
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998 1543

A Method for the Synthesis of Controllers to
Handle Safety, Liveness, and Real-Time Constraints

Michel Barbeau,Member, IEEE,Froduald Kabanza,Member, IEEE,and Richard St.-Denis,Member, IEEE

Abstract—This paper describes a synthesis method that auto-
matically derives controllers for timed discrete-event systems with
nonterminating behavior modeled by timed transition graphs
and specifications of control requirements expressed by metric
temporal logic (MTL) formulas. Synthesis is performed by using
1) a forward-chaining search that evaluates the satisfiability of
MTL formulas over sequences of states generated by occur-
rences of actions and 2) a control-directed backtracking technique
that takes into consideration the controllability of actions. This
method has several interesting features. First, the issues of con-
trollability, safety, liveness, and real time are integrated in a
single framework. Second, the synthesis process does not require
explicit storage of an entire transition structure over which
formulas are checked and can be stopped at any moment, giving
an approximate but useful result. Third, search and control
mechanisms allow circumvention of the state explosion problem.

Index Terms—Discrete-event systems, metric temporal logic,
supervisory control, synthesis algorithm,!-languages.

I. INTRODUCTION

A CONTROLLER can be viewed as a program that re-
strains the behavior of a process in order to satisfy given

constraints on sequences of actions executed by the process.
Supervisory control theory,initiated by Ramadge and Wonham
[36], addresses the problem of synthesizing controllers for
discrete-event systems (DES) by focusing on the formulation
of conditions for the solvability of different control problems
and on the investigation of algorithms for computing con-
trollers from formal specifications. One of the main issues
of this theory concerns thecontrollability of a specification,
which has similarities with the issue ofrealizability [1],
[34]. In opensystems, the process to be controlled interferes
with other processes in its environment. This interaction is
essentially of a reactive nature. A controller can be realized by
taking into account changes caused by uncontrollable events
generated by the environment.

Specifying the dynamics of a process and control require-
ments represents a challenge for engineers who want to
apply formal methods such as controller synthesis. This task
can be accomplished by using specification languages that
are expressive and readable. Expressiveness deals with com-
plex properties, while readability facilitates the explanation of
specifications. One method of writing down specifications is

Manuscript received February 7, 1997; revised November 27, 1997. This
work was supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Fonds pour la Formation de Chercheurs
et l’Aide à la Recherche (FCAR).

The authors are with the D́epartement de Mathématiques et d’Informatique,
Universit́e de Sherbrooke, Sherbrooke, Québec, J1K 2R1 Canada.

Publisher Item Identifier S 0018-9286(98)08480-3.

to use state machines. In fact, most synthesis methods for
supervisory control theory have been done in the context
in which both the unrestrained and legal behaviors of a
process are modeled with automata [16], [24], [37], [40].
Besides, temporal logics have long been recognized as a
useful formalism for specifying properties of reactive systems
[19], [30]. One key characteristic of such logics is that they
are declarative and involve simple syntax and semantics.
Although mostly used in the verification of concurrent systems,
temporal logics have been applied to supervisory control
theory (e.g., [21], [26], [27], [32], [33], [41] for linear temporal
logic frameworks and [5] for a branching temporal logic
framework). Real-time interval logics have also been used in
the verification of control systems (e.g., [38]).

The synthesis method advocated in this paper uses specifica-
tion formalisms and integrates temporal aspects by associating
durations to transitions and time constraints to modal op-
erators. More specifically, the dynamics of processes and
specifications of control requirements are represented bytimed
transition graphs(TTG’s) and metric temporal logic(MTL)
formulas [4], [23], respectively. Such an approach is very
attractive. On the one hand, the dynamics of a process is
more understandable from a state machine because it explicitly
shows the atomic actions, the states in which they are enabled,
and their effects. On the other hand, constraints on a process
are often more understandable from declarative statements.

Our synthesis method is closely related to the recent work
by Brandin and Wonham [15]. In their model, both the dy-
namics of processes and specification of control requirements
are described by TTG’s. Transitions represent instantaneous
events and time progresses in states that represent actions.
In our case, transitions represent actions with durations. As
discussed in [11], both models are dual but lead to different
synthesis methods. However, our approach can also handle
livenessconstraints, that is, constraints over nonterminating
behaviors or behaviors that have a very remote or indefinite
termination point. Thus, the control requirements expressed by
an MTL formula refer to infinite behaviors.

Our method is also closely related to recent works by Thistle
and Wonham [42], [43]. We adopt the same model for the
nonterminating behavior of the closed-loop system which is
essentially due to Ramadge [35]. Like Brandin and Wonham’s
approach, they use only transition structures to realize effective
controllers: processes are represented by deterministic Büchi
automata and specifications of control requirements by deter-

0018–9286/98$10.00 1998 IEEE

1544 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998

ministic Rabin automata.1 This representation also allows the
expression of liveness constraints, but it does not deal with
time constraints.

The most substantial difference with these two previous
works and many others that consider the problem of finding
a winning strategy for finite or infinite games (e.g., [7],
[29]) lies in the synthesis algorithms. As in the original
method proposed by Wonham and Ramadge [47], they pro-
mote synthesis methods based on a fixpoint characterization
of the supremal controllable sublanguage of a given legal
language. In addition, they include an induction on the au-
tomaton structure to compute a controller that generates the
supremal controllable sublanguage. In contrast, our approach
simply consists of seeing sequences of actions as paths on
a TTG. By searching through the space of possible paths,
MTL formulas representing constraints are verified over these
paths to determine points at which controllable actions must
be disabled. This is done incrementally in a single phase
so that a controller can be obtained without exploring the
entire state space because unsatisfactory paths are pruned
and most of the vertices on these paths are not expanded
further [22]. A depth-first exploration obviates storing the
entire graph in memory. Furthermore, heuristics and search
control mechanisms, reminiscent of familiar techniques in the
field of artificial intelligence search, can be used to control
the state explosion problem. One can reasonably expect that
our algorithm is less greedy for memory and performs better
on average.

The rest of the paper is organized as follows. Section II
summarizes Thistle and Wonham’s framework and situates the
control problem addressed in this paper with regard to their
model. Section III describes the syntax and semantics of MTL,
gives a characterization of safety and liveness constraints, and
introduces basic properties of temporal operators that allow
transformations of formulas into appropriate forms. Section IV
presents the foundation of our synthesis method by abstracting
over implementation details. Section V contains some simple
examples illustrating the method’s most important aspects.
Section VI introduces fundamental properties that will be used
to show the correctness of a new synthesis algorithm detailed
in Section VII. Section VIII presents a simple application to
an antenna rotor control system. Finally, Section IX discusses
related works from a more technical point of view and
concludes the paper.

II. SUPERVISORY CONTROL OF DES

The atomic actions of a DES are represented by a nonempty
set of symbols , called an alphabet. Let and be
the set of finite words and the set of infinite words over,
respectively. The empty word is noted. An -word over

is written as and represents an infinite
execution of actions. Let . For any two
words and , the expression means that

is a prefix of . Given , , and ,

1Büchi and Rabin automata are finite automata equipped with an acceptance
condition that is appropriate for infinite words [44].

we have the following operations:

Following Ramadge [35], a DES is modeled by a pair of
languages and , such that (is
-closed) and . The languages and are used

to describetransientand persistenttraces of actions that the
process can execute. If , then is deadlock-free.

Let be a partition of , where and denote
the set ofcontrollableactions and set ofuncontrollableactions,
respectively. Let . A supervisor is a
function : that maps each finite sequence of actions
to a set of enabled actions.

A controlled DES is one constrained by a supervisor. Given
a DES and a supervisor , the corresponding
controlled DES is noted , where:

1) is defined recursively as and for all
and , iff , , and ;

2) .

We assume that the supervisoris complete, that is,
is a subset of the domain of. A supervisor is said to be
deadlock-free for if . The control problem
addressed herein can now be formalized as follows.

Problem 1: Given a DES and such
that , construct a complete deadlock-free supervisor

for such that .
Thistle and Wonham [43] give necessary and sufficient

conditions for the existence of a maximal solution to this
problem. Their result is mainly based on-controllability and

-closed properties. If the-closed property is not satisfied for
a particular instance of Problem 1, the maximal solution does
not exist because of the open-ended nature of liveness prop-
erties [43]. Besides, our goal is not to derive the maximally
permissive controller, but a useful controller.

In this paper, we provide a solution for a particular case
of Problem 1. We assume that , that is, is
completely determined by. We also suppose that the control
requirements are given by an MTL formula. Thus, the
legal language can be interpreted as transforminginto a
nondeterministic B̈uchi automaton by using thetableau method
[45], then taking the intersection of the language accepted by
the Büchi automaton with the language . In reality, we do
not construct the B̈uchi automaton. Rather, our method works
incrementally on and a representation of so that only the
part of the B̈uchi automaton relevant to is built. Finally, we
assume that the DES is modeled as a TTG , , , ,
, , , where is a finite set of states; is a finite set

of propositional symbols; : is a labeling function
that assigns to each state the set of propositional symbols true
at that state; is a finite set of actions partitioned into
and ; : is the time duration function such that

for all ; : is the transition
function; and is the initial state. The -language
generated by is : is defined

BARBEAU et al.: SYNTHESIS OF CONTROLLERS 1545

and the -language accepted by is .
Therefore, and .

Given a sequence of states, we note , the th state
on the sequence. A trajectory of on an -word
is an infinite sequence of statessuch that and

for . Since the execution
of a process never terminates and is finite, successive
applications of introduce simple cycles with distinct states on
them (except one that begins and ends the cycle). Nevertheless,
finite executions can be simulated by using a terminal state
in which the processes continually execute await action that
lasts, for example, one time unit. If this action is controllable,
selfloops labeled bywait can be used in conjunction with some
control requirements to introduce specific delays at the process
level.

A realization of a supervisor for a DES is a pair
, where is a transition structure

and : a feedback function such that for each
, . In this paper, a realization of a

supervisor is called a controller. The combination of a DES
and a controller constitutes a closed-loop system. As usual, the
transition structure mimics the behavior of and function

determines the set of permissible actions forin each step
of the execution of the closed-loop system.

III. CONTROL REQUIREMENTS

The temporal logic that we have adopted to specify the
control requirements is MTL [4], [23]. In this logic, time
constraints are associated with modal operators. It allows
expression of various properties such as “eventually, within

time units, property will be satisfied” or “property must
always be satisfied after time units.”

A. Syntax

MTL formulas are constructed from a finite set of propo-
sitional symbols ; the Boolean connectives (and) and
(not); and the temporal connectives (next), (always),
and (until), where denotes , , , or and .
The formula formation rules are:

1) every propositional symbol is a formula;
2) if , , and are formulas, then so are , ,

, , and .

In addition to these basic rules, we use the abbreviations
or ,

implies , and eventually .
The language also includes the constant propositional symbols
true and false, which denote valid and inconsistent

formulas, respectively.
The intuitive meaning of MTL formulas is captured by

using the natural language interpretation for connectives and
by noting that, when a time constraint “ ” is associated with
a temporal connective, the modal formula must hold within a
time period that satisfies the relation . For example,
is read as “the next state is in the semi-open time interval

and satisfies ”; as “always on the closed time
interval ”; and as “eventually on the semi-open
time interval .”

Although positive real numbers are used for specifying time
constraints, the control requirements will be sampled only at
time points that interact with discrete transitions.

B. Semantics

MTL formulas are interpreted over models of the form
, where

1) is a trajectory;
2) : IN is a binary function that

evaluates a propositional symbolat , that is,
returns if holds at , otherwise;

3) : IN is a function that assigns the time stamp
to position .

We write if formula holds at position in
the trajectory of . When the model is understood, we
simply write . In addition to the standard rules for
Boolean connectives, we use the following rules for temporal
connectives. For a position, , a propositional symbol
, formulas , , and :

1) iff returns ;
2) iff and ;
3) iff for all , , whenever

;
4) iff there exists , , such that

and , and for all , ,
whenever .

Finally, we say that model (or trajectory) satisfies a
formula if .

C. Safety and Liveness Properties

In general, the control requirements include interconnected
safety and liveness properties [25]. A safety property is
expressed by formulas of the form , , ,
or . It is characterized by the fact that, when it is
violated, the violation occurs on a finite prefix of a trajectory.
For example, the violation of a deadline, conveyed by the
until connective with a constraint “ ,” occurs when a finite
number of transitions, for which the sum of durations is greater
than , has been traversed without satisfying, while was
satisfied. A liveness property is expressed by formulas of the
form or . It is characterized by the fact that
it can only be violated on an infinite trajectory [2]. For such
a formula with a constraint “ ,” there are no bounds on the
time when should occur after time units. In other words,
it must be checked over the infinite open time interval .
Of course, such formulas also involve the safety property of
maintaining true as long as is not made true.

This characterization of safety and liveness properties is
important in the description of the synthesis algorithm. In fact,
the difficult part of the algorithm deals with the management
of formulas that express liveness properties.

D. Positive Normal Form

Safety and liveness properties can be syntactically deter-
mined by checking their main temporal connectives. One must,
however, take into account the fact that thenot connective

1546 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998

changes the temporal modalities as indicated by the following
equivalences:

(E1)

(E2)

To avoid checking these equivalences, we assume that the
initial formula representing the control requirements is written
in positive normal form.2 This can be done by using the
usual De Morgan laws, equivalences (E1) and (E2), and the
following equivalence:

(E3)

where denotes the converse of the ordering relation.

E. Decomposition of Formulas

The assessment of an MTL formula over a trajectory is
based on the observation that a formula specifies apresent
requirement that must be satisfied in the current state and
a future requirement that must be satisfied in the next state
in the trajectory. In order to formalize this observation, the

-formula is introduced, where is a strictly positive real
number representing the duration of a transition between two
consecutive states in a trajectory. A subformula havingas
main operator represents a future requirement that must hold in
the next state. This operator is not included in the requirements
specification language, but it helps to explain how a formula
is decomposed. The semantic rule for this formula is

iff and

The decomposition of an MTL formula is based on the
following equivalences3:

if
otherwise

(E4)

if
otherwise

(E5)

if

if and

if
(E6)

if
otherwise

(E7)

if

if and

if .
(E8)

It should be noted that, when equivalences (E4)–(E8) are
applied recursively4 to a formula in positive normal form, the
result is an equivalent formula in the same form because no
negation is introduced by these rules.

2In this form, only propositional symbols are negated.
3We only give the equivalences for temporal connectives with time con-

straints� and�. The equivalences for< and> are similar.
4The recursion is applied to subformulas not in the scope of the connective

d.

F. Disjunctive Normal Form

The goal of the decomposition is to obtain formulas of the
form , where is a con-
junction of literals5 and a conjunction of literals and
formulas for which the main connective is , , or . This
is done by 1) recursively using equivalences (E4)–(E8) and 2)
transforming formulas in positive normal form into equivalent
formulas in disjunctive normal form.6 This transformation,
which also preserves the positive normal form, requires the
usual distributive laws between the connectivesand and
the following equivalence:

(E9)

In the sequel, the decomposition of a formulawith respect
to a transition of duration will be noted as follows:

IV. SYNTHESIS METHOD

Let be a TTG describing
the behavior of a process and an MTL formula in dis-
junctive normal form representing the control requirements.
The process of synthesizing a controller for DES

and formula involves simultaneous operations that are
performed incrementally based on a forward-chaining search
and a control-directed backtracking mechanism.

The basic operation is the expansion of a finite labeled
directed graph that represents a combination ofand tra-
jectories of . This expansion involves a verification of
over trajectories of . During this operation, dead ends or bad
cycles may be detected according to the nature of the formula
to be checked. Violations of safety properties lead to dead
ends, while violations of liveness properties lead to bad cycles.
When a dead end or a bad cycle is detected, a backtracking
mechanism goes further back on an uncontrollable path of
arbitrary but finite length to select an alternate path. Finally,
a controller is obtained by extracting a subgraph, representing
the transition structure , from satisfactory trajectories of
and by updating, for some vertices, the value of the feedback
function during the backtracking operation.

A. Expansion of a Graph

Let be a labeled directed graph, where
is a finite set of vertices, is a finite set of directed edges,
and is the set of actions labeling the edges. Every vertex

is labeled with a state of , a formula, and a set of
unbounded-time eventualities. These labels are denoted,

, and , respectively. The first label is used to record
trajectories of . The second label is a subformula ofthat
must be satisfied over trajectories of starting from .
The last label allows the verification of liveness properties.

5A literal is a propositional symbol or the negation of a propositional
symbol.

6A formula in disjunctive normal form is a disjunctiong1 _ � � � _ gn such
that each disjunctgi is a conjunctionh1 ^ � � � ^ hm , where each conjunct
hj is a literal or a formula whose main connective is
, , or U .

BARBEAU et al.: SYNTHESIS OF CONTROLLERS 1547

A formula in the set of unbounded-time eventualities is the
second operand of a formula of the form 7 that must
be eventually satisfied from . Initially, a vertex labeled
with , a disjunct of , and an empty set of eventualities
(, , and) is created and
inserted into . There are as many initial vertices as there
are disjuncts in . Only one is selected at a time. Let
be a vertex of the graph such that . For an
action such that is defined, a successor is
generated and an edge from to labeled is added
in . The state labeling is . The two other
labels are obtained by progressing and with respect
to information contained in the edge from to (this
is further discussed in the next section). The vertex is
inserted into if it is not already there.

B. Progression of Formulas and Sets of Eventualities

Let be the action labeling an edge from to . Let
us suppose that , , where is a disjunct
of the form , , ,
and . The truth value of on trajectory
is established by evaluating a present requirement atand
postponing a future requirement to be checked at . This
is accomplished by:

1) applying recursively equivalences (E4)–(E8) on;
2) transforming the obtained formula to get a formula of

the form (see Section III-F)

(A1)

3) selecting the disjunct in the previous
formula, for some ().

To check at state , the present requirement is
assessed at . If the present requirement is violated, then

(since , for any),
otherwise . If there is no future requirement,
then . A vertex labeled withfalse is defined as
a dead end during the expansion of.

The set of unbounded-time eventualities labeling
is defined as follows:

if

otherwise
(A2)

where returns the set of formulas such
that there exists of the form with
not locally entailedby the edge from to ; and
returns the set of formulasincluded in andlocally entailed
by the edge from to . A formula is locally entailed
by an edge from to if there exists such that

is true at and is locally entailedby the vertex
whenever .

Establishing the fact that a formulain disjunctive normal
form is locally entailed by a vertex is based on an inference
procedure applied to a set of premises formed from all the

7We discuss only the case for theuntil connective with time constraints�.
The case for> is similar.

Fig. 1. The process:L = (a1a2 + a3a4)�(� + a1 + a3); L! =
(a1a2 + a3a4)!:

conjuncts of . Themodus ponens,“and introduction,” and
following axiom schemata are used by the inference procedure:

(S1)

if (S2)

if (S3)

if (S4)

(S5)

Intuitively, the inference procedure replaces each conjunct
of , whose main connective is , , or , by true or false
according to the fact that one of the schemata (S2)–(S5) can be
applied to a conjunct of (left pattern) and the temporal
subformula of (right pattern). A conjunct of that is a
propositional symbol is replaced bytrue if it is a conjunct of

. Otherwise, it is replaced byfalse. Then, the obtained
propositional formula is evaluated. If it is true, then is
locally entailed by . This inference procedure is sound but
incomplete because temporal subformulas are not decomposed
further and a limited number of axiom schemata are used.
However, as it is proven later, this completeness property is
not required for the completeness of the synthesis algorithm.

A cycle is satisfactory if it contains at least one vertex
labeled with an empty set of eventualities. A cycle that does
not meet this criterion is defined as a bad cycle. In other words,
a cycle is satisfactory when its infinite execution does not lead
to pending unsatisfied eventualities.

V. EXAMPLES

Let us consider a process modeled as the TTG of Fig. 1.
Every action lasts one time unit, that is,

. There are three states, namely,, , and with
; is the initial state.

A. Stability Property

In this example, the control requirements are formally
specified by the following bounded-time MTL formula in
disjunctive normal form:

By recursively applying (E6) and (E7) on, we obtain
successively the following formulas:

During the application of equivalences (E4)–(E8), literals
can be evaluated at the current state to make trivial simplifi-
cations possible earlier without decomposing further temporal
subformulas. Since , , and ,

1548 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998

Fig. 2. A part of a graph developed from safety properties.

we obtain only one valid disjunct with the present requirement
true and a future requirement . This
means that, over the next states, formulamust be satisfied;

and must be satisfied before two units of time have
elapsed. Note that must always be satisfied from one state
to another because its main operator is . Furthermore, the
sets of eventualities are empty becauseinvolves only safety
properties.

The progression of from to gives the future
requirement . In fact, since ,
the eventual satisfaction of is met and erased from the
future requirement; time has progressed one unit andis not
satisfied. Finally, the progression with four units of time of
in the sequence of states yields false, because the
time limit allowed for satisfying has expired.

Fig. 2 gives a part of the graph developed from. Dotted
arrows and circles correspond to edges and vertices created
during the verification process but rejected because they lead to
dead ends. If we assume that actionsand are controllable,
then the controller must prohibit these actions at states 3 and
7, respectively.

B. Unbounded-Time Eventualities

Let us consider the formula in the example in Section V-
A, making the time constraint for theeventuallyconnectives
“ .” In this example, the formula labeling a given vertex
can be identical to that labeling an ancestor vertex while not
achieving an unbounded-time eventuality. The graph in Fig. 3
illustrates an infinite trajectory that is not satisfactory. The
formula , which is a subformula for every vertex in the
cycle, is never satisfied. This example shows that equivalences
(E4)–(E8) are not sufficient to assess the satisfiability of an
unbounded-time formula.

C. Reachability Property

For a more comprehensive example, Fig. 4 shows a de-
scription of the graph obtained by progressing the sets of

Fig. 3. A bad cycle.

Fig. 4. A graph developed from liveness properties:
f1 = f ^ }�0p2 ^ }�0p3; f2 = f ^ }�0p3; f3 = f ^ }�0
p2; W = ((a1a2)+ a3a4+ (a3a4)+a1a2)!; W0 =a1a2a3(a4a1a2a3)!

+a3a4a1(a2a3a4a1)!.

eventualities and the formula

through the TTG in Fig. 1. It can be checked that any cycle
containing a vertex labeled with an empty set of eventualities
is satisfactory.

If the graph of Fig. 4 is interpreted as a transition graph
of an automaton, then a vertex labeled with an empty set of
eventualities represents an accepting state in the sense of Büchi
automata. Let us assume again thatand are controllable.
In that case, the legal language, defined by the formula, is
-controllable w.r.t. and -controllable w.r.t. () (see

Fig. 1 for the definition of and) [24], [43]. However,
a maximally permissive controller cannot be extracted from
this graph because the supremal-controllable sublanguage
of (which is itself in this example) is not -closed with
respect to .8 A family of useful controllers can, however,
be extracted by unwinding cycles 3-4-3 and 8-10-8 a finite
number of times. In particular, a controller that corresponds to

(see Fig. 4 for the definition of) can be obtained by
removing dotted arrows and circles because they correspond
to edges and vertices created during the verification process
but rejected as constituting bad cycles.

8A languageL1 is !-closed with respect to a languageL2 if L1 =
clo(L1) \ L2.

BARBEAU et al.: SYNTHESIS OF CONTROLLERS 1549

VI. PROPERTIES

In this section, correspondences between good paths of
and trajectories of that satisfy formula are established.
It is shown how the progression of a formula through good
paths is related to its semantic interpretation with respect to the
corresponding trajectories. A path of is good if it contains
neither a dead end nor a bad cycle. For any infinite path

, this is formalized by the following two properties:

(P1)

(P2)

Since graph has a finite number of vertices, infinite paths
are represented by paths terminated by a cycle. Let us start
with a restricted version of the main result.

Theorem 1: For any path terminated by
a cycle and produced by (A1) and (A2), if for all ,

and there exists such that ,
then for any vertex on the trajectory obtained from the path
by unwinding the cycle, .

In order to simplify the proof, we introduce some notations
based on the following observations. First, a vertex is always
labeled with a conjunction. Second, the satisfaction of a con-
junction depends on the satisfaction of all its conjuncts. Third,
the decomposition of a conjunct gives a disjunction. Finally,
the satisfaction of a disjunction depends on the satisfaction of
one of its disjuncts. Therefore, the satisfaction of a conjunction
is equivalent to the satisfaction of the conjunction of disjuncts
(at least one per conjunct) obtained from the decomposition of
every conjunct. Nevertheless, one must take into account the
time intervals associated with temporal connectives.

For any vertex , we note the duration associated with
the edge from to and . In
order to focus on a particular conjunct, is broken into two
parts: , where and .
The decomposition of at gives

(F1)

If (P1) holds, then only the disjuncts for which the present
requirement is true are relevant and formula (F1) simplifies to

(F2)

The proof of Theorem 1 is based on the following six
lemmas. The first five lemmas consider the different cases for

. The last lemma expresses essentially the same property as
Theorem 1, but for every conjunct .

Lemma 1: If satisfies properties (P1) and (P2), and
for some , then 1) and

2) has a conjunct that is a disjunct of the disjunctive
normal form of .

Proof: From (E4), is equivalent to (and
) or false. From (P1), . Thus, the only

possible case is the first one. By using (A1) and (F2)

for some () and (), where
is a disjunct of the disjunctive normal form of. Then the
conclusion follows.

Lemma 2: If satisfies properties (P1) and (P2),
and , for some (), then 1) there
exists a vertex such that and or and

and has conjuncts that imply a
disjunct of the future part obtained from the decomposition
of at and 2) for all () such that
and or and , has a
conjunct that is a disjunct of the future part obtained from the
decomposition of at .

Proof: For a formula of the form , the satisfaction
of must be established for every state after a delay oftime
units and until holds (after the same delay). If , this
means from state ; otherwise, from a state such
that , but . The
progression of the formula is accomplished step-by-step by
repeatedly considering the current duration until the delay is
expired. There are three possibilities: 1) ; 2) and

; and 3) .
Case I: If , then the delay is not expired. From

(E8), is equivalent to . Without loss of
generality, let us assume that . By using (A1) and (F2)

for some (). We can repeat this reasoning with
vertices , , and so on. Since all the action durations
are strictly positive, it follows that there exists a vertex
() such that , , and

for some (). Then, either or .
If , then is in the same situation as in Case II;
otherwise, is in the same situation as in Case III. Either
way, we continue with the argumentation of Cases II or III by
replacing with .

Case II: If and , then the delay is residual.
From (E8), is equivalent to . By using (A1)
and (F2)

for some (). Thus, is in the same situation
as in Case III. Hence, we continue with the argumentation
of Case III by replacing with .

Case III: If , then the delay is expired and the
progression of must be considered until the progression of

or the progression of a formula that implies. From (E8),
is equivalent to . By using (A1)

and (P1), formula (F2) becomes

1550 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998

There are two possibilities.

1) , for some and .

2) , for some and .

Case III-1): Since is a disjunct of the future part
obtained from the decomposition ofat , part 1) is satisfied.
Moreover, since , part 2) is trivially satisfied.

Case III-2): Since contains as a conjunct,
we can resume the reasoning from the beginning of Case III,
but applied to . Similarly, we can repeat this for ,
and so on. It follows that, for any vertex () before a
vertex (assuming that it exists) satisfying part 1),
must be of the form

for some and . This means that all the vertices before
any such a vertex satisfy part 2). Thus, to complete the
proof, it remains to show that a vertex satisfying part 2)
effectively exists.

From (P2), there exists after such that . Either
there exists a vertex between and (inclusively) such
that satisfies part 1) or no such vertex exists. If such a
vertex exists, then this trivially ends the proof. Now, if no
such vertex exists, this means that all the vertices between

and fall in Case III-2). Hence, is of the form

for some and . From (A2), must contain (unless
is locally entailed by the edge from to). But then,

from (P2), there must exist a vertex after such that
. From (A2), this means that there exists a vertex

between and such that is obtained by removing
from because is locally entailed by the edge from

to . Then, propositional symbols in and
conjuncts of logically imply . More precisely:

1) (a disjunct of the present part obtained from the
decomposition of at) is true in

2) (the corresponding disjunct of the future part
obtained from the decomposition ofat) is implied
by for some . Hence, satisfies part 1).

The proofs of the next three lemmas are based on arguments
developed in Lemma 2. In fact, the first line of (E7) is like the
last line of (E8), and (E6) is like (E8) if in (E8) is replaced
by false, that is, is almost equivalent to .

Lemma 3: If satisfies properties (P1) and (P2), and
, for some (), then 1) there exists

a vertex such that or and
and has a conjunct that is a disjunct of the future part
obtained from the decomposition of at and 2) for all
(), has a conjunct that is a disjunct of the
future part obtained from the decomposition ofat .

Proof: The proof is similar to that for Lemma 2 in
Case III since, for greater than or equal to the duration of
the current action, the progression of is similar to the
progression of . From (E7) and (A1), sooner or later, a
vertex, for which the time constraint for theuntil connective is
less than the duration of the current action, will be ultimately

reached. From (P1), must be progressed from or (
and).

Lemma 4: If satisfies properties (P1) and (P2), and
, for some (), then for whenever

and all whenever , has
a conjunct that is a disjunct of the future part obtained from
the decomposition of at .

Lemma 5: If satisfies properties (P1) and (P2), and
, for some (), then for and all

such that , has a conjunct that
is a disjunct of the future part obtained from the decomposition
of at .

Proof: The proofs of Lemmas 4 and 5 are similar to
those for Lemmas 2 and 3. In fact, is almost equivalent
to and is progressed like anuntil formula, except
that we do not have to check thatfalse is eventually satisfied.

Lemma 6: If satisfies properties (P1) and (P2),
then for all and for all (), .

Proof: The proof is by induction on the structure of
formulas. We first prove the case for . The basis is
when is a propositional symbol. Given (P1) and (E5), then

for and all whenever .
From the semantic definition of MTL, . The
inductive hypothesis is: if satisfies properties (P1)
and (P2), then for all and all that are conjuncts of

with simpler structure that , then . From
Lemma 5, has a conjunct that is a disjunct of the future
part obtained from the decomposition ofat for and
all such that . This means that
the corresponding disjunct of the present part holds at .
By using the inductive hypothesis, the conjunct of
corresponding to the disjunct of the future part obtained from
the decomposition of at is satisfied at . Therefore,

for and all whenever .
From the semantic definition of MTL, . The
proof for the other cases are similar. The case
requires, however, more explanation.

The progression of a formula of the form decreases
by the action duration , only as long as . Then,

the progression keeps the formula invariant as long as only
is satisfied, but not . From (P1) the safety property is

satisfied. The only problem is that cycles violating the liveness
property may be formed. We show that this is impossible. From
Lemma 2, has conjuncts that imply a disjunct of the
future part obtained from the decomposition ofat for
some . From the inductive hypothesis, these conjuncts hold
at . Thus, . From the semantic definition of
MTL, .

Now, we can prove Theorem 1.
Proof: Let be a path terminated by

a cycle and produced by (A1) and (A2). If for all ,
, and there exists such that , then

the trajectory obtained by unwinding the cycle satisfies (P1)
and (P2). From Lemma 6, for any vertexon that trajectory
and for any that is a conjunct of (),

. But, . Hence, .

BARBEAU et al.: SYNTHESIS OF CONTROLLERS 1551

Fig. 5. The expansion of a vertex.

The next theorem generalizes Theorem 1. It is based on the
procedureExpand(see Fig. 5) that generates successors of a
vertex . For every action such that is defined,
it decomposes formula at [items 1 and 2 of (A1)].
Then for every disjunct of the decomposition of at , it
creates a new vertex, assigns values to its labels , ,
and , and creates the corresponding edge. The notation

means that (A2) is applied by replacing by
and by . It should be noted that if there is no future
requirement, then . In addition, if the present
requirement is violated at, then .

Theorem 2: For any trajectory of terminated by a cycle
, the trajectory obtained by unwinding the

cycle satisfies an MTL formula if and only if there exists a
graph produced byExpand that contains a path terminated
by a cycle such that 1) for all ,

; 2) there exists such that ;
and 3) and, for any and , if ,
then .

Proof: () This follows trivially from Theorem 1.
() The idea of the proof is to build paths from trajectory

by progressively adding labels to vertices,
starting with states, then disjunctions, then disjuncts (or con-
junctions), and finally sets of eventualities. Thereafter, two
vertices are equal if their labels match.

Let us build a first path , where
(). This path satisfies trivially part 3). Let us build

another path from the previous one9

by unwinding its cycle a finite number of times as follows:
and (only the future

parts of disjuncts for which the corresponding present parts
are true at appear in this disjunction) ().
The cycle of the first path is unwound a finite number of
times because items 1 and 2 of (A1) generate only finitely
many different formulas. From (E4)–(E8), , since

(by hypothesis). Similarly, since , then
and so on. In particular, for all .

Hence, this path satisfies part 1).
For any , let us note (if ,)

its disjunctive normal form. For every vertex, there exists
at least one () such that . Then, for
every such that , there exists a disjunct

9This means thatv0 = u0 andvi = succ(uj), if vi�1 = uj . Hence, part
3) is still satisfied.

() such that and is a
disjunct of the future part obtained from the decomposition
at , since the decomposition of a formula is join-preserving.

Again, let us build another path
from the previous one by unwinding its cycle a finite number
of times and replacing the formulas of vertices by correspond-
ing disjuncts as follows: , if is
a disjunct of the future part obtained from the decomposition
of at (), and ().
The cycle of the second path is unwound a finite number of
times because there is a finite number of disjuncts. It should
be noted that the third path satisfies parts 1) and 3).

Let us build a last path from
the previous one by unwinding its cycle a finite number of
times and extending each vertex with a set of eventualities
as follows: and , accordingly to (A2)
(). The cycle of the third path is unwound a finite
number of times because there is a finite number of different
possible sets of unbounded-time eventualities obtained from
subformulas of having the form .

Let us now consider all such paths [still satisfying parts 1)
and 3)] that can be derived from the initial trajectory. At least
one of them satisfies part 2), which is proven by contradiction.
Let us suppose that there exists no path satisfying part 2).
This means that, on the cycle of every path, all the sets of
eventualities contain at least one formula. Then, every path
has a vertex , before the entry in the cycle, such that
and has a conjunct of the form (and is not
locally entailed by the edge having as head). Since all the
paths satisfy 1), there exists a vertex after such that

and has a conjunct of the form . In
that case, the decomposition of can be done in two ways
according to (E8) (see also Case III of Lemma 2). We consider
only the first way, which corresponds to a particular path still
satisfying parts 1) and 3). Let us focus on a particular set of
eventualities. In the worst situation, is not locally entailed
by an edge before the edge having as head, which means
that it cannot be detected earlier that the formulawill be
effectively satisfied and therefore be removed from the set of
eventualities. The successor vertex of has the following
characteristics: has a disjunct of the future part obtained
from the decomposition at and the corresponding present
part is true at . Then, is locally entailed by the edge from

to . From (A2), does not contain . The same
reasoning can be done with the other formulas in the set of
eventualities appearing on the cycle to conclude that this set
will become empty. This contradicts the hypothesis.

Finally, let us construct a family of graphs by grouping
and interleaving all the paths having the same initial vertex.
Each graph is a subgraph of a graph that can be generated
by Expand. In at least one graph, there is a path that satisfies
parts 1)–3). Then, the conclusion follows.

VII. T HE SYNTHESIS ALGORITHM

The algorithm described in this section provides more
details on (A1) and (A2) in Section IV-B. It includes elements
concerning the use of a search technique for the expansion of

1552 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998

Fig. 6. The synthesis algorithm.

the graph , selection of the disjunct labeling a vertex, and
backtracking operation whenever a dead end or a bad cycle
is encountered. It can, however, be improved to prevent some
bad vertices from being processed more than once.

A. Description of the Algorithm

The algorithm performs a depth-first search (DFS). The set
and transition function correspond to the set of vertices
and set of edges of , respectively. In addition to the

labels , , and , a vertex has a linked list of
outgoing edges. The reference to the first edge of this list is
denoted first. Each item in the list contains three elements:
an action (action), a reference to the next edge (next),
and a reference to the first element of a linked list of its
possible tails (first). For a given action, there are as many
tails as there are disjuncts in the decomposition of . Thus,
each vertex also has a reference to the next vertex (next).
The vertices in this linked list differ in their formula and set
of unbounded-time eventualities. Finally, a Boolean ()
indicates that vertex has an outgoing edge that leads to an
illegal situation on an uncontrollable action. The procedure
Expand of Fig. 5 is augmented in order to create the two
previous lists and set to . A stack is maintained
throughout the DFS. It contains all the vertices on the current
path, except the last vertex that represents the current vertex
which is denotedhead. The detection of a cycle in the graph
is done by examining the contents of the stack. Between every
two vertices and , the stack also contains a reference to the
edge from to that the DFS examines when it backtracks
from .

The algorithm (see Fig. 6) begins with some initial opera-
tions (lines 1–4). The main loop (starting at line 5) represents
the recursive character of the DFS. The first embedded loop
(starting at line 6) scans edges outgoing from the head. The
second embedded loop (starting at line 8) scans tails of the
current edge . Three Boolean variables control these loops.
The variablesuccesscontrols the second embedded loop. Tails
are examined until one of them verifies its disjunct (successis

Fig. 7. The examination of a vertex.

Fig. 8. The backtracking operation.

then set to) or the list is exhausted (tail). Then,
some postprocessing is performed on. If the examination
of tails terminates withsuccessequals and the action
associated with the current edge is uncontrollable, thensafeis
set to . This causes termination of the first embedded
loop, which is continued by backtracking actions (line 13).
The variable becomes if a solution is obtained
causing the termination of the main loop.

Tails are processed by the procedureExamine in Fig. 7
according to three cases. First, the tail causes a dead end or
closes a bad cycle. In this case, the DFS resumes with the
next tail (line 2). Second, the tail represents a good state or
closes a good cycle. In this case, the action associated with
the edge is enabled from the head, the transition function
is updated, and the DFS resumes with the next edge (lines 5
and 6). Otherwise, the DFS proceeds with the current tail by
redefiningheadas tail (lines 8–10).

The procedureBacktrack(see Fig. 8) is invoked when all
edges of the head have been examined or one of them, having
an uncontrollable action, leads to a dead end or a bad cycle

BARBEAU et al.: SYNTHESIS OF CONTROLLERS 1553

regardless of its tail. If the head represents a deadlock (because
head) or cannot prevent an illegal situation (because

head unc), then the DFS resumes with the next tail of
the current edge if it exists (lines 3–5). If the list of tails has
been exhausted, then the algorithm backtracks to the ancestor
unless the stack is empty, which means that there are no
solutions (lines 6–11). Otherwise, the head is a good vertex
and the algorithm backtracks to the ancestor unless the stack
is empty (lines 13–18). If the stack is empty, then the main
loop terminates because there is a solution (line 19).

B. Proof of Correctness

Theorem 3: Let , its associated
pair of languages , control requirements represented by
an MTL formula and a controller calculated by
the procedureSynthetize. The corresponding controlled DES

is such that, if an -word and is
the trajectory of on , then .

Proof: If , then and .
By construction, . Therefore, it
remains to be proved that if and is the
trajectory of on , then . If , then

. In other words, the trajectory of on is
Since is finite, the

trajectory must be of the form .
Note that the procedureSynthetizeensures that 1) for all ,

and 2) there exists such that
. The trajectory of on is . From

Theorem 2, .

C. Maximality of Solutions

In general, there may be many trajectoriesof such
that that are disabled by the controllercalculated by
the procedureSynthetize. The procedure keeps only enough
of them to obtain a controller. There are three explanations
for this. First, the procedure eliminates bad cycles without
unwinding them. This is related to the-closed property.
Second, a trajectory of such that and a trajectory

of such that intersect and the trajectory
can only be prevented before the intersection point. This is
normal and is related to the controllability property. Third,
the formula explicitly or implicitly includes some forms of
nondeterminism. This results in several tails for a given edge.
They may be all good, but the procedureSynthetizeretains
just one of them. It is interesting to look closer at what are
the causes of nondeterminism. In fact there are two.

First, there may be Boolean connectivesin the disjunctive
normal form of (e.g.,). Since the procedure
Synthetizeestablishes satisfiability by proving only one of the
disjuncts, trajectories satisfying the other disjuncts may be
overlooked.

The second source of nondeterminism results from the
decomposition of formulas having theuntil connective because
they generate disjunctions [see (E7) and (E8)]. However, in
this particular case, it seems that if one of the disjuncts is
satisfiable, it does not disable trajectories enabled by the other
disjunct, and vice versa.

One may therefore conjecture that, if the supremal-
controllable sublanguage of the language defined byis

-closed and nondeterminism is caused solely by the de-
composition of formulas and not because there are Boolean
connectives in , the procedureSynthetizecomputes a
maximal solution (because of Theorem 2).

In fact, even when disjunctions are involved in, a maximal
solution is computed for some formulas. This depends on
the interconnection of temporal connectives. In particular, a
maximal solution is computed for any conjunction of formulas
in the following form: literals, , and ,
where and do not involve temporal connectives.

D. Computational Complexity

A vertex of the directed graph consists of a state, a
formula, and a set of eventualities. Hence, the maximum
number of vertices in is given by , where is
the number of states in (i.e.,), is the number
of different possible subformulas of, and is the number
of different possible sets of unbounded-time eventualities
obtained from subformulas of having the form . By
abstracting over the action durations, the number of different
subformulas that can be produced for a formulausing
equivalences (E4)–(E8) is , where is
the set of subformulas of . It can be easily checked that

, where is the number of Boolean and
temporal connectives in. Since , the state space
is .

In order to take action durations into account, letbe the
maximum of the different constants that occur in a time con-
straint associated with temporal connectives,the minimum
of the different action durations, and the maximum of 1 and

. It can be shown that there can be at mostdifferent
time arguments. Hence, the state space is
since . The worst case computational
complexity is doubly exponential in the size of the formula
(but exponential in the size of) since the algorithm searches
for simple cycles in a state space that grows exponentially
with the size of the formula (but linearly with the size of).

This complexity analysis concerns, however, the worst case.
In fact, it has been proven that the time complexity for
verifying many interesting temporal formulas over concur-
rent systems is polynomial and sometimes linear [20]. This
suggests that the average complexity of our algorithm is
much better than the worst case. Actually, many formula
combinations are mutually inconsistent, so that they are never
generated, or are inconsistent with some states so that their
decomposition yieldsfalse, which causes a pruning of the
state space.

E. Comparison with Other Related Algorithms

Several algorithms for synthesizing controllers have been
proposed in the literature to achieve or approximate the
supremal -controllable sublanguage of ().
Three of them are briefly introduced hereinafter and compared
with our synthesis algorithm.

1554 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998

The algorithm proposed by Thistle and Wonham synthesizes
the maximally permissive controller when is -
closed. Synthesis of controllers is performed for the case where

, , and are represented by a deterministic-automaton,
a deterministic B̈uchi automaton, and a deterministic Rabin
automaton, respectively [43]. Their algorithm includes three
steps: 1) computation of controllability prefixes of ; 2)
computation of ; and 3) computation of the su-
pervisor . Let us focus on the first step, which is the most
significant in terms of computational complexity. If we assume
that (as is the case in this paper), the first
step reduces to the computation of the controllability subset
of a deterministic Rabin automaton, which is the set of states
from which the automaton can be controlled to the satisfaction
of its own acceptance condition. In this particular case, the
computational complexity of the first step is ,
where is the number of control patterns (the subsets of
to which one can restrict, at any point in the operation of
the automaton, the set of actions that it may execute),is the
size of alphabet , is the number of state subset pairs in the
Rabin acceptance condition, andis the number of states [42].

In comparing with our approach, let us assume that
is represented by an MTL formula instead of a Rabin
automaton. When the time domain is dense, the problem has
no solution in Thistle and Wonham’s framework, since there
is no decision procedure for MTL with dense-time domains
(i.e., one cannot obtain a Rabin automaton from an MTL
formula). In contrast, when the time domain is discrete, one
can construct a nondeterministic Büchi automaton for , whose
number of states is exponential in the size of[46]. By using
a determinization procedure defined in [39], one can obtain a
deterministic Rabin automaton for, which has an exponential
number of states, but a linear number of state subset pairs in the
size of the nondeterministic B̈uchi automaton. Based on Thistle
and Wonham’s approach, the computational complexity is
therefore triply exponential in the size of.

The advantage of our approach is that it circumvents the
problem with dense-time domains by using amodel-checking
approach as opposed to theRabin automaton synthesis ap-
proach. We check the formula directly on all paths that can
be generated by the TTG. Since a TTG contains finitely many
states and finitely many transition durations, it turns out that
there are finitely many states that can be distinguished by an
MTL formula, even with dense-time domains. That follows
from the above complexity analysis (see Section VII-D). From
another perspective, the problem of deciding whether a TTG
satisfies a given MTL formula is decidable, while that of
deciding if an MTL formula has a model is undecidable for
dense-time domains. Another advantage is that it uses forward-
chaining state exploration. On average, this yields better
computational complexity because it implements a control-
directed backtracking technique that can be combined with
the use of heuristics to better control the state explosion
problem. Finally, one may use it by sacrificing maximally
permissiveness, when is not -closed.

Kumar and Garg [24] proposed an algorithm for computing
when and is a regular language

recognized by a deterministic automaton. The result is a

Fig. 9. System architecture.

deterministic automaton from which it is possible to extract
controllers that approximate if this language is
not -closed with respect to ; no specific algorithm for
this extraction is given. In particular, the bad cycles are
not detected. Their algorithm for computing is
polynomial in the cardinalities of state spaces of deterministic
automata modeling the unrestrained and legal behaviors of
the process, but it is limited since they implicitly assume
that is recognized by a deterministic Büchi automaton,
yet deterministic B̈uchi automata are strictly weaker than
nondeterministic B̈uchi automata, as explained in [44].

Antoniotti [5] also proposed a controller synthesis approach
based on a model-checking paradigm withcomputational tree
logic (CTL) formulas [18]. This model-checking paradigm is,
however, significantly different from ours. The idea is still
to label states with formulas that they satisfy based on the
input formula and CTL semantics. What differs truly from
our approach is that the model-checking procedure traverses
the state transition structure over which the CTL formula is
verified backward, considering innermost subformulas, then
iteratively, outermost ones. This requires the whole state tran-
sition structure to reside in memory. In contrast, our approach,
which goes forward, does not require explicit storage of the
entire transition structure. This means that one can exploit
standard heuristics to cope with the state explosion problem.
Antoniotti also implemented a restricted version of CTL in
order to obtain an efficient version of his method. In our
case, there is no need to restrict the specification language
to enhance efficiency. The actual efficiency depends on the
complexity of formulas (e.g., nesting of temporal connectives).
In fact, it can be verified that, for simple formulas, our
algorithm is polynomial in the size of the formula.

VIII. A PPLICATION: ANTENNA ROTOR CONTROL SYSTEM

The application presented in this section is a simplified
version of anantenna rotor control system(ARCS) used in
a laboratory for experimenting with satellite telecommuni-
cations [31]. It is responsible for tracking antennas on a
moving telecommunications satellite. As illustrated in Fig. 9,
it includes two main components:

1) anazimuth-elevation rotor controller(AERC), which is
a piece of equipment that monitors two rotors that move
the antennas;

BARBEAU et al.: SYNTHESIS OF CONTROLLERS 1555

Fig. 10. Antennas for a satellite tracking system.

2) an antenna direction controller(ADC), which deter-
mines when to start/stop moving the antennas and the
direction of their movement.

In this system, the antennas point in a direction defined
by an azimuth and an elevation, both in degrees. There
are separate sensing and control processes for azimuth and
elevation. Therefore, the ADC comprises three modules: an
azimuth controller(AC), anelevation controller(EC), and an
interface that maps the physical part of the system onto its
logical part.

As explained in [10], in most cases, a system is not readily
available as a logical model. It needs to be brought from the
physical level to a logical level that is suitable for behavioral
language specification. With this application, we deal with
voltages and polarities at the physical level and with events or
actions at the logical level. On the one hand, the interface
extracts information about the position of the antennas by
using AERC sensing operations, converts this information into
events with respect to an azimuth target and an elevation target,
and sends events to the AC or EC. On the other hand, the
interface receives actions from the AC or EC, interprets them,
and performs the corresponding control operations on the
AERC. This architecture allows responsibilities to be separated
between several specialized controllers and specific methods

Fig. 11. The TTG: L: Low; H: High; G: Good; U: Unknown; I: Idle; MU:
Moving_Up; MD: Moving_Down.

to be used depending on the nature of the control. The AERC
perceives the rotors as a physical continuous system, while
the EC and AC view the antennas as a logical discrete-event
system. Finally, it should be noted that the ADC is also
responsible for synchronizing the controller operations with
the operations of a larger satellite tracking system (the antennas
are pictured in Fig. 10).

In the sequel, we detail only elevation behavior and control;
azimuth behavior and control are analogous. The interface
maintains two control variables:currentandtarget. The former
represents the current position of antennas, whereas the latter
represents their target position. The antennas are considered
on target when the distance betweencurrent and target is less
than or equal to a constant. The domain ofcurrent and
target is continuous, from 0 to 180. The EC reasons about an
abstract model of the continuous behavior in which only the
relations between the variablescurrentandtargetare relevant.
PropositionsLow, High, andGoodrefer to the current position
of the antennas with respect to the target and they hold when
the conditions (target current), (current target),
and target current are, respectively, true. Initially,
the relation betweentarget and current is unknown, which
is conveyed by the propositionUnknown. The propositions
Idle, Moving Up, andMoving Down refer to the state of the
antennas with respect to their movement. Therefore, the set of
propositional symbols containsLow, High, Good, Unknown,
Idle, Moving Up, andMoving Down. The TTG that represents
the logical system is given in Fig. 11. Every action has a
duration of one time unit and the actionsSetLow, SetHigh,
SetGood, Delpos, and Wait are uncontrollable. In order to
illustrate the application of the method described in Section IV
with short examples, we have omitted some details in this
model.

Consider the following formula that specifies the property
that when a target is entered in the system (i.e., the relation
between the target and current antenna positions is unknown),
the antenna must eventually reach the good position

Unknown Good

1556 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998

Instead of constructing the graph step-by-step, let us
consider all formulas and sets of unbounded-time eventualities
that can be generated from. Let us suppose that there
exists a vertex such that . According to (A1) and
equivalences (E6) and (E8)10 the decomposition of is

Unknown Good Good

This formula is equivalent to the following formula in dis-
junctive normal form:

Unknown Good Good

The first disjunct is relevant only if ;
otherwise successors ofare labeled withfalse. Similarly, the
second disjunct is relevant only ifGood . In both
cases, successors ofare labeled with the future part of the
disjunct, that is, . Since the present part of the last disjunct
is true, successors of are labeled with Good
if this disjunct is selected.

Formula is new. By using similar arguments, its decom-
position is

Unknown Good

Unknown Good

Good Good

Good Good

Good Good

Good Good

After trivial simplifications and the elimination of the first
disjunct, which is inapplicable [there exists no vertexsuch
that Good Unknown], we obtain the following
disjuncts:

Unknown Good

Good

Good Good

Good

This completes the calculation of the closure of the progression
of . Therefore, successors ofare labeled with the future part
of the selected disjunct, that is, eitheror .

In this example, there is only one set of unbounded-time
eventualities, that is, Good . In fact, there is no conjunct
in of the form or , but includes the
conjunct Good. So, according to (A2), a successor
of a vertex is labeled with Good whenever ,

, and Good (i.e., Good is not locally
entailed by the edge from to). Furthermore, a successor

of a vertex is labeled with the empty set of eventualities
whenever Good andGood (i.e., Good is
locally entailed by the edge from to). In the other cases,

.

10Equivalence (E8) is reduced to the following equivalence for theeventu-
ally connective:

}�tf ,

d}�t�df; if d � t

d}�0f; if d > t andt 6= 0
f _
d}�0f); if t = 0.

Fig. 12. A part of the graph.

According to the observations above, the graphcan be
easily expanded (see Fig. 12 for a part of it). Sinceincludes
only a liveness property, the synthesis algorithm searches only
for bad cycles (e.g., 6-8-6) and tries to exclude them from
system behavior by prohibiting controllable actions (e.g.,Stop
from state 8). In addition, it removes paths that do not close
cycles because they cause a deadlock (e.g.,Start Down from
state 6). The final solution is a controller with 18 states after
minimalization (e.g., states 9 and 11 are equivalent apart from
formulas and sets of unbounded-time eventualities).

This first example shows that the solution is not optimal
in the sense of maximal permissiveness (the legal language is
not -closed). In addition, the solution is not efficient. Let us
illustrate this point with the sequence of actions

SetLow StartDown Stop StartUp Raiseto Good

This sequence is legal, but it is less efficient than the sequence

SetLow StartUp Raiseto Good

The solution can be refined by the introduction of more
constraints. Let us consider the case where the formal specifi-
cation of control requirements is the conjunction ofand the
following seven formulas:

Unknown

Moving Up Moving Down

Idle Good Idle

Idle High Moving Down

Idle Low Moving Up

Moving Down High Moving Down

Moving Up Low Moving Up

Moving Down Moving Up Good

Idle Good

BARBEAU et al.: SYNTHESIS OF CONTROLLERS 1557

Fig. 13. Progression ofg.

Formulas to represent safety properties. Formula
states that whenever the relation between the target position
and the current position is unknown, the antennas must not
be moved. Formula specifies that whenever the antennas
are idle and their position is good, the antennas must remain
idle. Formula (respectively,) specifies that if the antennas
are idle and too high (low), then they must be moved in the
down (up) direction. Formula (respectively,) specifies
that if the antennas are moving in the down (up) direction and
are too high (low), then they must keep moving in the down
(up) direction. Finally, formula states that whenever the
antennas are moving and they are at the good position, they
must be stopped.

Fig. 13 shows the progression of from
the initial vertex. Since the decomposition of is

Unknown

Moving Down Moving Up

then the progression of from vertex 0 is

Moving Down Moving Up

Similarly, since the decomposition of is

Idle Low Moving Up

then the progression of from vertex 1 is

Good Moving Up

The progression of from vertex 2 givesfalse whatever
the successors are, since the present part ofcontains
Moving Up, yet Moving Up . The controller must
disable actionStart Downat vertex number 1 since this vertex
causes a deadlock.

Using similar developments for the other formulas, the result
is a controller shown in Fig. 14 (the sets of disabled actions
are indicated to the right of states).

It should be noted that this controller is much more efficient
in terms of number of actions performed to achieve the goal.

IX. CONCLUSION

In this paper, we have considered a synthesis method based
mainly on a temporal logic framework. This work draws from
a number of different but related sources on control theory,

Fig. 14. A controller.

concurrency theory, and artificial intelligence planning. In
these fields, the termscontroller, reactive module,and plan
are analogous.

In the artificial intelligence community, the idea of pro-
gressing temporal formulas through a trajectory was originally
introduced by Bacchus and Kabanza [8]. They first applied
this idea to progress search control formulas. Recently, they
extended their approach to the problem of synthesizing clas-
sical plans when the goals include only safety constraints [9].
The problem of synthesizing reactive plans for safety and
liveness constraints has also been addressed by generalizing
this technique [22]. The idea of using a similar technique
in the context of supervisory control theory has also been
investigated earlier by the authors [12]. The present control-
theoretic synthesis approach produces controllers that differ
from plans; maximal sublanguages, controllable events, and
the controllability property are considered. In our planning ap-
proach, maximal permissiveness is not a criterion of optimal-
ity; uncontrollable events are represented by nondeterminism;
and control problems such as controllability, observability, and
stability do not arise naturally and, hence, cannot be easily
investigated as in the framework ofsupervisory control theory.

Our approach is reminiscent of the decision procedure for
linear temporal logic using thetableau method[46]. This de-
cision procedure proceeds by constructing a B¨uchi automaton
accepting trajectories satisfying a temporal formula. It involves
three steps: 1) construction of alocal automatonaccepting
trajectories that satisfy safety properties; 2) construction of an
eventuality automatonaccepting trajectories satisfying liveness
properties; and 3) combination of the two automata. Origi-
nally developed solely for formulas without time constraints,
the technique was later generalized to formulas with time
constraints [4]. In technical terms, our method is related to
this decision procedure as follows. On the one hand, the
progression of formulas, which is based on the property that
a temporal formula is decomposable into a present part and a
future part, is like the construction of a local automaton. On
the other hand, the progression of eventualities, which keeps
track of unbounded-time eventualities that must be satisfied,
is similar to the construction of an eventuality automaton.
Our progression techniques are, however, done with respect
to transitions of the process. Intuitively, this amounts to a

1558 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 11, NOVEMBER 1998

composition on the fly of the local automaton, eventuality
automaton, and transition structure of the process.

Another difference between our approach and the construc-
tion of Büchi automata from temporal logic specifications is
that such automata do not embody the notion of uncontrollable
events. Hence, they are not appropriate to the synthesis of
controllers for reactive systems. To take into account uncon-
trollable events, one needs a generalization of Büchi automata
to Büchi tree automata. From a tree automaton point of view,
our approach is related to approaches for synthesizing reactive
modules that satisfy given temporal properties [1], [34]. A
reactive module is essentially the same as a controller, except
that it is computed by constructively proving that there exists a
tree automaton accepting infinite trees that satisfy the desired
temporal property. Reactive modules are then simply obtained
as representations of satisfactory infinite trees. In fact, a graph
generated byExpandcan also be viewed as an acceptor of
infinite trees corresponding to controllers. Rather than trying
to obtain a controller from a trace of a proof that shows the
validity of a specification, our algorithm searches for a useful
controller in the graph. In this way, the state explosion problem
can be more easily circumvented by using heuristic techniques.

The work reported in this paper could be extended in several
ways to adapt or combine existing synthesis algorithms based
on a forward-chaining search (contrary to a fixpoint calcula-
tion). For example, adjustments to variable lookahead policy
with state information (VLP-S) [13] and variable lookahead
policies under partial observation (VLP-PO) [14] algorithms
could be realized to express the specification as a temporal
formula instead of a state machine as is now the case in
supervisory control of DES using limited lookahead [17].
Our algorithm could also be improved to better handle the
state explosion problem for instances of control problems
consisting of large processes with many similar components.
An algorithm that avoids an exhaustive search of the state
space by using a symmetry specification already exists [28]. In
this approach, processes are described by using colored Petri
nets with symmetry specifications; control requirements are
expressed as sets of forbidden markings. These two algorithms
could be combined to strengthen the development process of
controllers based on a synthesis approach. The former could
benefit from the symmetry specification, while the latter could
benefit from the expressiveness of temporal logic.

As a matter of fact, the application presented in Section VIII
is a typical example of a hybrid system in which the controller
is a discrete-event system and the process is a continuous
system [6]. The discrete-event system model, represented by
the TTG in Fig. 11, is an abstraction of the continuous system.
In this model, a state of the graph corresponds to more than one
state of the continuous system. The control problem addressed
in this paper has been solved in the context ofsupervisory
control theory for which the theoretical results cannot be
applied directly to hybrid systems. Generally, hybrid systems
are described by transition structure diagrams in which states
represent continuous activities and transitions discrete state
changes. They include variables and their behavior is governed
in each state by a set of differential equations. Our synthesis
approach could be extended to hybrid system specifications

by adapting model-checking techniques that are more suitable
for such systems [3]. These issues remain to be addressed in
future work.

ACKNOWLEDGMENT

The authors would like to thank J. G. Thistle for his
discussion on -controllability.

REFERENCES

[1] M. Abadi, L. Lamport, and P. Wolper, “Realizable and unrealizable
specifications of reactive systems,” inProc. 16th Int. Colloquium on
Automata, Languages, and Programming,Stresa, Italy, G. Ausiello,
M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, Eds. Berlin,
Germany: Springer-Verlag, 1989, Lecture Notes in Computer Science,
vol. 372, pp. 1–17.

[2] B. Alpern and F. B. Schneider, “Defining liveness,”Information Pro-
cessing Lett.,vol. 21, no. 4, pp. 181–185, 1985.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,”Theoretical Computer Sci.,vol. 138, no. 1,
pp. 3–34, 1995.

[4] R. Alur and T. Henzinger, “Real-time logics: Complexity and expres-
siveness,”Inform. and Computation,vol. 104, no. 1, pp. 35–77, 1993.

[5] M. Antoniotti, “Synthesis and verification of discrete controllers for
robotics and manufacturing devices with temporal logic and the control-
D system,” Ph.D. dissertation, Dept. Computer Science, New York
Univ., 1995.

[6] P. J. Antsaklis, J. A. Stiver, and M. Lemmon, “Hybrid system modeling
and autonomous control systems,” inHybrid Systems,Lecture Notes
in Computer Science, vol. 736, R. L. Grossman, A. Nerode, A. P.
Ravn, and H. Rischel, Eds. Berlin, Germany: Springer-Verlag, 1993,
pp. 366–392.

[7] E. Asarin, O. Maler, and A. Pnueli, “Symbolic controller synthesis for
discrete and timed systems,” inHybrid Systems II,Lecture Notes in
Computer Science, vol. 999, P. Antsaklis, W. Kohn, A. Nerode, and S.
Sastry, Eds. Berlin, Germany: Springer-Verlag, 1995, pp. 1–20.

[8] F. Bacchus and F. Kabanza, “Using temporal logic to control search
in a forward chaining planner,” inProc. 3rd European Workshop on
Planning,Assisi, Italy, Sept. 1995, pp. 157–169.

[9] F. Bacchus and F. Kabanza, “Planning for temporally extended goals,”
in Proc. 13th Nat. Conf. on Artificial Intelligence,Portland, OR, Aug.
1996, pp. 1215–1222.

[10] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F. Franklin,
“Supervisory control of a rapid thermal multiprocessor,”IEEE Trans.
Automat. Contr.,vol. 38, pp. 1040–1059, July 1993.

[11] M. Barbeau, F. Kabanza, and R. St.-Denis, “A comparison of two syn-
thesis methods for timed discrete-event systems,” inProc. 8th Canadian
Conf. Electrical and Computer Engineering,Montreal, Canada, Sept.
1995, pp. 809–812.

[12] , “Supervisory control synthesis from metric temporal logic
specifications,” inProc. 33th Allerton Conf.,Univ. Illinois, Urbana, Oct.
1995, pp. 96–105.

[13] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Variable lookahead
supervisory control with state information,”IEEE Trans. Automat.
Contr., vol. 39, pp. 2398–2410, Dec. 1994.

[14] , “Centralized and distributed algorithms for on-line synthesis of
maximal control policies under partial observation,”J. Discrete Event
Dynamic Systems: Theory and Appl.,vol. 6, no. 4, pp. 379–427, 1996.

[15] B. A. Brandin and W. M. Wonham, “Supervisory control of timed
discrete-event systems,”IEEE Trans. Automat. Contr.,vol. 39, pp.
329–342, Feb. 1994.

[16] C. G. Cassandras, S. Lafortune, and G. J. Olsder, “Introduction to the
modeling, control and optimization of discrete event systems,” inTrends
in Control—A European Perspective,A. Isidori, Ed. London, U.K.:
Springer-Verlag, 1995, pp. 217–291.

[17] S. L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in
supervisory control of discrete-event systems,”IEEE Trans. Automat.
Contr., vol. 37, pp. 1921–1935, Dec. 1992.

[18] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Trans. Program. Lang. Syst.,vol. 8, no. 2, 1986, pp. 244–263.

[19] E. A. Emerson, “Temporal and modal logic,” inHandbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics,J. van
Leeuwen, Ed. Cambridge, MA: MIT Press, 1990, pp. 995–1072.

BARBEAU et al.: SYNTHESIS OF CONTROLLERS 1559

[20] E. A. Emerson, T. Sadler, and J. Srinivasan, “Efficient temporal rea-
soning,” in Proc. 16th Annual ACM Symp. Principles of Programming
Languages,Austin, TX, Jan. 1989, pp. 166–178.

[21] A. Fusaoka, H. Seki, and K. Takahashi, “A description and reasoning of
plant controllers in temporal logic,” inProc. 8th Int. Joint Conf. Artificial
Intelligence,Karlsruhe, Germany, Aug. 1983, pp. 405–408.

[22] F. Kabanza, M. Barbeau, and R. St.-Denis, “Planning control rules for
reactive agents,”Artificial Intelligence,vol. 95, no. 1, pp. 67–113, 1997.

[23] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Syst.,vol. 2, no. 4, pp. 255–299, 1990.

[24] R. Kumar and V. K. Garg,Modeling and Control of Logical Discrete
Event Systems. Boston, MA: Kluwer, 1995.

[25] L. Lamport, “Proving the correctness of multiprocess programs,”IEEE
Trans. Soft. Eng.,vol. SE-3, no. 2, pp. 125–143, 1977.

[26] F. Lin, “Analysis and synthesis of discrete event systems using temporal
logic,” Control Theory and Advanced Technology,vol. 9, no. 1, pp.
341–350, 1993.

[27] J.-Y. Lin and D. Ionescu, “Optimization of controller design for discrete
event systems in a temporal logic framework,” inProc. American
Control Conf.,Chicago, IL, June 1992, pp. 2819–2823.

[28] M. Makungu, R. St.-Denis, and M. Barbeau, “A colored Petri net-based
approach to the design of controllers,” inProc. 35th IEEE Conf. Decision
and Contr.,Kobe, Japan, Dec. 1996, pp. 4425–4432.

[29] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete con-
trollers for timed systems,” inProc. 12th Annual Symp. on Theoretical
Aspects of Computer Science,Munich, Germany, Mar. 1995, E. W. Mayr
and C. Puech, Eds. Berlin, Germany: Springer-Verlag, 1995, Lecture
Notes in Computer Science, vol. 900, pp. 229–242.

[30] Z. Manna and A. Pnueli,The Temporal Logic of Reactive and Concurrent
Systems—Specification. New York: Springer-Verlag, 1992.

[31] M. Normandeau, S. Bernier, J.-M. Desbiens, and M. Barbeau, “WATOO:
An Internet access software to a satellite tracking station,” inProc.
AMSAT-NA Space Symp. and Annual Meeting,Toronto, Canada, Oct.
1997, pp. 24–28.

[32] J. S. Ostroff, “Formal methods for the specification and design of real-
time safety critical systems,”The J. Syst. Software,vol. 18, no. 1, pp.
33–60, 1992.

[33] J. S. Ostroff and W. M. Wonham, “A framework for real-time discrete
event control,”IEEE Trans. Automat. Contr.,vol. 35, pp. 386–397, Apr.
1990.

[34] A. Pnueli and R. Rosner, “On the synthesis of an asynchronous
reactive module,” inProc. 16th Int. Colloquium on Automata, Lan-
guages and Programming,Stresa, Italy, July 1989, G. Ausiello, M.
Dezani-Ciancaglini, and S. Ronchi Della Rocca, Eds. Berlin, Ger-
many: Springer-Verlag, 1989, Lecture Notes in Computer Science, vol.
372, pp. 652–671.

[35] P. J. G. Ramadge, “Some tractable supervisory control problems for
discrete-event systems modeled by B¨uchi automata,”IEEE Trans. Au-
tomat. Contr.,vol. 34, pp. 10–19, Jan. 1989.

[36] P. J. G. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete-event processes,”SIAM J. Contr. and Optimization,vol. 25,
no. 1, pp. 206–230, 1987.

[37] , “The control of discrete event systems,”Proc. IEEE,vol. 77,
pp. 81–98, 1989.

[38] A. P. Ravn, H. Rischel, and K. M. Hansen, “Specifying and verifying
requirement of real-time systems,”IEEE Trans. Soft. Eng.,vol. 19, no.
1, pp. 41–55, 1993.

[39] S. Safra, “On the complexity of!-automata,” inProc. 29th IEEE Symp.
on Foundations of Computer Science,White Plains, NY, Oct. 1988, pp.
319–327.

[40] J. G. Thistle, “Supervisory control of discrete event systems,”Math.
Comput. Modeling,vol. 23, nos. 11/12, pp. 25–53, 1996.

[41] J. G. Thistle and W. M. Wonham, “Control problems in a temporal logic
framework,” Int. J. Contr.,vol. 44, no. 4, pp. 943–976, 1986.

[42] , “Control of infinite behavior of finite automata,”SIAM J. Contr.
Optim., vol. 32, no. 4, pp. 1075–1097, 1994.

[43] , “Supervision of infinite behavior of discrete-event systems,”
SIAM J. Contr. Optim.,vol. 32, no. 4, pp. 1098–1113, 1994.

[44] W. Thomas, “Automata on infinite objects,” inHandbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics,J. van
Leeuwen, Ed. Cambridge, MA: MIT Press, 1990, pp. 135–191.

[45] P. Wolper, “The tableau method for temporal logic: An overview,”
Logique et Analyse,vol. 28, nos. 110/111, pp. 119–136, 1985.

[46] , “On the relation of programs and computations to models of
temporal logic,” inProc. Colloquium on Temporal Logic in Specification,
Altrincham, U.K., Apr. 1987, B. Banieqbal, H. Barringer, and A.
Pnueli, Eds. Berlin, Germany: Springer-Verlag, 1989, Lecture Notes
in Computer Science, vol. 398, pp. 75–123.

[47] W. M. Wonham and P. J. G. Ramadge, “On the supremal controllable
sublanguage of a given language,”SIAM J. Contr. Optim.,vol. 25, no.
3, pp. 637–659, 1987.

Michel Barbeau (M’97) received the B.S. degree
from the Universit́e de Sherbooke, Canada, in 1985
and the M.S. and Ph.D. degrees from the Universit´e
de Montŕeal, Canada, in 1987 and 1991, respec-
tively, all in computer science.

From 1987 to 1988 he was a Research Assistant at
INRS-Télécommunications, Verdun, Canada. Since
1991 he has been a Professor in the Department of
Mathematics and Computer Science at the Univer-
sité de Sherbrooke. His research interests include
software of telecommunications systems.

Froduald Kabanza (M’96) received the Ph.D. de-
gree in 1992 and the B.Sc. degree in 1988, both
in computer science, from the Université de Lìege,
Belgium.

He is an Associate Professor at the Universit´e
de Sherbrooke, Canada, and the author of several
journal and conference papers on planning and
control in the fields of artificial intelligence and
control theory.

Richard St.-Denis (S’86–M’88) received the B.Sc.
and M.Sc. degrees in computer science from the
Universit́e de Montŕeal in 1975 and 1977, respec-
tively, and the Ph.D. degree in Applied Sciences
from École Polytechnique de Montréal in 1992.

He is currently a Professor in the Department
of Mathematics and Computer Science at the Uni-
versit́e de Sherbrooke, Canada, where his research
interests include control theory, software engineer-
ing, and artificial intelligence. He has published
more then 35 journal and conference papers in these
areas.

