) ofi, we obtain

by an edge fromy; to v; 41 i1; there existsl < ¢ < n such that successively the following formulas:

preﬂ; is true atv;. X anndfut; |]s locally er;talledby the vertex (p1 — G<spa) A (p1 — S<aps) A OLf

vip1 Wheneverh = V/,_, (pref A Qg futy).
Establishing the fact that a formulin disjunctive normal (mp1 VP2V O10<op2) A(mp1 Vps V O19<ap3) A Ouf-

form is locally entailed by a vertex is based on an inference  puring the application of equivalences (E4)—(E8), literals

procedure applied to a set of premises formed from all th@n be evaluated at the current state to make trivial simplifi-
"We discuss only the case for thetil connective with time constraints. cations possible earlier without decomposing further temporal

The case for> is similar. subformulas. Since, € A(x1), p2 ¢ A(z1), andps ¢ A(z1),

J=D0s0(p1 — $<ap2) ADso(pr — $<aps).
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e FAO>0ps

az al

FAQC<2p2 AOcaps

fFAO<2p2 AOcops

a4 82 5 Y fog, e fAO>0p2AO50ps

FAO<2p2 AO<ops Fig. 3. A bad cycle.

false

T1

Fig. 2. A part of a graph developed from safety properties.

we obtain only one valid disjunct with the present requirement
true and a future requiremenrfy = f A $G<opa A S<ops. This ;
means that, over the next states, formjilanust be satisfied,; az . 72
p2 and ps must be satisfied before two units of time have
elapsed. Note thaf must always be satisfied from one state
to another because its main operatoris,. Furthermore, the
sets of eventualities are empty becayfsavolves only safety
properties.

The progression off; from z, to x; gives the future rig 4. A graph  developed  from  liveness  properties:
requirementfa = f A O<ips. In fact, sinceps € A(wz), fi = fAOsop2 A Osopss fo = fAOsopss fs = f A Oxo
the eventual satisfaction gf, is met and erased from therz W = ((a1a2)* azas+ (azas)*araz)=s Wo =arazas(agarazas)”
future requirement: time has progressed one unityarig not T 3%4%1(¢203041)"-
satisfied. Finally, the progression with four units of time fof
in the sequence of statesz.z17221 Yyieldsfalse because the eventualities and the formula
time limit allowed for satisfyingps has expired.

Fig. 2 gives a part of the graph developed frgmDotted
arrows and circles correspond to edges and vertices credtg@ugh the TTG in Fig. 1. It can be checked that any cycle
during the verification process but rejected because they leagemtaining a vertex labeled with an empty set of eventualities
dead ends. If we assume that actiepsindas are controllable, is satisfactory.
then the controller must prohibit these actions at states 3 andf the graph of Fig. 4 is interpreted as a transition graph

[ =0s0(p1 — Ozap2) AOs0(p1 — O>op3)

7, respectively. of an automaton, then a vertex labeled with an empty set of
eventualities represents an accepting state in the sendebf B
B. Unbounded-Time Eventualities automata. Let us assume again thhagndas are controllable.

\)[1 that case, the legal langua@é, defined by the formulg, is

A making the time constraint for theventuallveonnectives x-controllable w.r.t. and w-controllable w.r.t. {., L) (see
' N9 : : uaty v Fig. 1 for the definition ofL and L,,) [24], [43]. However,

H> ” H H H X ) )

c;r?'be!ni dt:rllst'.icea:ﬁrgrt)ﬁt ﬁgﬁ;?;?gﬁ ;itézlsl,?gr 3e?t'ginw\éﬁgen§tmammally permissive controller cannot be extracted from
L : ; . this graph h rematontrollabl lan

achieving an unbounded-time eventuality. The graph in Fig. s graph because the suprematontrollable sublanguage

. oo : . ) of W (which is itselfW in this example) is noi-closed with
illustrates an infinite trajectory that is not satisfactory. The ( ple)

formula &sops, which is a subformula for every vertex in th respect toL,.8 A fami_ly (_)f useful controllers can, howeve_zr,_
cycle, is never satisfied. This example shows that equivale:ggseXtraCte.d by unwinding cycles 3-4-3 and 8-10-8 a finite
(E4)—’(E8) are not suffi'cient to assess the satisfiability of number of Flmes. In partlcu_la.r,_ a controller that corrgsponds to
unbounded-time formula &W’O (sge Fig. 4 for the deflnltlo_n ofp) can be obtained by

: removing dotted arrows and circles because they correspond
to edges and vertices created during the verification process
but rejected as constituting bad cycles.
For a more comprehensive example, Fig. 4 shows a desp janguager, is w-closed with respect to a languades if L, =

scription of the graph obtained by progressing the sets @f(7,) n L.. -

Let us consider the formula in the example in Section

C. Reachability Property
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VI. PROPERTIES for someq (1 < ¢ < n;) andr (1 < 7 < nl), where fut
In this section, correspondences between good path3 ofis a disjunct of the disjunctive normal form @f Then the
and trajectories of7 that satisfy formulaf are established. conclusion follows. |
It is shown how the progression of a formula through good Lemma 2:1f wyuv; --- satisfies properties (P1) and (P2),
paths is related to its semantic interpretation with respect to #ed f, = gUsh, for somep (1 < p < m;), then 1) there
corresponding trajectories. A path &f is good if it contains €xists a vertexy; such thatj = i and¢ = 0 or j > ¢ and
neither a dead end nor a bad cycle. For any infinite path+ ---+d;_1 >t andwv;;;.F has conjuncts that imply a
vovy - - -, this is formalized by the following two properties: disjunct of the future part obtained from the decomposition
) of h atwv; and 2) for allk (¢+ < k < j) such thatk = ¢
(Vi 2 0)(vi. F # false) (P1) andt=0ork>iandd, +---+dp 1 > t, vps1. F has a
(Vi >0)(3j > i)(v;. € =0). (P2) conjunct that is a disjunct of the future part obtained from the

. . _ o decomposition ofy at vy.
Since graphD has a finite number of vertices, infinite paths Proof: For a formula of the fornyl/s,h, the satisfaction

are represented by paths terminated by a cycle. Let us it st be established for every state after a delaytishe

with a restricted version of the main result. =~ units and untilk holds (after the same delay). 4f= 0, this
Theorem 1:For any pathuvy --- v; --- v; terminated by oang from state;,. A; otherwise, from a state;. &' such

a cycle and produced by (_Al) and (A2), if for all > 0, hat di+ - +di_y >t butd, + -+ dj_p < t. The

vi-F # false and there existd: > j such thatui.€ =0, rogression of the formula is accomplished step-by-step by

then for any vertex on the trajectory obtained from the pathyeheatedly considering the current duration until the delay is

by unwinding the cyclep. X'|=wv. 7. __expired. There are three possibilities:d)< ¢; 2) d; > ¢ and
In order to simplify the proof, we introduce some notationgs £ 0; and 3)¢ = 0.

based on the following observations. First, a vertex is alwayScase |- If d. < ¢ then the delay is not expired. From

labeled with a conjunction. Second, the satisfaction of a COEEG), gl h is equivalent to04 glUs:_a.h. Without loss of

junction depends on the satisfaction of all its conjuncts. Thirgenerality let us assume that= 1. By using (A1) and (F2)
the decomposition of a conjunct gives a disjunction. Finally, ’

the satisfaction of a disjunction depends on the satisfaction of vig1. F = (gUst—a,h) A futhf

one of its disjuncts. Therefore, the satisfaction of a conjunction

is equivalent to the satisfaction of the conjunction of disjuncfer someg (1 < ¢ < n;). We can repeat this reasoning with
(at least one per conjunct) obtained from the decomposition\erticesv; 1, v;12, and so on. Since all the action durations
every conjunct. Nevertheless, one must take into account &€ strictly positive, it follows that there exists a vertex

time intervals associated with temporal connectives. (j > i) such that’ =t —d; —---—d; 1 >0,d; >, and
For any vertex;, we noted; the duration associated with it
the edge fromy; to v;11 andv;. F = f; = fi A--- A fl, . In vj. F = (gUsph) ANut }

order to focus on a particular conjungt, is broken into two
parts: f; = Fj, A f}, where F, = A\, f{, and1 < p < m,.
The decomposition of;. 7 at v; gives

for someq’ (1 < ¢’ < n,;_1). Then, eithert’ £ 0 or ¢’ = 0.
If ¢# # 0, thenw; is in the same situation as in Case II;
otherwise,v; is in the same situation ag in Case lll. Either
<ni i Ff> n; P 5 way, we continue with the argumentation of Cases Il or Il by
\/ pre; * A Qg fut;” | A \/ pre;” A Qa,fut;” |- (F1) replacingv; with v;.
=1 =1 Case ll: If d; > t andt # 0, then the delay is residual.
rom (E8),gUs.h is equivalent tq0)q, gU>oh. By using (A1)

If (P1) holds, then only the disjuncts for which the presenFt d (F2)

. . R n
requirement is true are relevant and formula (F1) simplifies ?o

\/\/ O (fut;” Afuty?). (F2)
T for someq (1 < ¢ < n;). Thus,v;41 is in the same situation
The proof of Theorem 1 is based on the following sifSvi in Case lll. Hence, we continue with the argumentation
lemmas. The first five lemmas consider the different cases frCase Il by replacing; with v; ;.

fi. The last lemma expresses essentially the same property agase lll: If ¢+ = 0, then the delay is expired and the
Theorem 1, but for every conjung‘}i. progression ofy must be considered until the progression of

Lemma 1: If vou, - - - satisfies properties (P1) and (P2), ané OF the progression of a formula that implies From (E8),
f; = Onrg for somep (1 < p < m;), then 1)d; ~ t and gUsh is equivalent toh V (g A Ou, gUsoh). By using (Al)

2) vis1. F has a conjunct that is a disjunct of the disjunctiv@nd (P1), formula (F2) becomes

normal form of g. i iy
V \V Ou (fut, " Afuty))
l/

vig1. F = (gUsoh) A futh‘i

Proof: From (E4), O.+g is equivalent to(4, ¢ (and

d; ~ t) or false From (P1),v;y1.F # false. Thus, the only l

possible case is the first one. By using (Al) and (F2) ; ;
VIV Ou (™ Afutd A gUsoh) |.

Fi i
Vig1. F = futy” A fut,{cp v
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There are two possibilities. reached. From (P1}, must be progressed from or v; (j > ¢
1) vip1. F = fut! A futft, for someq andr. anl(_jdi +":de]’71 <t). e fes (PL) and (P2). .
i Fi emma 4: If vou; -- - satisfies properties an ,an

2) vit1- F = (gUzoh) A futy” Afut,*, for someq andr. fi = Os.g, for somep (1 < p < m;), then forj = ¢ whenever

Case llI-1): Since fut:fz is a disjunct of the future partt =0 and allj > i wheneverd;, +---+d;_; > t,v;41. F has
obtained from the decomposition bfatv;, part 1) is satisfied. a conjunct that is a disjunct of the future part obtained from
Moreover, sincej = ¢, part 2) is trivially satisfied. the decomposition of at v;.

Case llI-2): Sincev;4+1.F containsgUsoh as a conjunct, Lemma 5: If vyv; - - - satisfies properties (P1) and (P2), and
we can resume the reasoning from the beginning of Case If;’, = O<.g, for somep (1 < p < m;), then forj =< and alll
but applied tov;;. Similarly, we can repeat this fos; 12, j >¢suchthatd;+---+d; 1 <t v;41.F has a conjunct that
and so on. It follows that, for any vertex, (k > 7) before a is a disjunct of the future part obtained from the decomposition
vertexv; (assuming that it exists) satisfying part 1),1:.F of ¢ at v;.
must be of the form Proof: The proofs of Lemmas 4 and 5 are similar to

g F* those for Lemmas 2 and 3. In faéil..,g is almost equivalent
(gUzoh) A faty, A fut,, to gU..; false and is progressed like amtil formula, except
for someq’ and+’. This means that all the vertices before¢hat we do not have to check thiaiseis eventually satisfied.
any such a vertew; satisfy part 2). Thus, to complete the [ |
proof, it remains to show that a vertex satisfying part 2) Lemma 6: If vov; --- satisfies properties (P1) and (P2),
effectively exists. then for all: > 0 and for allp (1 < p < m;), v;. X |:f;;.

From (P2), there existg afterv; such thaty,. £ = (. Either Proof: The proof is by induction on the structure of
there exists a vertex,; betweeny; andv; (inclusively) such formulas. We first prove the case fﬁjt = [«g. The basis is
that v; satisfies part 1) or no such vertex exists. If such wheng is a propositional symbol. Given (P1) and (E5), then
vertexv; exists, then this trivially ends the proof. Now, if nou;. X’ |=g¢ for j =i and allj > ¢ whenevew,+- - -+d,;_; <t.
such vertexy; exists, this means that all the vertices betwedfrom the semantic definition of MTLy;. X' |=0O<:g. The
v; andwy; fall in Case 111-2). Hencey;. F is of the form inductive hypothesis is: ifugv; --- satisfies properties (P1)

g i1 and (P2), then for alk > 0 and aII(f’)’q“ that are conjuncts of
(gUzoh) Aty A fatgs vy F with simpler structure thag?, thenuv,. X' |= (f')%. From
for someg” and+”. From (A2),v;41. € must contair (unless Lemma 5w, F has a conjunct thatis a disjunct of the future
h is locally entailed by the edge fromy to v;41). But then, part obtained from the decomposition ¢ft v; for j =i and
from (P2), there must exist a vertex after vy, such that all j > ¢ such thatd; + --- +d;_, < t. This means that
vy, € = . From (A2), this means that there exists a vertgx the corresponding disjunct of the present part holds;at’.
betweenv; andwy such that, ;. € is obtained by removing By using the inductive hypothesis, the conjunct«qf,,. 7
h from v;,. £ because: is locally entailed by the edge from corresponding to the disjunct of the future part obtained from
v 10 vj41. Then, propositional symbols in(v,. X') and the decomposition of atv; is satisfied aw; ;. X'. Therefore,
conjuncts ofu; 1. F logically imply h. More precisely: v;. X |=gforj =iandallj > i whenevewd,;+- - -+d;_1 < t.
From the semantic definition of MTLy;. & |=0<,g. The
Sroof for the other cases are similar. The cjﬁe: gUsh
0 requires, however, more explanation.
2) fut), (the corresponding disjunct of the future part The progression of a formula of the forgi/s.h decreases
obtained from the decomposition ffat v;/) is implied ¢ by the action durationi, only as long asi < t. Then,
by v;/ 1. F for somer”. Hence,v;s satisfies part 1 the progression keeps the formula invariant as long as only

The proofs of the next three lemmas are based on argumentis satisfied, but not:. From (P1) the safety property is
developed in Lemma 2. In fact, the first line of (E7) is like theatisfied. The only problem is that cycles violating the liveness
last line of (E8), and (E6) is like (E8) if2 in (E8) is replaced property may be formed. We show that this is impossible. From
by false that is,(0>.¢ is almost equivalent tgl/>. false. Lemma 2,v;41. F has conjuncts that imply a disjunct of the

Lemma 3: If vouy -- - satisfies properties (P1) and (P2), antuture part obtained from the decomposition /ofat v; for
f;; = gU<h, for somep (1 < p < m;), then 1) there exists somej. From the inductive hypothesis, these conjuncts hold
a vertexv; such thatj =i orj >4 andd; +---+d;_; <t atv;;;. X, Thus,v;. X' |=h. From the semantic definition of

1) prefff,, (a disjunct of the present part obtained from th
decomposition of: at v;/) is true inwv;. &';

andv, 1. F has a conjunct that is a disjunct of the future paMTL, v;. X |=gUs;h. [ |
obtained from the decomposition éfat v; and 2) for allk Now, we can prove Theorem 1.

(¢ < k < j), vrgg1. F has a conjunct that is a disjunct of the Proof: Let wovy --- v; --- v; be a path terminated by
future part obtained from the decompositiongo#t vy,. a cycle and produced by (Al) and (A2). If for all > 0,

Proof: The proof is similar to that for Lemma 2 inv;.F # false, and there exists > j such thaty. £ = @, then
Case Il since, fort greater than or equal to the duration ofhe trajectory obtained by unwinding the cycle satisfies (P1)
the current action, the progression @d¥<,h is similar to the and (P2). From Lemma 6, for any vertexon that trajectory
progression ofyUsoh. From (E7) and (A1), sooner or later, aand for anyf;; that is a conjunct ofy;. 7 (1 < p < my),
vertex, for which the time constraint for thetil connective is v;. X' |= f;. But,v;. F = fiA---A f;, . Hencep;. X |=wv;. F.
less than the duration of the current action, will be ultimately [ |
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(1 € » < n;y1) such thatr;, ;. X |= fit! and fit! is a
disjunct of the future part obtained from the decomposipfg)n
atv;, since the decomposition of a formula is join-preserving.

procedure Expand(v € V)
1. for each a € A such that £(v.X,a) is defined do

2. fi=\/L vFAO v, . )
J'i= Vim (prey™ A Or oy futi™); Again, let us build another patifv; --- v}, --- v}, - U
3. for each disjunct pre?* A O (o) fut?* of f' do from the previous one by unwinding its cy_cle a finite number
; of times and replacing the formulas of vertices by correspond-
4. create a new vertex v’; . . ’ 0, TR
, ing disjuncts as followswy;. F = y . Fo=fiof ftois
5. VX =€w.X,a); L P’ Tt pi AR
6 CF a disjunct of the future part obtained from the decomposition
' M of fi=l aty/_, (1< i<I”), andv). X|=fi (0<i<l).
7. v'.€ = A2(v,a,v'); Pt : R
, The cycle of the second path is unwound a finite humber of
8. create a new edge (v, a,v’).

times because there is a finite number of disjuncts. It should
be noted that the third path satisfies parts 1) and 3).
Let us build a last patgw, - - - wyr - -+ wpr - wpr from
) . the previous one by unwinding its cycle a finite humber of
The next theorem generalizes Theorem 1. It is based on ifiges and extending each vertex with a set of eventualities
procedureExpand(see Fig. 5) that generates successors of;a follows: wo. £ = § andw;.€ = E;, accordingly to (A2)
vertex . For every actiom such that{(v. X, a) is defined, (1 <; < ). The cycle of the third path is unwound a finite
it decomposes formula. 7 at v [items 1 and 2 of (A1)l nymber of times because there is a finite number of different
Then for every disjunct of the decomposition@f¥ atv, it possible sets of unbounded-time eventualities obtained from
creates a new vertax, assigns values to its labels X', v'. 7,  gypformulas off having the formgl/soh.
and+/. £, and creates the corresponding edge. The notation et ys now consider all such paths [still satisfying parts 1)
A2(v, a, v') means that (A2) is applied by replacingby v ang 3)] that can be derived from the initial trajectory. At least
and vy, by +'. It should be noted that if there is no futureyne of them satisfies part 2), which is proven by contradiction.
requirement, then/. 7" = truc. In addition, if the present | et ys suppose that there exists no path satisfying part 2).
requirement is violated at, thenv'. 7 = falsc. This means that, on the cycle of every path, all the sets of
Theorem 2: For any trajectory of terminated by a cycle eyentualities contain at least one formilaThen, every path
zoxy -+~ @ -+ @y, the trajectory obtained by unwinding thenas 5 vertexs, before the entry in the cycle, such thate = ¢
cycle satisfies an MTL formuld if and.only if there exigts @ and w. F has a conjunct of the forngUsoh (and k is not
graph produced byExpandthat contains a path terminatedgcally entailed by the edge having as head). Since all the
by a cycle vovy --- v; ---v; such that 1) for alli > 0, paths satisfy 1), there exists a vertex after w such that
vi- 7 # falsc; 2) there existsk > j such thatv,. & = @/ x|=h andw'. F has a conjunct of the formlsoh. In
and 3)vo. & = xo and, for anyvy andx;, if vi. X = =i, that case, the decompositionof. 7 can be done in two ways
thenv;y,. & = Lit1 o according to (E8) (see also Case Ill of Lemma 2). We consider
Proof: (<) This follows trivially from Theorem 1. only the first way, which corresponds to a particular path still
(=) The idea of the proof is to build paths from trajectoryaisfying parts 1) and 3). Let us focus on a particular set of
zoxy - - ap --- x; by progressively adding labels to verticesgyentualities. In the worst situation, is not locally entailed
starting with states, then disjunctions, then disjuncts (or COBy an edge before the edge haviag as head, which means
junctions), and finally sets of eventualities. Thereafter, W@at it cannot be detected earlier that the formulavill be
vertices are equal if their labels match. effectively satisfied and therefore be removed from the set of
Let us build a first pathuguy -~ w --- w, whereu;. X =  gyentualities. The successor veriek of w’ has the following
z; (0 <4 < 1). This path satisfies trivially part 3). Let us buildcharacteristicsw”. F has a disjunct of the future part obtained
another pathygv; - -~ v - vp - - - vy from the previous orfe  from the decomposition atw’ and the corresponding present
by unwinding its cycle a finite humber of times as followsbart is true at’. Then, % is locally entailed by the edge from
w.F = fo=fandv;. F = f; = \/,fut{ " (only the future ' 1o ", From (A2), w”.€ does not contairh. The same
parts of disjuncts for which the corresponding present pagsasoning can be done with the other formulas in the set of
are true aty;_,. X’ appear in this disjunction)l(< i < !'). eventualities appearing on the cycle to conclude that this set
The cycle of the first path is unwound a finite number Qi become empty. This contradicts the hypothesis.
times because items 1 and 2 of (Al) generate only finitely Finally, let us construct a family of graphs by grouping
many different formulas. From (E4)—(E8):. X' |= f1, since and interleaving all the paths having the same initial vertex.
vo. X' |= fo (by hypothesis). Similarly, since,. X' |= fi, then Each graph is a subgraph of a graph that can be generated
v2. X |= f> and so on. In particularf; # false for all i. py Expand In at least one graph, there is a path that satisfies
Hence, this path satisfies part 1). ‘ parts 1)-3). Then, the conclusion follows. n
For anyf;, letus notefi v---V fi (if i # 0, fi = fut")
its disjunctive normal form. For every vertex, there exists
at least onef(j (1 < ¢ < n;) such thaty;. X |:f(§. Then, for VII. THE SYNTHESIS ALGORITHM
every fi such thatv;. X |= f{, there exists a disjuncf; !

Fig. 5. The expansion of a vertex.

The algorithm described in this section provides more
9This means thato = uo andv; = succ(u;), if v;_1 = u;. Hence, part details on (A1) and (A2) in Section IV-B. It includes elements
3) is still satisfied. concerning the use of a search technique for the expansion of
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procedure Synthetize() procedure Exzamine();
1. create a linked list of initial vertices; 1. if dead end or bad cycle then
2.  head := first element of this list; 2. tail := tail.next
3. Ezpand(head); ¢(head) := 0; e := head. first; 3. else success := true;
4. DFS := true; safe := true; 4. if tail € QQ or good cycle then
5. while DF'S do 5. ¢(head) := ¢(head) U {e.action};
6. while safe and e # nil do 6. d(head, e.action) := tail; e := e.next
7. tail 1= e.first; success := false; 7. else
8. while not success and tail # nil do 8. push head and e on the stack;
9. Ezamine(); 9. head := tail; Expand(head);
10. if not success then 10. ¢(head) := @; e := head. first.
11. if e.action € A, then safe := false;
19. head.unc := true Fig. 7. The examination of a vertex.
13. else e := e.next;
14. Backtrack();
15. return ((Q, 4,4, head), ¢). procedure Backtrack();
1. safe:= true;
Fig. 6. The synthesis algorithm. 2. if ¢(head) = @ or head.unc then
3. if head.next # nil then
the graphD, selection of the disjunct labeling a vertex, and g' Zfomi h:w; 'Zig’hfjg(ﬁfs(thead)’

backtracking operation whenever a dead end or a bad cyclg:

: ) else if the stack is empty then
is encountered. It can, however, be improved to prevent some

“there are no solutions”; stop

bad vertices from being processed more than once. 8. else
9. remove e and head from the stack;
L. . 10. if e.actt = :
A. Description of the Algorithm 1 1f c.action € Ay then ;‘zg 2 uncfé_lsgue
The algorithm performs a depth-first search (DFS). The set2. else e := e.next

Q and transition functior correspond to the set of vertices 13. else
V and set of edge® of D, respectively. In addition to the 14 @ < QU {head};
labels v. X, v.F, andv. £, a vertexv has a linked list of 15 if the stack is not empty then
outgoing edges. The reference to the first edge of this list ig%: tail := head;
denotedv. first. Each item in the list contains three elements: remove ¢ and head from the stack; .
A - ¢(head) := ¢(head) U {e}; d(head, e) := tail;

an action ¢.action), a reference to the next edge. iex), _ ¢ = enext
and a reference to the first element of a linked list of itSog  o15e DFS .= false.
possible tails 4. first). For a given action, there are as many
tails as there are disjuncts in the decompositiom.of. Thus, Fig- 8. The backtracking operation.
each vertex also has a reference to the next veremnek).
The vertices in this linked list differ in their formula and set
of unbounded-time eventualities. Finally, a Booleanuf:c) then set totrue) or the list is exhausteddil = nil). Then,
indicates that vertex has an outgoing edge that leads to asome postprocessing is performed anlf the examination
illegal situation on an uncontrollable action. The procedui® tails terminates witrsuccessqualsfalse and the action
Expand of Fig. 5 is augmented in order to create the twassociated with the current edge is uncontrollable, gafais
previous lists and set. unc to false. A stack is maintained set tofalse. This causes termination of the first embedded
throughout the DFS. It contains all the vertices on the curreloop, which is continued by backtracking actions (line 13).
path, except the last vertex that represents the current vertdde variableDF'S becomestalse if a solution is obtained
which is denotechead The detection of a cycle in the graphcausing the termination of the main loop.
is done by examining the contents of the stack. Between everylails are processed by the procedlEgaminein Fig. 7
two verticesy and+’, the stack also contains a reference to the&ccording to three cases. First, the tail causes a dead end or
edge fromw to +/ that the DFS examines when it backtracksloses a bad cycle. In this case, the DFS resumes with the
from +/. next tail (line 2). Second, the tail represents a good state or

The algorithm (see Fig. 6) begins with some initial operasloses a good cycle. In this case, the action associated with
tions (lines 1-4). The main loop (starting at line 5) represertise edge is enabled from the head, the transition function
the recursive character of the DFS. The first embedded loispupdated, and the DFS resumes with the next edge (lines 5
(starting at line 6) scans edges outgoing from the head. Taed 6). Otherwise, the DFS proceeds with the current tail by
second embedded loop (starting at line 8) scans tails of tremlefiningheadastail (lines 8-10).
current edgez. Three Boolean variables control these loops. The procedureBacktrack(see Fig. 8) is invoked when all
The variablesuccesgontrols the second embedded loop. Tailsdges of the head have been examined or one of them, having
are examined until one of them verifies its disjurstigcesss an uncontrollable action, leads to a dead end or a bad cycle
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regardless of its talil. If the head represents a deadlock (becaus®@ne may therefore conjecture that, if the supremal
¢(head = ¢) or cannot prevent an illegal situation (becauseontrollable sublanguage of the language defined fbys
head unc= true), then the DFS resumes with the next tail of,-closed and nondeterminism is caused solely by the de-
the current edge if it exists (lines 3-5). If the list of tails hasomposition of formulas and not because there are Boolean
been exhausted, then the algorithm backtracks to the ancestmnectivesv in f, the procedureSynthetizecomputes a
unless the stack is empty, which means that there are maximal solution (because of Theorem 2).

solutions (lines 6-11). Otherwise, the head is a good vertexin fact, even when disjunctions are involvedfina maximal
and the algorithm backtracks to the ancestor unless the staokution is computed for some formulas. This depends on
is empty (lines 13-18). If the stack is empty, then the mathe interconnection of temporal connectives. In particular, a

loop terminates because there is a solution (line 19). maximal solution is computed for any conjunction of formulas
in the following form: literals[ .., f1, andO..:(f1 — $tf2)s
B. Proof of Correctness where f, and f, do not involve temporal connectives.

Theorem 3:LetG = (X, P, A, A, 7, &, x0), its associated
pair of languagesL, L), control requirements represented byy. Computational Complexity
an MTL formula f and a controllels = (M, ¢) calculated by

the procedureSynthetize The corresponding controlled DES, A vertex of the directed grap_lﬂ_) consists of a state_, a
e S T ) s — formula, and a set of eventualities. Hence, the maximum
G~ = (L”, L2) is such that, if anv-word « € L7, ando is

) S number of vertices irD is given byn x | F| x |E|, wheren is
the trajectory ofG> on «, theno |=f. L )
. s ! s the number of states it (i.e., n := |X|), |F| is the number
Proof: If o € L7, thena € lim(L”) and « € L. . . .
. . . of different possible subformulas gf, and |E| is the number
By construction,lim(L ") € lim(L) = L. Therefore, it of different possible sets of unbounded-time eventualities
remains to be proved that i € lim(L®) and & is the P

. [ i Tsoh.
trajectory of G° on «, theno |=f. If a € lim(L®), then obtained from subformulas of having the formgl/>oh. By
5 : S . abstracting over the action durations, the number of different
pre({a}) C L*. In other words, the trajectory @&~ on « is .
p . o subformulas that can be produced for a formylausing
o’ = qo6(qo, @[0])6(qo, a[0]e[1]) ---. Since @ is finite, the . alclosure( f)] .

. i P .+ equivalences (E4)-(E8) i3 , Where |closure(f)| is
trajectory must be of the forma’[0]o’[1] --- o'[5] - - o'[J]. :

X the set of subformulas of. It can be easily checked that
Note that the proceduigynthetizensures that 1) for all > 0, .

e . . p |closure(f)| < 2V, where NV is the number of Boolean and
o'[§]. F # false and 2) there exists > j such thav'[k]. £ = ; . .

; . , ) temporal connectives iff. Since|E| < |F], the state space
(). The trajectory ofG on « is o = ¢o’[0]. Xo'[1]. X ---. From is O(n2*V)
Theorem 24 |= . " In order to take action durations into account,1ebe the
o . maximum of the different constants that occur in a time con-
C. Maximality of Solutions straint associated with temporal connectivéghe minimum

In general, there may be many trajectoriesof G such of the different action durations, ard the maximum of 1 and
thato |= f that are disabled by the controllsrcalculated by [Z'/d]. It can be shown that there can be at mosdifferent
the procedureSynthetize The procedure keeps only enouglime arguments. Hence, the state space0ig:2>N(¢+1)
of them to obtain a controller. There are three explanatioa#ice |closure(f)| < 2NC. The worst case computational
for this. First, the procedure eliminates bad cycles withogpmplexity is doubly exponential in the size of the formula
unwinding them. This is related to the-closed property. (but exponential in the size dP) since the algorithm searches
Second, a trajectory of G such thato |= f and a trajectory for simple cycles in a state space that grows exponentially
o' of G such thato’|# f intersect and the trajectory’ with the size of the formula (but linearly with the size Dj.
can only be prevented before the intersection point. This isThis complexity analysis concerns, however, the worst case.
normal and is related to the controllability property. Thirdin fact, it has been proven that the time complexity for
the formulaf explicitly or implicitly includes some forms of verifying many interesting temporal formulas over concur-
nondeterminism. This results in several tails for a given edgent systems is polynomial and sometimes linear [20]. This
They may be all good, but the proceduBgnthetizeretains suggests that the average complexity of our algorithm is
just one of them. It is interesting to look closer at what arauch better than the worst case. Actually, many formula
the causes of nondeterminism. In fact there are two. combinations are mutually inconsistent, so that they are never

First, there may be Boolean connectiwe# the disjunctive generated, or are inconsistent with some states so that their
normal form of f (e.g., f = f1 V f2). Since the procedure decomposition yielddalsg which causes a pruning of the
Synthetizeastablishes satisfiability by proving only one of thetate space.
disjuncts, trajectories satisfying the other disjuncts may be
overlooked. ) _ )

The second source of nondeterminism results from the COmparison with Other Related Algorithms
decomposition of formulas having tlatil connective because Several algorithms for synthesizing controllers have been
they generate disjunctions [see (E7) and (E8)]. However, jmoposed in the literature to achieve or approximate the
this particular case, it seems that if one of the disjuncts ssipremalw-controllable sublanguage oft’ (sup C“(W)).
satisfiable, it does not disable trajectories enabled by the otfidaree of them are briefly introduced hereinafter and compared
disjunct, and vice versa. with our synthesis algorithm.
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The algorithm proposed by Thistle and Wonham synthesizes
the maximally permissive controller whemp C* (W) is w- 7f Rotors 7f
closed. Synthesis of controllers is performed for the case where 721 724

L, L, andW are represented by a deterministiautomaton,
a deterministic Bchi automaton, and a deterministic Rabin

automaton, respectively [43]. Their algorithm includes three Physical

steps: 1) computation of controllability prefixes &F; 2) AERC T
computation ofsup C*(W); and 3) computation of the su-  ._________ .

pervisor S. Let us focus on the first step, which is the most Logical Interface I ARcs
significant in terms of computational complexity. If we assume ogtea AC EC ADC J
that L, = lim(L) (as is the case in this paper), the first 1

step reduces to the computation of the controllability subslglt
of a deterministic Rabin automaton, which is the set of state§’
from which the automaton can be controlled to the satisfaction
of its own acceptance condition. In this particular case, tldeterministic automaton from which it is possible to extract
computational complexity of the first step @(ki(mn)*™), controllers that approximateup C«(W) if this language is
where k is the number of control patterns (the subsetsdof not w-closed with respect td...; no specific algorithm for
to which one can restrict, at any point in the operation dhis extraction is given. In particular, the bad cycles are
the automaton, the set of actions that it may executis)the not detected. Their algorithm for computingp C“ (W) is
size of alphabeti, m is the number of state subset pairs in thpolynomial in the cardinalities of state spaces of deterministic
Rabin acceptance condition, ands the number of states [42]. automata modeling the unrestrained and legal behaviors of

In comparing with our approach, let us assume tHat the process, but it is limited since they implicitly assume
is represented by an MTL formuld instead of a Rabin that W is recognized by a deterministiciiBhi automaton,
automaton. When the time domain is dense, the problem hy& deterministic Bchi automata are strictly weaker than
no solution in Thistle and Wonham’s framework, since themondeterministic Bchi automata, as explained in [44].
is no decision procedure for MTL with dense-time domains Antoniotti [5] also proposed a controller synthesis approach
(i.e., one cannot obtain a Rabin automaton from an MTibased on a model-checking paradigm withmputational tree
formula). In contrast, when the time domain is discrete, ofegic (CTL) formulas [18]. This model-checking paradigm is,
can construct a nondeterministiciéhi automaton foif, whose however, significantly different from ours. The idea is still
number of states is exponential in the sizefd#6]. By using to label states with formulas that they satisfy based on the
a determinization procedure defined in [39], one can obtainrput formula and CTL semantics. What differs truly from
deterministic Rabin automaton f@r which has an exponential our approach is that the model-checking procedure traverses
number of states, but a linear number of state subset pairs intihe state transition structure over which the CTL formula is
size of the nondeterministiciBhi automaton. Based on Thistleverified backward, considering innermost subformulas, then
and Wonham’s approach, the computational complexity iratively, outermost ones. This requires the whole state tran-
therefore triply exponential in the size ¢t sition structure to reside in memory. In contrast, our approach,

The advantage of our approach is that it circumvents tMéhich goes forward, does not require explicit storage of the
problem with dense-time domains by usingnadel-checking entire transition structure. This means that one can exploit
approach as opposed to tfRabin automaton synthesis ap-Standard heuristics to cope with the state explosion problem.
proach We check the formula directly on all paths that caAntoniotti also implemented a restricted version of CTL in
be generated by the TTG. Since a TTG contains finitely ma@yder to obtain an efficient version of his method. In our
states and finitely many transition durations, it turns out the@se, there is no need to restrict the specification language
there are finitely many states that can be distinguished by gnenhance efficiency. The actual efficiency depends on the
MTL formula, even with dense-time domains. That followgomplexity of formulas (e.g., nesting of temporal connectives).
from the above complexity analysis (see Section VII-D). Froif fact, it can be verified that, for simple formulas, our
another perspective, the problem of deciding whether a TTgorithm is polynomial in the size of the formula.
satisfies a given MTL formula is decidable, while that of
deciding if an MTL formula has a model is undecidable for i

: . . . VIl A PPLICATION: ANTENNA ROTOR CONTROL SYSTEM

dense-time domains. Another advantage is that it uses forward-
chaining state exploration. On average, this yields betterThe application presented in this section is a simplified
computational complexity because it implements a contrdiersion of anantenna rotor control systertARCS) used in
directed backtracking technique that can be combined withlaboratory for experimenting with satellite telecommuni-
the use of heuristics to better control the state explosigations [31]. It is responsible for tracking antennas on a
problem. Finally, one may use it by sacrificing maximallynoving telecommunications satellite. As illustrated in Fig. 9,
permissiveness, whesup C“ (W) is not w-closed. it includes two main components:

Kumar and Garg [24] proposed an algorithm for computing 1) anazimuth-elevation rotor controllefAERC), which is
sup C*(W) whenW = lim(K) and K is a regular language a piece of equipment that monitors two rotors that move
recognized by a deterministic automaton. The result is a the antennas;

9. System architecture.
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Raise _to_Good

Lower_below_Good .
Raise_above_Good

Fig. 11. The TTG: L: Low; H: High; G: Good; U: Unknown; I: Idle; MU:
Moving_Up; MD: Moving_Down.

i 1 to be used depending on the nature of the control. The AERC
. 15::&:_,:% ==l perceives the rotprs as a physical continuqus system, while
the EC and AC view the antennas as a logical discrete-event
system. Finally, it should be noted that the ADC is also
responsible for synchronizing the controller operations with
the operations of a larger satellite tracking system (the antennas
are pictured in Fig. 10).

In the sequel, we detail only elevation behavior and control;
azimuth behavior and control are analogous. The interface
maintains two control variablesurrentandtarget The former
represents the current position of antennas, whereas the latter
Fig. 10. Antennas for a satellite tracking system. represents their target position. The antennas are considered

on target when the distance betwemnrentandtargetis less
than or equal to a constamt The domain ofcurrent and

2) an antenna direction controllef{ADC), which deter- targetis continuous, from 0 to 180 The EC reasons about an

mines when to start/stop moving the antennas and tabstract model of the continuous behavior in which only the
direction of their movement. relations between the variablesrrentandtargetare relevant.

In this system, the antennas point in a direction defindg©Positiond.ow, High, andGoodrefer to the current position
by an azimuth and an elevation, both in degrees. Th&pkthe antennas with respect to the target and they hold when

are separate sensing and control processes for azimuth gmgcondltlonsiﬁarget— iurcrlent> ), (curr_en;c— targetl>_ d)"
elevation. Therefore, the ADC comprises three modules: ﬁ]ﬂ target — current | < d are, respectively, true. Initially,

azimuth controllerfAC), anelevation controllefEC), and an e relation betweenarget and current is unknown, which

. : .js conveyed by the propositiodnknown The propositions
interface that maps the physical part of the system onto Ii%le Mov)i/ngug and IE)/IO\E)ingDown refer to thepsta?[e of the

logical part. ? .
9 part . . . zfmtennas with respect to their movement. Therefore, the set of
As explained in [10], in most cases, a system is not readi o . .
r§>¥0posm0nal symbol% containsLow, High, Good Unknown
|

available as a logical model. It needs to be brought from t e, Moving Up, andMoving Down The TTG that represents

physical level to a logical level that is suitable for behavior . L A )
language specification. With this application, we deal witEEe logical system is given in Fig. 11. Every action has a
guage sp ’ P ’ uration of one time unit and the actioSgtLow, SetHigh,

voIFages and polar_ities at the physical level and with e_vents 8ttGood Delpos and Wait are uncontrollable. In order to
actions at the logical level. On the one hand, the 'nterfaﬁﬁjstrate the application of the method described in Section 1V

extracts information about the position of the antennas Wlth short examples, we have omitted some details in this
using AERC sensing operations, converts this information inﬁqodel

events with respect to an azimuth target and an elevation targeTCon.sider the following formula that specifies the property
and sends events to the AC or EC. On the other hand, fag; \yhen a target is entered in the system (i.e., the relation

interface receives actions from the AC or EC, interprets the@enyveen the target and current antenna positions is unknown),

and performs the corresponding control operations on th& antenna must eventually reach the good position
AERC. This architecture allows responsibilities to be separated

between several specialized controllers and specific methods f = Oso[~Unknown— $>oGood.
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Instead of constructing the grapP step-by-step, let us
consider all formulas and sets of unbounded-time eventualities
that can be generated frorfi. Let us suppose that there it
exists a vertexs such thatv. 7 = f. According to (A1) and ~ g\Ju AU - Set_High
equivalences (E6) and (E8)the decomposition of is

[Unknownv GoodV (1 ($>0Go0d] A O1f.

This formula is equivalent to the following formula in dis- . Start_Up
junctive normal form:

Raise_to_Good

[Unknowm O1 f]V [GoodA O1 ]V [O1($»0G00d A O1 £ Raise_above_Good

The first disjunct is relevant only ¥ nknown € Alv. X);
otherwise successors ofare labeled withalse Similarly, the
second disjunct is relevant only Good € A(v. X’). In both
cases, successors ofare labeled with the future part of the
disjunct, that is,f. Since the present part of the last disjunct
is true, successors of are labeled withy = ($>¢Good) A f
if this disjunct is selected.

Formulag is new. By using similar arguments, its decom-
position is Fig. 12. A part of the graph.

[Unknowna (O1 f) A Good

According to the observations above, the grdptcan be
Vv [Unknowna A Goo
[ (O1)) A O1(O20 9] easily expanded (see Fig. 12 for a part of it). Siffcacludes

{Good} Raise_above_Good

v [GoodA (O1f) A Good only a liveness property, the synthesis algorithm searches only
V [GoodA (O1f) A O1(O»0Good)] for bad cycles (e.g., 6-8-6) and tries to exclude them from

V [O1($=0G00d) A (O f) A Good system behavior by prohibiting controllable actions (eSgop

V [O1(¢206000 A (O1f) A O1($50G00d). from state 8). In addition, it removes paths that do not close

cycles because they cause a deadlock (8@t Down from

After trivial simplifications and the elimination of the firststate 6). The final solution is a controller with 18 states after
disjunct, which is inapplicable [there exists no vertesuch minimalization (e.g., states 9 and 11 are equivalent apart from
that {Good Unknowr} C A(v.X)], we obtain the following formulas and sets of unbounded-time eventualities).

disjuncts: This first example shows that the solution is not optimal
in the sense of maximal permissiveness (the legal language is
[UnknownA O1(¢>0G0o0d) A (O1f)] not w-closed). In addition, the solution is not efficient. Let us
[GoodA (O1f)] illustrate this point with the sequence of actions
[GoodA O1(¢20G00d A (O1/)] SetlLow StartDown Stop StartJp Raiseto_Good - - - .
[O1(¢20G00d) A (O1f)]:
] ) This sequence is legal, but it is less efficient than the sequence
This completes the calculation of the closure of the progression
of f. Therefore, successorsofre labeled with the future part SetlLow StartUp Raiseto_Good- - -.

of the selected disjunct, that is, eithgéror g. ] ] ) ]

In this example, there is only one set of unbounded-time The solution can be refined by the introduction of more
eventualities, that is{Good}. In fact, there is no conjunct constraints. Let us consider the case where the formal specifi-
in f of the form &soh of hiUsohs, but ¢ includes the cation of control requirements is the conjunctionfoéind the
conjunct $s,Good So, according to (A2), a successor following seven formulas:
of a vertexwv is labeled with{Gopd} wheneyerv.cf = 0, 1 =Os0[Unknown
v.F = g, and Good ¢ A(v.X) (i.e., Good is not locally -
entailed by the edge from to ¢’). Furthermore, a successor
o' of a vertexv is labeled with the empty set of eventualities f2 =xo[(ldle A Good) — Oxoldle]
wheneverv. £ = {Good} and Good e A(w. X) (i.e., Goodis f3 =0Oso[(Idle A High) — Os>oMoving Down]

1 /
locally entailed by the edge fromto ). In the other cases, f1 = Oso[(Idle A Low) — OsoMoving Up]

(
(
/ (9 — (9 (
v. = V.cC. . . .
f5 =0O>o[(Moving DownA High) — (Ox>¢Moving Down|
(
(

— = OO0 (Moving Up v Moving Down)]

10Equivalence (E8) is reduced to the following equivalence foretentu-
ally connective:

fe =0O>0[(Moving.Up A Low) — O>oMoving Up]
Qua¥>i—dafs if d <t Jfr=0s0]

(Moving.DownVv Moving Up) A Good)
< QaQzof if d>tandt#0
S {f\}OZdU<>>of)7 if ¢ = 0. — Oso(ldle A Good)].
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{Lower_below_Good}
(Stop}

Lower_to_Good

{Raise_above_Good}

Fig. 13. Progression of.
Fig. 14. A controller.

Formulasf; to f7 represent safety properties. Formyla

states that whenever the relation between the target positihcurrency theory, and artificial intelligence planning. In
and the current position is unknown, the antennas must nése fields, the termsontroller, reactive moduleand plan

be moved. Formulgf; specifies that whenever the antennagre analogous.

are idle and their position is good, the antennas must remainn the artificial intelligence community, the idea of pro-
idle. Formulafs (respectively,f,) specifies that if the antennasgressing temporal formulas through a trajectory was originally
are idle and too high (low), then they must be moved in thatroduced by Bacchus and Kabanza [8]. They first applied
down (up) direction. Formuly; (respectively,fs) specifies this idea to progress search control formulas. Recently, they
that if the antennas are moving in the down (up) direction argtended their approach to the problem of synthesizing clas-
are too high (low), then they must keep moving in the dowsical plans when the goals include only safety constraints [9].
(up) direction. Finally, formulaf; states that whenever theThe problem of synthesizing reactive plans for safety and
antennas are moving and they are at the good position, thg¥ness constraints has also been addressed by generalizing

mus_,t be stopped. _ this technique [22]. The idea of using a similar technique
Fig. 13 shows the progression @f= f A fi A---A fz from in the context of supervisory control theory has also been
the initial vertex. Since the decomposition ff is investigated earlier by the authors [12]. The present control-
[~UnknownA O f1] theoretic synthesis approach produces controllers that differ

from plans; maximal sublanguages, controllable events, and
the controllability property are considered. In our planning ap-
then the progression af from vertex O is proach, maximal permissiveness is not a criterion of optimal-
ity; uncontrollable events are represented by nondeterminism;
and control problems such as controllability, observability, and

V [O1(=Moving.DownA —=Moving Up) A O1 f1]

g1 = —Moving.DownA =Moving Up A g.

Similarly, since the decomposition df, is stability do not arise naturally and, hence, cannot be easily
_ investigated as in the framework sdipervisory control theory
[Hldle A O1fa] V ["LowA Oy fa] V [O1MovingUp A O1 f4] Our approach is reminiscent of the decision procedure for

linear temporal logic using th@bleau method46]. This de-
cision procedure proceeds by constructinguecid “‘automaton
g2 = ($>0Good A MovingUp A g. accepting trajectories satisfying a temporal formula. It involves
three steps: 1) construction of lacal automatonaccepting
trajectories that satisfy safety properties; 2) construction of an
eventuality automatoaccepting trajectories satisfying liveness
. i . : roperties; and 3) combination of the two automata. Origi-
disable actiorStart Downat vertex number 1 since this verte>{:a"y developed solely for formulas without time constraints,
causes a.de.:adlock. the technique was later generalized to formulas with time
Using similar developments for the other formulas, the res%‘})nstraints [4]. In technical terms, our method is related to
is a controller shown in Fig. 14 (the sets of disabled actior{ﬁiS decision procedure as fO||OV\;S. On the one hand, the

are indicated to the right of states). gzrogression of formulas, which is based on the property that

then the progression af; from vertex 1 is

The progression ofy. from vertex 2 givesfalse whatever
the successors are, since the present pargofcontains
Moving Up, yet MovingUp ¢ A(2.X). The controller must

ture part, is like the construction of a local automaton. On
the other hand, the progression of eventualities, which keeps
track of unbounded-time eventualities that must be satisfied,
In this paper, we have considered a synthesis method basedimilar to the construction of an eventuality automaton.
mainly on a temporal logic framework. This work draws fronOur progression techniques are, however, done with respect
a number of different but related sources on control theony transitions of the process. Intuitively, this amounts to a

IX. CONCLUSION
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compositionon the fly of the local automaton, eventualityby adapting model-checking techniques that are more suitable

automaton, and transition structure of the process. for such systems [3]. These issues remain to be addressed in
Another difference between our approach and the constrdigture work.

tion of Blichi automata from temporal logic specifications is

that such automata do not embody the notion of uncontrollable ACKNOWLEDGMENT

events. Hence, they are not appropriate to the synthesis o

controllers for reactive systems. To take into account unco

trollable events, one needs a generalization iséH8 automata

to Buchi tree automata. From a tree automaton point of view,

our approach is related to approaches for synthesizing reactive
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benefit from the EXpreSSIVen?SS .Of temporal |O'g|C. . supervisory control with state information/EEE Trans. Automat.
As a matter of fact, the application presented in Section VIII  contr., vol. 39, pp. 2398-2410, Dec. 1994. _ _

is a typical example of a hybrid system in which the controlldit4] , “Centralized and distributed algorithms for on-line synthesis of

. di t t t d th . ti maximal control policies under partial observatiod,”Discrete Event
IS a discrete-event system an € process Is a contnuous Dynamic Systems: Theory and Applo). 6, no. 4, pp. 379-427, 1996.

system [6]. The discrete-event system model, represented[iB} B. A. Brandin and W. M. Wonham, “Supervisory control of timed

the TTG in Fig. 11, is an abstraction of the continuous system. discrete-event systemsJEEE Trans. Automat. Contr.yol. 39, pp.
329-342, Feb. 1994.

In this model, a state of the graph corresponds to more than gi§ c. . cassandras, S. Lafortune, and G. J. Olsder, “Introduction to the
state of the continuous system. The control problem addressed modeling, control and optimization of discrete event systemsTrémds

i ; i : in Control—A European Perspectivé,. Isidori, Ed. London, U.K.:
in this paper has been solved in the contextsapervisory Springer-Verlag. 1995, pp. 217291,

control theory for which the theoretical results cannot bei17] s. L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in
applied directly to hybrid systems. Generally, hybrid systems SéUPeNISOIry3070ntr0| gzdllsige;g-esem fggtzemﬁEE Trans. Automat.

: " - ; : ontr., vol. 37, pp. ~ , Dec. .
are described t_)y transmo!’l _S_trUCture dlagr_a_ms n \_NhICh sta E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
represent continuous activities and transitions discrete state of finite-state concurrent systems using temporal logic specifications,”
changes. They include variables and their behavior is governe ACM Trans. Program. Lang. Systol. 8, no. 2, 1986, pp. 244-263.

h f diff | he E. A. Emerson, “Temporal and modal logic,” ifandbook of Theoretical
in each state by a set of differentia equatlons' Our synthe Computer Science, Volume B: Formal Models and Semanlicsan

approach could be extended to hybrid system specificatlons Leeuwen, Ed. Cambridge, MA: MIT Press, 1990, pp. 995-1072.
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