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Abstract. Magnetic resonance elastography (MRE) is an approach to measuring
material properties using external vibration in which the internal displacement mea-
surements are made with magnetic resonance. A variety of simple methods have been
designed to recover mechanical properties by inverting the displacement data. Currently,
the remaining problems with all of these methods are that, in general, the homogeneous
Helmholtz equation is used and therefore it fails at interfaces between tissues of different
properties. The purpose of this work is to propose a new method for reconstructing both
the shape and the shear modulus of a small anomaly with Lamé parameters different
from the background ones using internal displacement measurements.

1. Introduction. Changes in tissue elasticity are generally correlated with patho-
logical phenomena. Many cancers appear as extremely hard nodules.
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Magnetic resonance elastography (MRE) is a recently developed technique that can
directly visualize and quantitatively measure the displacement’s field in tissues subject
to harmonic mechanical excitation at low frequencies (10 to 1000Hz). A phase-contrast
MRI technique is used to spatially map and measure the complete three-dimensional
displacement patterns. From this data, local quantitative values of shear modulus can
be calculated and images that depict tissue elasticity or stiffness can be generated. See
[31, 29, 20].

To recover the shear modulus from these images, some approximations are needed:
the body is supposed to be linearly elastic, isotropic and quasi-incompressible. This last
assumption is true for the biologic tissues. It is the root of both the numerical efficiency
of the existing model and of its flaws in terms of precision and reliability. The method
can be summarized in the following way: if u is the displacement field, (λ, µ) the Lamé
coefficients and ρ the material density, the elasticity system in a homogeneous medium
reads

µ∆u + (λ + µ)∇∇ · u = −ω2ρu.

The solution to this equation can be split into two parts: u = uS+uP ; a null divergence
solution uS (shear waves S) and an irrotational solution uP (compression waves P)
having respective propagation speeds of VS =

√
µ/ρ and VP =

√
(λ + 2µ)/ρ. These

two waves interact via mode conversion at boundaries and interfaces. In soft tissues,
quasi-incompressibility leads to λ � µ and thus the compression waves uP propagate
much faster than the shear waves uS . To remove λ from consideration, approximations
on the relative order of magnitude of the different terms involved in the elasticity system
are performed; they may not be fully justified but result in a great simplification of the
equations. In [29, 20], the elasticity system is reduced to three decoupled Helmholtz
equations:

µ∆ui = −ω2ρui, i = 1, 2, 3, u = (u1, u2, u3).

A very simple local inversion formula is obtained for the shear modulus µ:

µ = −ω2ρui

∆ui
.

This formula is first smoothed by a Fourier transform and then used to reconstruct the
shear modulus in nonhomogeneous media. Thus, measurements in only one sensitization
direction (and an estimate of the Laplacian of that component) suffice to determine µ.
A slightly different method developed in [36] consists of applying the curl-operator to
the measured displacement field u in order to completely remove contributions from the
compressional wave uP .

This general and simple approach described in [29, 20] sounds attractive since it pro-
duces instantaneously an image out of the experimental device, without any need to
solve a difficult, ill-posed, inverse problem. However, although it is showing images, it
is still far from being able to produce a reliable examination tool. Part of the problems
encountered come from technological enhancements still to come, but the most impor-
tant flaws are more fundamental. They are due to the approximations briefly explained
above that are not always valid, and are too strong to allow an accurate reconstruction
of the map of the mechanical coefficients, in particular in the presence of anomalies. The
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A METHOD OF BIOLOGICAL TISSUES ELASTICITY RECONSTRUCTION 141

existing results found in the literature are clearly not satisfactory and are in some cases
far from giving an appropriate clinical answer, useful to physicians. It is not difficult to
be convinced that the approximations performed above cause a dramatic loss in image
resolution and image quality even though the signal-to-noise ratio for MRE measure-
ments is very high. A more sophisticated and deeper mathematical analysis is certainly
necessary to make good use of such high-resolution measurements.

In this paper we tackle the problem of shear modulus reconstruction in the following
directions, without the basic assumptions of the existing models concerning isotropy,
incompressibility and relative magnitude of the various terms.

Firstly, we prove that the elasticity system in biological tissues can be replaced with
a sequence of nonhomogeneous modified Stokes systems.

Secondly, we derive the leading-order term in the displacement field perturbations that
are due to the presence of a small volume elastic anomaly. The method of small volume
expansions has proven very useful in many other contexts. Such asymptotics have been
investigated in the case of the conduction equation [19, 15, 12, 2, 14], the operator of
elasticity [1, 7], the Helmholtz equation or the Maxwell system [39, 9, 4, 8]. See also the
book [3] and its list of references. The remarkable feature of this technique is that it
allows a stable and accurate reconstruction of the location and of the geometric features
of the anomalies, even for moderately noisy data.

Thirdly, we combine the inverse problem techniques for small anomalies and a level set
algorithm to solve the full three-dimensional inverse problem of the MRE. The method
of asymptotic expansions of small volume anomalies plays a central role in improving
shear modulus reconstruction.

The paper is organized as follows. In the next section, we describe the physical model
problem. Section 3 is devoted to a rigorous derivation of an asymptotic formula of the
displacement field in the presence of an elastic anomaly as the parameters λ and λ̃ of the
background and the anomaly respectively go to +∞ with λ̃/λ = O(1). We prove that the
elasticity system can be replaced with a sequence of nonhomogeneous modified Stokes
systems. In Section 4, we describe a layer potential technique for solving the transmission
problem for the modified Stokes system. The method of asymptotic expansions of small
volume anomalies is introduced in Section 5. A rigorous derivation of the leading-order
term in the asymptotic expansion of the displacement field as the volume of the elastic
anomaly goes to zero is provided. A justification of this formula is based on a layer
potential technique. The concept of viscous moment tensor (VMT) is introduced and its
connection with the elastic moment tensor is highlighted. It is important from an imaging
perspective to precisely characterize the VMT and derive bounds on its elements in order
to develop efficient algorithms to reconstruct anomalies of small volume. In Section 6,
based on the asymptotic expansion of the perturbations in the displacement field that
are due to the elastic anomaly, we propose a new reconstruction method of level set
type. It is expected that our algorithm is very effective for reconstructing both the shape
and the shear modulus of the anomaly with a high resolution. Extensions to imaging of
anisotropic anomalies as well as to transient elastography are given in Section 7. The
paper ends with a short discussion.
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It is worth emphasizing that although we deal only with real shear modulus, all results
in this paper work for complex shear modulus with positive imaginary part (the shear
viscosity) accounting for attenuation within the medium.

2. Model problem. We suppose that an elastic medium occupies a bounded domain
Ω in R

3, with a connected C2-boundary ∂Ω. Let the constants (λ, µ) denote the Lamé
coefficients of Ω that are the elastic parameters in the absence of any anomalies, and
let the constant ρ denote the density of the background. Suppose that Ω contains an
elastic anomaly D given by D = εB + z, where B is a bounded C2-domain in R

3. The
domain B is considered to be a reference domain, the small number ε is the diameter of
D, and z represents the location of D. We assume that there exists c0 > 0 such that
infx∈D dist(x, ∂Ω) > c0, which means that D is away from the boundary ∂Ω. Suppose
that D has a pair of Lamé constants (λ̃, µ̃) which is different from that of the background
elastic body, (λ, µ), and let ρ̃ denote its density. It is always assumed that

ρ > 0, µ > 0, 3λ + 2µ > 0, ρ̃ > 0, µ̃ > 0, and 3λ̃ + 2µ̃ > 0. (2.1)

Consider the following transmission problem associated to the system of elastodynam-
ics with the Dirichlet boundary condition:⎧⎪⎪⎨⎪⎪⎩

3∑
j,k,l=1

∂

∂xj

(
Cijkl

∂uk

∂xl

)
+ ω2(ρχ(Ω \ D) + ρ̃χ(D))ui = 0 in Ω, i = 1, 2, 3,

u
∣∣
∂Ω

= g,

(2.2)

where the elasticity tensor C = (Cijkl) is given by

Cijkl :=
(
λ χ(Ω \ D) + λ̃ χ(D)

)
δijδkl

+
(
µ χ(Ω \ D) + µ̃ χ(D)

)
(δikδjl + δilδjk),

(2.3)

ω > 0 is the angular frequency of the mechanical oscillations, and ui for i = 1, 2, 3, denote
the components of the displacement field u. Here and throughout this paper δij denotes
the Kronecker’s delta.

The elastostatic system corresponding to the Lamé constants λ, µ is defined by

Lλ,µu := µ∆u + (λ + µ)∇∇ · u. (2.4)

The corresponding conormal derivative ∂u/∂ν on ∂D is defined to be

∂u
∂ν

:= λ(∇ · u)N + µ(∇u + ∇uT )N on ∂D, (2.5)

where N = (N1, N2, N3) is the outward unit normal to ∂D and the superscript T denotes
the transpose of a matrix. Let Lλ̃,µ̃ and ∂/∂ν̃ be the Lamé system and the conormal
derivative associated with (λ̃, µ̃), respectively. Then (2.2) is equivalent to the following
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problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µu + ω2ρu = 0 in Ω \ D,

Lλ̃,µ̃u + ω2ρ̃u = 0 in D,

u
∣∣
− = u

∣∣
+

on ∂D,

∂u
∂ν̃

∣∣∣∣
−

=
∂u
∂ν

∣∣∣∣
+

on ∂D,

u
∣∣
∂Ω

= g.

(2.6)

Here and throughout this paper the subscripts ± denote the limit from outside and inside
D, respectively.

The inverse problem for MRE is to determine the shape and the elastic parameters of
the anomaly D from internal measurements of the displacement field u. In most cases,
the most significant elastic parameter to detect is the stiffness coefficient µ̃.

The Poisson ratios σ and σ̃ of the background and the anomaly are given in terms of
the Lamé parameters by

σ =
λ/µ

1 + 2λ/µ
and σ̃ =

λ̃/µ̃

1 + 2λ̃/µ̃
. (2.7)

It is known that in soft tissues, σ, σ̃ ≈ 1/2, or equivalently, λ � µ and λ̃ � µ̃ [20, 29].
This makes it difficult to estimate both parameters µ̃ and λ̃ simultaneously.

3. Nearly incompressible materials. In this section we establish an asymptotic
development of the solution to (2.6) as λ and λ̃ go to +∞ with λ̃/λ = O(1). Assume for

the sake of simplicity that
∫

∂Ω

g · N = 0. We show that the displacement field u can be

represented in the form of a power series:

u = u0 + (
1
λ

χ(Ω \ D) +
1
λ̃

χ(D)) u1 + (
1
λ2

χ(Ω \ D) +
1
λ̃2

χ(D)) u2 + . . . ,

where ui for i = 0, 1, . . . , are solutions to modified Stokes systems, the one used for
computing the leading-order term u0 being homogeneous. Following [26], we prove that
this asymptotic series strongly converges in an appropriate Sobolev space.

Set

p :=

{
λ∇ · u in Ω \ D,

λ̃∇ · u in D,
(3.1)
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and rewrite (2.6) in the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆u + (1 +
µ

λ
)∇p + ω2ρu = 0 in Ω \ D,

µ̃∆u + (1 +
µ̃

λ̃
)∇p + ω2ρ̃u = 0 in D,

u
∣∣
− = u

∣∣
+

on ∂D,

(pN + µ̃
∂u
∂N

)
∣∣∣∣
−

= (pN + µ
∂u
∂N

)
∣∣∣∣
+

on ∂D,

u
∣∣
∂Ω

= g,

(3.2)

where, by abuse of notation, we set

∂u
∂N

:= (∇u + ∇uT )N. (3.3)

We look for a solution of (3.2) in the form of power series

⎧⎪⎪⎨⎪⎪⎩
u = u0 + (

1
λ

χ(Ω \ D) +
1
λ̃

χ(D)) u1 + (
1
λ2

χ(Ω \ D) +
1
λ̃2

χ(D)) u2 + . . . ,

p = p0 + (
1
λ

χ(Ω \ D) +
1
λ̃

χ(D)) p1 + (
1
λ2

χ(Ω \ D) +
1
λ̃2

χ(D)) p2 + . . . .

This leads to the recurrence relations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(µ∆ + ω2ρ)u0 + ∇p0 = 0 in Ω \ D,

(µ̃∆ + ω2ρ̃)u0 + ∇p0 = 0 in D,

u0

∣∣
− = u0

∣∣
+

on ∂D,

(p0|+ − p0|−)N + µ
∂u0

∂N

∣∣∣∣
+

− µ̃
∂u0

∂N

∣∣∣∣
−

= 0 on ∂D,

∇ · u0 = 0 in Ω,

u0 = g on ∂Ω,∫
Ω

p0 = 0,

(3.4)
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and, for j ≥ 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(µ∆ + ω2ρ)uj + ∇pj + µ∇pj−1 = 0 in Ω \ D,

(µ̃∆ + ω2ρ̃)uj + ∇pj + µ̃∇pj−1 = 0 in D,

uj

∣∣
− =

(
λ̃

λ

)j

uj

∣∣
+

on ∂D,

(
λ̃

λ

)j (
pj |+N + µ

∂uj

∂N

∣∣∣∣
+

)
−
(

pj |−N + µ̃
∂uj

∂N

∣∣∣∣
−

)
= 0 on ∂D,

∇ · uj = pj−1 in Ω,

uj = 0 on ∂Ω,∫
Ω

pj = 0.

(3.5)

Equations (3.4) are the time-harmonic linearized equations of incompressible fluids or
the modified Stokes system. Equations (3.5) are nonhomogeneous. The assumption∫

∂Ω
g · N = 0 enters in (3.4) as a compatibility condition. The fifth condition in (3.4)

and (3.5) comes from the definition (3.1) of p. Moreover, we should notice that the
leading-order term u0 is independent of λ and λ̃, while higher-order terms do depend on
λ̃/λ. This would suggest that by using a very sensitive measurement instrument it may
be possible to extract this contrast from internal measurements of the displacement field.

In this next section we prove, using layer potential techniques, existence and unique-
ness of a solution to equations (3.4) and (3.5) provided that ω2ρ/µ is not a Dirichlet
eigenvalue of the Stokes system in either D or Ω.

Let H1(Ω) denote the set of functions v ∈ L2(Ω) such that ∇v ∈ L2(Ω) and let

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

We also introduce H−1(Ω) = (H1
0 (Ω))∗ and H−1/2(∂Ω) = (H1/2(∂Ω))∗, where H1/2(∂Ω)

is the standard trace space. Finally, set (T1, T2) to be an orthonormal basis for the tangent
plane to ∂Ω at x, and let ∂/∂T =

∑2
p=1(∂/∂Tp) Tp denote the tangential derivative on

∂Ω. We say that u ∈ H1(∂Ω) if u ∈ L2(∂Ω) and ∂u/∂T ∈ L2(∂Ω).
The following is our main result in this section.

Theorem 3.1. Suppose that ω2 is not an eigenvalue of the transmission problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆v + ω2ρv + ∇q = 0 in Ω \ D,

µ̃∆v + ω2ρ̃v + ∇q = 0 in D,

v
∣∣
− = v

∣∣
+

on ∂D,

(qN + µ̃
∂v
∂N

)
∣∣∣∣
−

= (qN + µ
∂v
∂N

)
∣∣∣∣
+

on ∂D,

∇ · v = 0,

v
∣∣
∂Ω

= 0.

(3.6)
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There exists a positive constant C independent of λ and λ̃ such that the following error
estimate holds for λ and λ̃ large enough and for all integers J :∥∥∥ u −

J∑
j=0

(
1
λj

χ(Ω \ D) +
1
λ̃j

χ(D)) uj

∥∥∥
H1(Ω)

≤ C
( 1

λJ+ 1
2

+
1

λ̃J+ 1
2

)
. (3.7)

Proof. (i) We first prove that if ω2 is not an eigenvalue of (3.6), then for λ and λ̃ large
enough it is not an eigenvalue of the transmission problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µv + ω2ρv = 0 in Ω \ D,

Lλ̃,µ̃v + ω2ρ̃v = 0 in D,

v
∣∣
− = v

∣∣
+

on ∂D,

∂v
∂ν̃

∣∣∣∣
−

=
∂v
∂ν

∣∣∣∣
+

on ∂D,

v
∣∣
∂Ω

= 0.

(3.8)

For doing this, suppose that ω2 is an eigenvalue of (3.8) and let v be the corresponding
eigenvector normalized in L2(Ω). Integrating by parts yields the energy identity∫

Ω

(λχ(Ω \ D) + λ̃χ(D))|∇ · v|2 +
1
2

∫
Ω

(µχ(Ω \ D) + µ̃χ(D))|∇v + (∇v)T |2

= ω2

∫
Ω

(ρχ(Ω \ D) + ρ̃χ(D))|v|2,

where T denotes the transpose of a matrix. Since v is normalized, it follows in particular
that ∫

Ω\D

|∇ · v|2dx ≤ ω2(ρ + ρ̃)
λ

and
∫

D

|∇ · v|2dx ≤ ω2(ρ + ρ̃)
λ̃

.

If we put q := (λχ(Ω \ D) + λ̃χ(D))∇ · v, then the following holds:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆v + ω2ρv + ∇q = O(
1√
λ

) in Ω \ D,

µ̃∆v + ω2ρ̃v + ∇q = O(
1√
λ̃

) in D,

v
∣∣
− = v

∣∣
+

on ∂D,

(qN + µ̃
∂v
∂N

)
∣∣∣∣
−

= (qN + µ
∂v
∂N

)
∣∣∣∣
+

on ∂D,

∇ · v = O(
1√
λ

+
1√
λ̃

),

v
∣∣
∂Ω

= 0,

provided that ω2(ρ + ρ̃) is bounded. Here the remainders O( 1√
λ
) and O( 1√

λ̃
) in the first

two equations are in H−1(Ω), while the one in the equation on the divergence is in L2(Ω).
Since ω2 is not an eigenvalue (3.6), it follows from the standard elliptic regularity theory
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that there exists a constant C that may depend on ω but is independent of λ, λ̃, such
that

‖v‖L2(Ω) ≤ C

(
1√
λ

+
1√
λ̃

)
.

Since ‖v‖L2(Ω) = 1, which is impossible if λ and λ̃ are large enough, we conclude that
ω2 is not an eigenvalue of (3.8).

(ii) Define eJ in Ω by

eJ = u −
J∑

j=0

( 1
λj

χ(Ω \ D) +
1
λ̃j

χ(D)
)

uj .

By using (3.4) and (3.5) it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µeJ + ω2ρeJ =
1
λJ

∇pJ in Ω \ D,

Lλ̃,µ̃eJ + ω2ρ̃eJ =
1
λ̃J

∇pJ in D,

eJ

∣∣
+

= eJ

∣∣
− on ∂D,

∂eJ

∂ν

∣∣∣∣
+

=
∂eJ

∂ν̃

∣∣∣∣
−

+
( 1

λJ
pJ

∣∣
+
− 1

λ̃J
pJ

∣∣
−

)
N on ∂D,

eJ

∣∣
∂Ω

= 0.

We once again obtain the following energy identity by integration by parts:∫
Ω

(λχ(Ω \ D) + λ̃χ(D))|∇ · eJ |2 +
1
2

∫
Ω

(µχ(Ω \ D) + µ̃χ(D))|∇eJ + (∇eJ )T |2

−ω2

∫
Ω

(ρχ(Ω \ D) + ρ̃χ(D))|eJ |2 =
∫

Ω

(
1
λJ

χ(Ω \ D) +
1
λ̃J

χ(D))pJ∇ · eJ .

We define the bilinear form a(·, ·) on H1
0 (Ω) by

a(v,v) =
∫

Ω

(λχ(Ω \ D) + λ̃χ(D))|∇ · v|2 +
1
2

∫
Ω

(µχ(Ω \ D) + µ̃χ(D))|∇v + (∇v)T |2.

Then it follows that

a(eJ , eJ)−ω2

∫
Ω

(ρχ(Ω\D)+ ρ̃χ(D))|eJ |2 ≤ C
( 1

λJ
+

1
λ̃J

)
‖∇·eJ‖L2(Ω)‖pJ‖L2(Ω). (3.9)

Applying Korn’s inequality (see [6, Lemma 9.8]) yields that a(·, ·) is coercive. By the
theory of collectively compact operators (see [10] or [8, Lemma 2.1]), we can see that if
(3.7) holds for ω = 0, then it holds for any ω2 that is not an eigenvalue of (3.6), provided
that λ and λ̃ are sufficiently large.

(iii) We now prove (3.7) when ω = 0. Observe from (3.9) that

a(eJ , eJ) ≤ C
( 1

λJ
+

1
λ̃J

)
‖∇ · eJ‖L2(Ω),

and hence

inf(µ, µ̃)‖eJ‖2
H1(Ω) + inf(λ, λ̃)‖∇ · eJ‖2

L2(Ω) ≤ C

(
1
λJ

+
1
λ̃J

)
‖∇ · eJ‖L2(Ω).
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It then follows that

‖∇ · eJ‖L2(Ω) ≤ C

(
1

λJ+1
+

1
λ̃J+1

)
,

and therefore

inf(µ, µ̃)‖eJ‖2
H1(Ω) ≤ C

(
1

λ2J+1
+

1
λ̃2J+1

)
,

as desired. This completes the proof. �
It is appropriate to point out that the background solution U in the absence of any

elastic anomaly can be approximated to the first-order for large λ by U0 defined as the
solution to ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(µ∆ + ω2ρ)U0 + ∇q0 = 0 in Ω,

∇ · U0 = 0 in Ω,

U0 = g on ∂Ω,∫
Ω

q0 = 0.

(3.10)

If U is a shear wave (i.e. divergence-free) then q0 = 0, as it can be easily checked.

4. Modified Stokes system. We now seek to represent the solution to (3.4) in
terms of layer potentials. For that purpose we first consider the following modified
Stokes system: {

(∆ + κ2)v −∇q = 0,

∇ · v = 0,
(4.1)

where

κ := ω

√
ρ

µ
. (4.2)

If κ = 0, then (4.1) becomes the standard Stokes system and we may view (4.1) as a
compact perturbation of that system.

4.1. Layer potentials. Let ∂j denote ∂/∂xj . Fundamental tensors Γκ = (Γκ
ij)

3
i,j=1 and

F = (Fi)3i=1 to (4.1) in three dimensions are given by⎧⎪⎪⎨⎪⎪⎩
Γκ

ij(x) = −δij

4π

e
√
−1κ|x|

|x| − 1
4πκ2

∂i∂j
e
√
−1κ|x| − 1
|x| ,

Fi(x) = − 1
4π

xi

|x|3 .

(4.3)

In fact, since e
√

−1κ|x|

4π|x| is a fundamental solution to the Helmholtz operator ∆ + κ2 and

∂i∂j
e
√
−1κ|x| − 1
|x| =

∞∑
k=1

(
√
−1κ)k+1

(k + 1)!

[
k(k − 2)|x|k−4xixj + kδij |x|k−2

]
, (4.4)

we have {
(∆ + κ2)Γκ

ij − ∂jFi = δijδ(x),

∂iΓκ
ij = 0,

in R
3, (4.5)
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in the sense of distributions. Note that we used the Einstein convention for the sum-
mation notation omitting the summation sign for the indices appearing twice. We will
continue using this convention throughout this paper. Moreover, we have from (4.4) that

Γκ
ij(x) = Γ0

ij(x) − δijκ
√
−1

6π
+ O(κ2), (4.6)

uniformly in x as long as |x| is bounded, where

Γ0
ij(x) = − 1

8π

(
δij

|x| +
xixj

|x|3

)
. (4.7)

It is known (see [27] for example) that Γ0 = (Γ0
ij)

3
i,j=1 and F are the fundamental tensors

for the standard Stokes system.
Let D be a bounded C2-domain in R

3 and introduce the single and double layer
potentials on ∂D. For i = 1, 2, 3, ϕ = (ϕ1, ϕ2, ϕ3) ∈ L2(∂D)3, and for x ∈ R

3 \ ∂D, let⎧⎪⎪⎨⎪⎪⎩
Sκ

D[ϕ]i(x) :=
∫

∂D

Γκ
ij(x − y)ϕj(y) dσ(y),

QD[ϕ](x) :=
∫

∂D

Fj(x − y)ϕj(y) dσ(y),
(4.8)

and ⎧⎪⎪⎨⎪⎪⎩
Dκ

D[ϕ]i(x) :=
∫

∂D

(
∂Γκ

ij

∂N(y)
(x − y) + Fi(x − y)Nj(y)

)
ϕj(y) dσ(y),

VD[ϕ](x) := −2
∫

∂D

∂

∂xl
Fj(x − y)ϕj(y)Nl(y) dσ(y).

(4.9)

Here Sκ
D[ϕ]i and Dκ

D[ϕ]i denote the i-th component of the vector-valued functions Sκ
D[ϕ]

and Dκ
D[ϕ]. Note that

∂Γκ
ij

∂N(y)
(x − y) =

(
∂Γκ

ij(x − y)
∂yl

+
∂Γκ

il(x − y)
∂yj

)
Nl(y).

Then (Sκ
D[ϕ],QD[ϕ]) and (Dκ

D[ϕ],VD[ϕ]) satisfy (4.1).
For convenience we introduce another notation for the conormal derivative:

∂v
∂n

∣∣∣∣
±

:=
∂v
∂N

∣∣∣∣
±
− q

∣∣
± N on ∂D (4.10)

for a pair (v, q). Then, for any pairs (u, p) and (v, q) satisfying ∇ · u = 0 and ∇ · v = 0,
the following Green’s formulae hold (see [27]):∫

∂D

u · ∂v
∂n

dσ =
∫

D

1
2

3∑
i,j=1

(
∂ui

∂xj
+

∂uj

∂xi

)(
∂vi

∂xj
+

∂vj

∂xi

)
+ u · (
v −∇q) dx. (4.11)

Using (4.5) and (4.11), one can obtain a representation formula for any solution (v, q) to
(4.3): ⎧⎪⎪⎨⎪⎪⎩

v(x) = −Sκ
D

[
∂v
∂n

∣∣
−

]
(x) + Dκ

D[v](x),

q(x) = −QD

[
∂v
∂n

∣∣
−

]
(x) + VD[v](x),

x ∈ D. (4.12)
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For ϕ ∈ L2(∂D)3, the following trace relations for Dκ
D and the conormal derivative of

Sκ
D hold:

Dκ
D[ϕ]

∣∣
± = (∓1

2
I + Kκ

D)[ϕ] a.e. on ∂D, (4.13)

∂

∂n
Sκ

D[ϕ]
∣∣∣∣
±

= (±1
2
I + (Kκ

D)∗)[ϕ] a.e. on ∂D, (4.14)

where Kκ
D is defined by

Kκ
D[ϕ]i(x) := p.v.

∫
∂D

∂Γκ
ij

∂N(y)
(x − y)ϕj(y) dσ(y) + p.v.

∫
∂D

Fi(x − y)ϕj(y)Nj(y) dσ(y),

(4.15)
for almost all x ∈ ∂D, and (Kκ

D)∗ is the adjoint operator of Kκ
D on L2(∂D), that is,

(Kκ
D)∗[ϕ]i(x) := p.v.

∫
∂D

∂Γκ
ij

∂N(x)
(x−y)ϕj(y) dσ(y)−p.v.

∫
∂D

Fi(x−y)ϕj(y)Nj(x) dσ(y).

(4.16)
In fact, the formulas (4.13) and (4.14) were proved in [27] when κ = 0. Since Dκ

D − D0
D

and Sκ
D − S0

D are smoothing operators according to (4.6), we obtain (4.13) and (4.14)
when κ �= 0. It would be of use to readers to note that by putting together the two
integrals in (4.15), we have

K0
D[ϕ]i(x) := − 3

4π

∫
∂D

〈x − y,N(y)〉(xi − yi)(xj − yj)
|x − y|5 ϕj(y)dσ(y). (4.17)

If ∂D is C2 as we assume it to be, then

|〈x − y,N(y)〉| ≤ C|x − y|2, (4.18)

and hence K0
D is a compact operator on L2(∂D)3.

Formulae (4.13) and (4.14) show, in particular, that the double and single layer po-
tentials obey the following jump relations on ∂D:

Dκ
D[ϕ]|+ − Dκ

D[ϕ]|− = −ϕ a.e. on ∂D, (4.19)

∂

∂n
Sκ

D[ϕ]
∣∣∣
+
− ∂

∂n
Sκ

D[ϕ]
∣∣∣
−

= ϕ a.e. on ∂D. (4.20)

On the other hand, the conormal derivative of the double layer potentials does not have
a jump. In fact, if ϕ ∈ H1(∂D)3, then

∂

∂n
(Dκ

D[ϕ])i

∣∣∣∣
+

(x) =
∂

∂n
(Dκ

D[ϕ])i

∣∣∣∣
−

(x)

= p.v.
∫

∂D

∂2Γκ
ij

∂N(x)∂N(y)
(x − y)ϕj(y) dσ(y) a.e. on ∂D. (4.21)

Lemma 4.1. Let L2
0(∂D) := {g ∈ L2(∂D)3 |

∫
∂D

g ·N = 0}, and define H1
0 (∂D) likewise.

Let L := ker
(

1
2I + K0

D

)⊥ in L2(∂D)3. Then the following holds.
(i) S0

D : L2
0(∂D) → H1

0 (∂D) is invertible.
(ii) 1

2I + K0
D : L → L2

0(∂D) is invertible and so is 1
2I + (K0

D)∗ : L2
0(∂D) → L.

(iii) λI + K0
D and λI + (K0

D)∗ are invertible on L2(∂D)3 for |λ| > 1
2 .
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Proof. The assertion (ii) was proved in [27]. We also recall from [27] that

kerS0
D = ker

(
1
2
I + (K0

D)∗
)

= 〈N〉, (4.22)

where N is the outward normal to ∂D. It implies that L = L2
0(∂D).

To prove (i), we first note that S0
D : L2

0(∂D) → H1
0 (∂D) is one-to-one because of

(4.22). To prove that it is onto, let g ∈ H1
0 (∂D) and let v be the solution to the exterior

problem for the Stokes system, i.e.,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆v −∇q = 0 in R
3 \ D,

∇ · v = 0 in R
3 \ D,

v = g on ∂D,

v(x) = O(|x|−2) as |x| → ∞.

(4.23)

Let φ ∈ L2(∂D)3 satisfy ( 1
2I + K0

D)[φ] = 0 on ∂D. Then, because of (4.18), we have
K0

Dφ ∈ H1(∂D)3, and hence φ ∈ H1(∂D)3. Moreover, by (4.13), we have D0
D[φ] = 0 in

D, and the corresponding pressure q = c in D for some constant c. It thus follows from
(4.22) and (4.21) that

∂D0
D[φ]

∂n

∣∣∣∣
+

=
∂D0

D[φ]
∂n

∣∣∣∣
−

=
∂D0

D[φ]
∂N

∣∣∣∣
−
− q|−N = −cN. (4.24)

Applying the Green’s formula, we have

∫
∂D

∂v
∂n

· φ = −
∫

∂D

∂v
∂n

·
(
−1

2
I + K0

D

)
φ = −

∫
∂D

v · ∂D0
D[φ]

∂n

∣∣∣∣
+

= 0. (4.25)

Thus
∂v
∂n

∈ L. Let

ψ :=
(

1
2
I + (K0

D)∗
)−1 [

∂v
∂n

]
on ∂D.

Then, by (4.14), we get

∂(S0
D[ψ])
∂n

∣∣∣∣
+

=
∂v
∂n

∣∣∣∣
+

,

and hence S0
D[ψ] = v in R

3 \ D. In particular, S0
D[ψ] = g and hence S0

D : L2
0(∂D) →

H1
0 (∂D) is onto. Thus, we obtain (i).
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To prove (iii), suppose that
(
λI + (K0

D)∗
)
[φ] = 0 on ∂D. By the Green’s formula

(4.11), we have

1
2

∫
D

3∑
i,k=1

(
∂S0

D[φ]i
∂xk

+
∂S0

D[φ]k
∂xi

)2

dx

=
∫

∂D

(
−1

2
I + (K0

D)∗
)

[φ] · S0
D[φ]dσ

=
λ + 1

2

λ − 1
2

∫
∂D

(
1
2
I + (K0

D)∗
)

[φ] · S0
D[φ]dσ

= −1
2

λ + 1
2

λ − 1
2

∫
R3\D

3∑
i,k=1

(
∂S0

D[φ]i
∂xk

+
∂S0

D[φ]k
∂xi

)2

dx.

Since λ+ 1
2

λ− 1
2

> 0, we have

∂S0
D[φ]i
∂xk

+
∂S0

D[φ]k
∂xi

= 0 in R
3 \ ∂D, i, j = 1, 2, 3, (4.26)

which implies that S0
D[φ] = C in R

3 \D for some constant C. On the other hand, S0
D[φ]

vanishes at infinity, and hence it vanishes in R
3. Therefore, we have

φ =
1

λ − 1
2

((
λI + (K0

D)∗
)
φ −

(
1
2
I + (K0

D)∗
)

φ

)
= 0.

Thus
(
λI + (K0

D)∗
)

is injective on L2(∂D)3. Since (K0
D)∗ is compact on L2(∂D)3 by

(4.18), we have (iii) by the Fredholm alternative. This completes the proof. �
4.2. Transmission problems. We now consider the transmission problem (3.4). If we

put κ̃ := ω
√

ρ̃
µ̃ and

q0 :=

⎧⎪⎪⎨⎪⎪⎩
− 1

µ
p0 in Ω \ D,

− 1
µ̃

p0 in D,

(4.27)

then (3.4) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆ + κ2)u0 −∇q0 = 0 in Ω \ D,

(∆ + κ̃2)u0 −∇q0 = 0 in D,

u0

∣∣
+
− u0

∣∣
− = 0 on ∂D,

µ
∂u0

∂n

∣∣∣∣
+

− µ̃
∂u0

∂n

∣∣∣∣
−

= 0 on ∂D,

∇ · u0 = 0 in Ω,

u0 = g on ∂Ω,∫
Ω

q0 = 0,

∫
∂Ω

g · N = 0.

(4.28)
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We look for the solution to (4.28) in the form of

u0 =

{
Sκ̃

D[φ] in D,

Sκ
D[ψ] + Dκ

Ω[θ] in Ω \ D,
(4.29)

for some triplet (φ, ψ, θ) ∈ L2(∂D)3 × L2(∂D)3 × L2(∂Ω)3. In view of the transmission
conditions on ∂D and the boundary condition on ∂Ω in (4.28), (φ, ψ, θ) should satisfy
the following system of integral equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Sκ̃
D[φ] − Sκ

D[ψ] − Dκ
Ω[θ] = 0 on ∂D,

µ̃(−1
2
I + (Kκ̃

D)∗)[φ] − µ(
1
2
I + (Kκ

D)∗)[ψ] − µ
∂

∂n
Dκ

Ω[θ] = 0 on ∂D,

Sκ
D[ψ] + (

1
2
I + Kκ

Ω)[θ] = g on ∂Ω,

or equivalently⎛⎜⎜⎝
Sκ̃

D −Sκ
D −Dκ

Ω

µ̃(−1
2I + (Kκ̃

D)∗) −µ( 1
2I + (Kκ

D)∗) −µ ∂
∂nDκ

Ω

0 Sκ
D

1
2I + Kκ

Ω

⎞⎟⎟⎠
⎛⎝φ

ψ

θ

⎞⎠ =

⎛⎝0
0
g

⎞⎠ . (4.30)

Denote the operator on the left-hand side of (4.30) by Aκ. Then Aκ maps L2(∂D)3 ×
L2(∂D)3 × L2(∂Ω)3 into H1

0 (∂D) × L2(∂D)3 × L2
0(∂Ω).

We now investigate the solvability of the equation (4.30). Because of (4.6), Aκ is a
compact perturbation of A0, which is again a compact perturbation of⎛⎜⎜⎝

S0
D −S0

D 0

µ̃(−1
2I + (K0

D)∗) −µ( 1
2I + (K0

D)∗) 0

0 0 1
2I + K0

Ω

⎞⎟⎟⎠ , (4.31)

noting that the operators Dκ
Ω and ∂

∂nDκ
Ω in the third column of Aκ are compact as

operators from L2(∂D)3 into H1
0 (∂D) and L2(∂D)3 since ∂D and ∂Ω do not intersect.

Define
S := {(φ, ψ) ∈ L2(∂D)3 × L2(∂D)3 : φ − ψ ∈ L2

0(∂D)}.

Denote ker
(

1
2I + Kκ

Ω

)⊥ by Lκ. Then the following holds.

Lemma 4.2. The operator A0 : S × L0 → H1
0 (∂D) × L2(∂D)3 × L2

0(∂Ω) is invertible.
So is Aκ : S ×Lκ into H1

0 (∂D)×L2(∂D)3 ×L2
0(∂Ω), provided that κ2 is not a Dirichlet

eigenvalue of the Stokes system on either D or Ω.

Proof. Using Lemma 4.1, one can easily show that the operator in (4.31) is invertible.
Since A0 is its compact perturbation, it suffices to show that A0 is injective according
to the Fredholm alternative.

Suppose that there exists (φ0, ψ0, θ0) ∈ S × L0 such that

A0

⎡⎣φ0

ψ0

θ0

⎤⎦ = 0.
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Then the function v, defined by

v(x) :=

{
S0

D[φ0](x), x ∈ D,

S0
D[ψ0](x) + D0

Ω[θ0](x), x ∈ Ω \ D,
(4.32)

is a solution to the problem (4.28) with κ = κ̃ = 0 and g = 0. Since the solution to
(4.28) with κ = κ̃ = 0 is unique, we have

S0
D[φ0] = 0 in D, (4.33)

S0
D[ψ0] + D0

Ω[θ0] = 0 in Ω \ D. (4.34)

Then (4.34) shows that S0
D[ψ0] can be extended to Ω as a solution to (4.1). Then by

(4.20) we obtain ψ0 = cN for some constant c, and D0
Ω[θ0] = 0 in Ω. By (4.13) and part

(ii) in Lemma 4.1, we have θ0 = 0. On the other hand,

φ0 =
∂S0

D[φ0]
∂n

∣∣∣∣
+

− ∂S0
D[φ0]
∂n

∣∣∣∣
−

=
∂S0

D[φ0]
∂n

∣∣∣∣
+

− µ

µ̃

∂S0
D[ψ0]
∂n

∣∣∣∣
+

= 0, (4.35)

and hence ψ0 = 0. Hence A0 is invertible.
Since the operator in (4.30) is a compact perturbation of A0, we can show that it is

invertible in exactly the same manner under the assumption that κ2 is not a Dirichlet
eigenvalue of the Stokes system in either D or Ω. This completes the proof. �

Thus we obtain the following theorem.

Theorem 4.3. Let (φ, ψ, θ) ∈ S×Lκ be the unique solution to (4.30). Then the solution
u0 to (4.27) is represented by (4.29).

Consider the following boundary-value problem for the modified Stokes system in the
absence of the elastic anomaly:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∆ + κ2)v + ∇q = 0 in Ω,

∇ · v = 0 in Ω,

v = g on ∂Ω,∫
Ω

q = 0,

(4.36)

under the compatibility condition
∫

∂Ω
g · N = 0. Let

θ0 = (
1
2
I + Kκ

Ω)−1[g] on ∂Ω. (4.37)

Then the solution U0 to (4.36) is given by

U0(x) = Dκ
Ω[θ0](x) = Dκ

Ω(
1
2
I + Kκ

Ω)−1[g](x), x ∈ Ω. (4.38)

By (4.29), we have

Dκ
Ω(

1
2
I + Kκ

Ω)−1
[
g − Sκ

D[ψ]|∂Ω

]
= Dκ

Ω(
1
2
I + Kκ

Ω)−1
[
Dκ

Ω[θ]|−
]

= Dκ
Ω[θ],

and hence we obtain

u0(x) = U0(x) + Sκ
D[ψ](x) − Dκ

Ω(
1
2

+ Kκ
Ω)−1

[
Sκ

D[ψ]|∂Ω

]
(x), x ∈ Ω \ D. (4.39)
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Let Gκ = (Gκ
ij)

3
i,j=1 be the Green’s function to the Dirichlet problem for the operator

in (4.1) in Ω, i.e., for y ∈ Ω,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(∆x + κ2)Gκ
ij(x, y) − ∂Fi(x − y)

∂xj
= δijδy(x) in Ω,

3∑
j=1

∂

∂xj
Gκ

ij(x, y) = 0 in Ω,

Gκ
ij(x, y) = 0 on ∂Ω.

(4.40)

Define for f ∈ L2
0(∂D)

Gκ
D[f ](x) :=

∫
∂D

Gκ(x, y)f(y) dσ, x ∈ Ω. (4.41)

Then the following identity holds:

Gκ
D[f ](x) = Sκ

D[f ](x) − Dκ
Ω(

1
2

+ Kκ
Ω)−1Sκ

D[f ](x), x ∈ Ω. (4.42)

In fact, by the definition of the Green’s function, we have

Gκ(x, y) = Γκ(x, y) − Dκ
Ω(

1
2

+ Kκ
Ω)−1[Γκ( · , y)](x), x ∈ Ω.

From (4.39), we immediately obtain the following theorem.

Theorem 4.4. Let (φ, ψ, θ) ∈ S × Lκ be the unique solution to (4.30). Then

u0(x) = U0(x) + Gκ
D[ψ](x), x ∈ Ω \ D. (4.43)

5. Small volume asymptotic expansions. In this section we rigorously derive the
leading-order term in the asymptotic expansion of u0 as the volume of the anomaly D

goes to zero. Our asymptotic formula yields a very effective algorithm for reconstructing
the shape and the shear modulus of the anomaly from MRE measurements.

5.1. Formal derivation of small volume asymptotic expansions. Recall that D = εB+z

and dist(D, ∂Ω) > c0. We first give a formal derivation of the leading-order term in the
asymptotic expansion of u0 as ε → 0. The purpose of this formal derivation is to see
what kinds of formulas are expected to hold. This formula will be justified rigorously
in a later section. Let (U0, q0) denote the background solution to the modified Stokes
system (3.10), that is, the solution in the absence of the anomaly D.

To reveal the nature of the perturbations in u0, we introduce the local variables
ξ = (y − z)/ε for y ∈ Ω, and set û0(ξ) = u0(z + εξ). We expect that u0(y) will differ
appreciably from U0(y) for y near z, but it will differ little from U0(y) for y far from z.
Therefore, in the spirit of matched asymptotic expansions, we shall represent the field
u0 (and p0) by two different expansions, an inner expansion for y near z, and an outer
expansion for y far from z. The outer expansion must begin with U0 (respectively q0),
so we write:⎧⎨⎩u0(y) = U0(y) + ετ1U1(y) + ετ2U2(y) + . . . ,

p0(y) = q0(y) + ετ1q1(y) + ετ2q2(y) + . . . ,
for |y − z| � O(ε),
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where 0 < τ1 < τ2 < . . ., U1,U2, . . . , and q1, q2, . . . , are to be found. We write the inner
expansion as⎧⎨⎩û0(ξ) = u0(z + εξ) = v̂0(ξ) + εv̂1(ξ) + ε2v̂2(ξ) + . . . ,

p̂0(ξ) = p0(z + εξ) = p̂0(ξ) + εp̂1(ξ) + ε2p̂2(ξ) + . . . ,
for |ξ| = O(1),

where v̂0, v̂1, . . . , are to be found. We assume that the functions v̂j , j = 0, 1, . . . , are
defined not just in the domain obtained by stretching Ω, but everywhere in R

3.
Evidently, the functions v̂i are not defined uniquely, and the question now arises as

to how to choose them. Thus, there is an arbitrariness in the choice of the coefficients of
both the outer and the inner expansions. In order to determine the functions Ui(y), qi(y)
and v̂i(ξ), p̂i(ξ), we have to equate the inner and the outer expansions in some overlap
domain within which the stretched variable ξ is large and y − z is small. In this domain
the matching conditions are:

U0(y) + ετ1U1(y) + ετ2U2(y) + . . . ∼ v̂0(ξ) + εv̂1(ξ) + ε2v̂2(ξ) + . . .

and
q0(y) + ετ1q1(y) + ετ2q2(y) + . . . ∼ p̂0(ξ) + εp̂1(ξ) + ε2p̂2(ξ) + . . . .

If we substitute the inner expansion into the transmission problem (3.4) and formally
equate coefficients of ε−2, ε−1 we get v̂0(ξ) = U0(z), and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆v̂1 + ∇p̂0 = 0 in R
3 \ B,

µ̃∆v̂1 + ∇p̂0 = 0 in B,

v̂1|− − v̂1|+ = 0 on ∂B,

(p̂0N + µ̃
∂v̂1

∂N
)|− − (p̂0N + µ

∂v̂1

∂N
)|+ = 0 on ∂B,

∇ · v̂1 = 0 in R
3,

v̂1(ξ) −∇U0(z)ξ → 0 as |ξ| → +∞,

p̂0(ξ) → 0 as |ξ| → +∞.

(5.1)

Therefore, we arrive at the following (inner) asymptotic formula:

u0(x) ≈ U0(z) + εv̂1

(x − z

ε

)
for x near z. (5.2)

Note that ∇ξ · (∇U0(z)ξ) = ∇ ·U0(z) = 0 in R
3. Therefore, we can prove in exactly the

same manner as in Section 4.2 that v̂1 admits the following representation:

v̂1(ξ) =

{
∇U0(z)ξ + S0

B[ψ̂](ξ) in R
3 \ B,

S0
B [φ̂](ξ) in B,

(5.3)

where (φ̂, ψ̂) is the unique solution to⎧⎨⎩
S0

B [φ̂] − S0
B[ψ̂] = ∇U0(z)ξ on ∂B,

µ̃(−1
2

+ (K0
B)∗)[φ̂] − µ(

1
2

+ (K0
B)∗)[ψ̂] = µ

∂

∂n
(∇U0(z)ξ) on ∂B.

(5.4)
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We now derive the outer expansion. Let κ = ω
√

ρ/µ. One can see from (3.4) and
(3.10) that (u0 − U0, p0 − q0) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆ + κ2)(u0 − U0) +
1
µ
∇(p0 − q0) = 0 in Ω \ D,

(∆ + κ2)(u0 − U0) +
1
µ
∇(p0 − q0) = (κ2 − κ̃2)u0 +

(
1
µ
− 1

µ̃

)
∇p0 in D,

(u0 − U0)
∣∣
+
− (u0 − U0)

∣∣
− = 0 on ∂D,

1
µ

(p0 − q0)
∣∣
+
N +

∂

∂N
(u0 − U0)

∣∣
+

=
1
µ

(p0 − q0)
∣∣
−N +

∂

∂N
(u0 − U0)

∣∣
− +

µ̃ − µ

µ

∂u0

∂N

∣∣∣∣
−

on ∂D,

∇ · (u0 − U0) = 0 in Ω,

u0 − U0 = 0 on ∂Ω.

(5.5)

Integrating the first equation in (5.5) against the Green’s function Gκ(x, y) over y ∈ Ω\D

and using the divergence theorem, we obtain the following representation formula for
x ∈ Ω:

u0(x) = U0(x) + (
µ̃

µ
− 1)

∫
∂D

Gκ(x, y)
∂u0

∂N

∣∣∣∣
−

(y) dσ(y) + (
1
µ
− 1

µ̃
)
∫

D

Gκ(x, y)∇p0(y) dy

+ ω2(
ρ

µ
− ρ̃

µ̃
)
∫

D

Gκ(x, y)u0(y) dy.

Since(
µ̃

µ
− 1

)∫
∂D

∂u0

∂N

∣∣∣∣
−

(y) dσ(y) + (
1
µ
− 1

µ̃
)
∫

D

∇p0(y) dy = −
(

µ̃

µ
− 1

)
κ̃2

∫
D

u0 dy,

as can be seen by integration by parts, we obtain from the inner expansion that for x far
away from z,

u0(x) ≈ U0(x) + ε3
3∑

i,j,�=1

ei∂�G
κ
ij(x, z)

[
(
µ̃

µ
− 1)

∫
∂B

(
∂v̂1

∂N

)
j

∣∣∣∣
−

(ξ)ξ� dσ(ξ)

+ (
1
µ
− 1

µ̃
)
∫

B

∂j p̂0(ξ)ξ� dξ

]
+ ε3|B|ω2 ρ − ρ̃

µ
Gκ(x, z)U0(z),

where
(

∂v̂1
∂N

)
j

is the j-th component of ∂v̂1
∂N , which we may simplify as follows:

(u0 − U0)(x) ≈ ε3
[
(
µ̃

µ
− 1)

3∑
i,j,�=1

ei∂�G
κ
ij(x, z)

∫
B

∂j v̂1�(ξ) + ∂�v̂1j(ξ) dξ

+ |B|ω2 ρ − ρ̃

µ
Gκ(x, z)U0(z)

]
.

(5.6)

Here v̂1j denotes the j-th component of v̂1.
Formulae (5.2) and (5.6) are formally derived asymptotic inner and outer expansions.

In the next section we represent these formulae using the notion of the viscous moment
tensor.
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5.2. Viscous moment tensors. Let us now introduce the notion of a viscous moment
tensor, which appears naturally in the representation of the outer expansion (5.6). For
ξ ∈ R

3, let d(ξ) := 1
3

∑
k ξkek and let v̂pq, p, q = 1, 2, 3, be the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆v̂pq + ∇p̂ = 0 in R
3 \ B,

µ̃∆v̂pq + ∇p̂ = 0 in B,

v̂pq|− − v̂pq|+ = 0 on ∂B,

(p̂N + µ̃
∂v̂pq

∂N
)|− − (p̂N + µ

∂v̂pq

∂N
)|+ = 0 on ∂B,

∇ · v̂pq = 0 in R
3,

v̂pq(ξ) − ξpeq + δpqd(ξ) → 0 as |ξ| → ∞,

p̂(ξ) → 0 as |ξ| → +∞.

(5.7)

We define the viscous moment tensor (VMT) (V pq
ij )i,j,p,q=1,2,3 by

V pq
ij = (µ̃ − µ)

∫
B

∇v̂pq : (∇(ξiej) + ∇(ξiej)T ) dξ. (5.8)

Note that we used the standard notation of the contraction: for matrices a = (aij) and
b = (bij), a : b =

∑
i,j aijbij . It is also worth mentioning that the notion of VMT can be

defined in the same manner for two dimensions.
We will realize the notion of VMT as a limit of the corresponding notion for the

elasticity, the elastic moment tensor (EMT), from which all the important properties of
VMT follow. Before doing that, we rewrite (5.2) and (5.6) using the VMT.

Since U0 is divergence-free, we have

∇U0(z)ξ =
∑
p,q

∂qU0(z)p(ξpeq − δpqd(ξ)),

and hence

v̂1 =
3∑

p,q=1

∂qU0(z)pv̂pq. (5.9)

By (5.2), we have

u0(x) ≈ U0(z) + ε

3∑
p,q=1

∂qU0(z)pv̂pq

(x − z

ε

)
for x near z. (5.10)

By making a further approximation from (5.10), we obtain the following proposition for
the inner expansion, the proof of which will be given in the next section.

Proposition 5.1 (Inner expansion). Let v̂pq be the solution to (5.7). Then, for x away
from ∂Ω,

u0(x) = U0(x) + εv̂1

(x − z

ε

)
−∇U0(z)(x − z) + O(ε2). (5.11)

We also obtain the following proposition for the outer expansion from (5.6) and the
definition (5.8) of the VMT.
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Proposition 5.2 (Outer expansion). Let (V pq
ij ) be the VMT defined by (5.8). The

following expansion holds uniformly for x ∈ ∂Ω:

(u0 − U0)(x)

= ε3
[ 3∑

i,j,p,q,�=1

e�∂jG
κ
�i(x, z)∂qU0(z)pV

pq
ij + |B|ω2 ρ − ρ̃

µ
Gκ(x, z)U0(z)

]
+ O(ε4),

(5.12)

where the differentiation in ∂jG
κ
�i(x, z) is with respect to the z-variable.

The viscous moment tensor can also be defined using the layer potentials. Let(φ̂pq,ψ̂pq)
be the unique solution to⎧⎨⎩

S0
B[φ̂pq] − S0

B [ψ̂pq] = ξpeq − δpqd(ξ),

µ̃(−1
2

+ (K0
B)∗)[φ̂pq] − µ(

1
2

+ (K0
B)∗)[ψ̂pq] = µ

∂

∂n
(ξpeq − δpqd(ξ)),

on ∂B.

(5.13)
The unique solvability of (5.13) can be proved in exactly the same manner as that of
(4.30). Then we have

v̂pq(ξ) =

{
ξpeq − δpqd(ξ) + S0

B[ψ̂pq](ξ) in R
3 \ B,

S0
B [φ̂pq](ξ) in B.

(5.14)

Using integration by parts, (5.13), and (5.14), we have

V pq
ij = (µ̃ − µ)

∫
B

∇v̂pq : (∇(ξiej) + ∇(ξiej)T ) dξ

= (µ̃ − µ)
∫

B

∇v̂pq : (∇(ξiej − δijd(ξ)) + ∇(ξiej − δijd(ξ))T ) dξ

= (µ̃ − µ)
∫

∂B

v̂pq ·
∂

∂N
(ξiej − δijd(ξ))

=
∫

∂B

(
µ̃S0

B [φ̂pq] − µS0
B[ψ̂pq] − µ∇(ξiej − δijd(ξ))

)
· ∂

∂N
(ξiej − δijd(ξ))

=
∫

∂B

(
µ̃(−1

2
+ (K0

B)∗)[φ̂pq] − µ(−1
2

+ (K0
B)∗)[ψ̂pq] − µ

∂

∂n
(ξiej − δijd(ξ))

)
· (ξiej − δijd(ξ))

= µ

∫
∂B

ψ̂pq · (ξiej − δijd(ξ)).

In short, we obtained the following lemma.

Lemma 5.3. Let (φ̂pq, ψ̂pq) be the unique solution to (5.13). Then

V pq
ij = µ

∫
∂B

ψ̂pq · (ξiej − δijd(ξ)), i, j, p, q = 1, 2, 3. (5.15)

The notion of the VMT has its counterparts in the conductivity and the elasticity: the
electrical polarization tensor (PT) and the elastic moment tensor (EMT). The concept
of PT associated with a bounded domain and an isotropic or anisotropic conductivity
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is central in the small volume asymptotic approach. It has been extended to the linear
elasticity defining EMT. We refer to [6] for an extensive study of properties and applica-
tions of PT and EMT in imaging as well as in the effective medium theory. The viscous
moment tensor V is a natural extension of PT and EMT to the Stokes system. As the
Stokes system appears as a limiting case of the Lamé system, there is a strong relation
between VMT and EMT, which we investigate now.

Let us recall the definition of the elastic moment tensor. Introduce wpq for p, q = 1, 2, 3
as the solution to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µwpq = 0 in R
3 \ B,

Lλ̃,µ̃wpq = 0 in B,

wpq

∣∣
− = wpq

∣∣
+

on ∂B,

∂wpq

∂ν̃

∣∣∣∣
−

=
∂wpq

∂ν

∣∣∣∣
+

on ∂B,

wpq − ξpeq → 0 as |ξ| → +∞.

The elastic moment tensor M = (mpq
ij ) associated with the domain B and the pairs of

Lamé parameters (λ, λ̃; µ, µ̃) is given by

mpq
ij =

∫
∂B

[
−∂(ξiej)

∂ν
+

∂(ξiej)
∂ν̃

]
· wpq dσ, i, j, p, q = 1, 2, 3.

Observe that

−∂(ξiej)
∂ν

+
∂(ξiej)

∂ν̃
= (λ̃ − λ)∇ · (ξiej)N + (µ̃ − µ)

∂(ξiej)
∂N

.

In exactly the same manner as in Theorem 3.1, one can prove that

v̂pq = lim
λ,λ̃→+∞

(wpq −
δpq

3

∑
k

wkk).

Since

mpq
ij − δij

3

∑
k

mpq
kk = (µ̃− µ)

∫
B

∇wpq · (∇(ξiej − δijd(ξ)) +∇(ξjei − δijd(ξ))T ) , (5.16)

we have the following theorem.

Theorem 5.4. For i, j, p, q = 1, 2, 3,

V pq
ij = lim

λ,λ̃→∞

⎛⎝mpq
ij − δij

3

3∑
k=1

mpq
kk − δpq

3

3∑
s=1

mss
ij +

δijδpq

9

3∑
k,s=1

mss
kk

⎞⎠ . (5.17)

It is known [7, 3] that EMT has the symmetry properties: mpq
ij = mpq

ji , mpq
ij = mqp

ij ,
and mpq

ij = mij
pq. Thus as an immediate consequence of (5.17), the following corollary

holds.

Corollary 5.5. For i, j, p, q = 1, 2, 3,

V pq
ij = V pq

ji , V pq
ij = V qp

ij , V pq
ij = V ij

pq . (5.18)
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Moreover, the following holds:∑
p

V pp
ij = 0 for all i, j and

∑
i

V pq
ii = 0 for all p, q. (5.19)

The relation (5.17) has an interesting interpretation. The VMT V and the EMT M

are 4-tensors and can be regarded as linear transformations on the space of symmetric
matrices because of their symmetry (5.18). Let P be the orthogonal projection from the
space of symmetric matrices onto the space of symmetric matrices of trace zero. Then
(5.17) is equivalent to

V = lim
λ,λ̃→∞

PMP. (5.20)

Including the two-dimensional case into consideration as well, let I2 be the d × d iden-
tity matrix or 2-tensor and I4 the identity 4-tensor. Here d = 2, 3 denotes the space
dimension. Then the orthogonal projection P is given by P = I4 − 1

dI2 ⊗ I2.
The formula (5.20) enables us to compute the VMT from the known formula of the

EMT. For example, if B is a disk in two dimensions, then it is known [3] that the EMT
is given by

M = |B| (λ + 2µ)(λ̃ + µ̃ − λ − µ)
µ + λ̃ + µ̃

I2 ⊗ I2 + 2|B|
µ(µ̃ − µ)(λ+3µ

λ+µ + 1)

µ + λ+3µ
λ+µ µ̃

P,

where |B| is the area of B. Thus we have from (5.20) that VMT for a disk B is given by

V = 4 |B|µ (µ̃ − µ)
µ̃ + µ

P. (5.21)

Finally, let us recall the so-called Hashin-Shtrikman bounds for the EMT. Suppose for
simplicity that µ̃ > µ. Set τ = λ + 2µ/d, τ̃ = λ̃ + 2µ̃/d (τ and τ̃ are the bulk moduli).
From [28, 13], we have

1
|B|Tr (PMP ) ≤ 2 (µ̃ − µ)

[
d2 + d − 2

2
− 2 (µ̃ − µ)

(
d − 1
2µ̃

+
d − 1

dτ̃ + 2(d − 1)µ̃

)]
,

(5.22)

|B|Tr
(
PM−1P

)
≤ 1

2(µ̃ − µ)

[
d2 + d − 2

2
+ 2 (µ̃ − µ)

(
d − 1
2µ

+
d − 1

dτ + 2(d − 1)µ

)]
,

(5.23)

where Tr(C) :=
∑d

i,j=1 Cij
ij for a 4-tensor C = (Cpq

ij ). Taking the limits of the Hashin-
Shtrikman bounds (5.22) and (5.23) as λ, λ̃ → +∞ shows that (1/2µ) V satisfies the
bounds

Tr
( 1

2µ
V
)
≤ |B|

( µ̃

µ
− 1

)(
(d − 1)

µ

µ̃
+

d(d − 1)
2

)
, (5.24)

Tr
( 1

2µ
V
)−1

≤ 1
|B|( µ̃

µ − 1)

(
(d − 1)

µ̃

µ
+

d(d − 1)
2

)
. (5.25)
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If we put k = µ̃/µ, then in two dimensions (d = 2), (5.24) and (5.25) read

Tr
( 1

2µ
V
)
≤ |B|(k − 1)

(1
k

+ 1
)
, (5.26)

Tr
( 1

2µ
V
)−1

≤ k + 1
|B|(k − 1)

. (5.27)

It is quite interesting to observe that the quantities on the right-hand sides of (5.26)
and (5.27) are exactly the Hashin-Shtrikman bounds for the PT associated with a do-
main B and conductivity contrast k, which were obtained in [14, 28]. There are several
conjectured relations between VMT and PT. We refer the interested reader to [18].

5.3. Justification of the asymptotic expansions. We now prove Propositions 5.1 and
5.2 following the same arguments as those given in [4] for the asymptotic expansion for
the Helmholtz equation. It is worth emphasizing that even though only the first-order
terms are given in (5.11) and (5.12), our method enables us to derive higher-order terms
as well.

Let the function H be defined by H(x) = Dκ
Ω[θ](x), where θ is given by (4.30). Since

D is well separated from the boundary ∂Ω, we have, for any l ∈ N, ||H||Cl(D) ≤ Cl for
some constant Cl independent of ε. Fix an integer l and define

Hl(x) =
l∑

|α|=0

∂αH(z)
α!

(x − z)α,

the first l terms of the Taylor expansion of H. Let the pair (φl, ψl) ∈ L2(∂D)3×L2(∂D)3

(with φl − ψl ∈ L2
0(∂D)) be the solution to the following system of integral equations:⎧⎨⎩

Sκ̃
D[φl] − Sκ

D[ψl] = Hl on ∂D,

µ̃(−1
2
I + (Kκ̃

D)∗)[φl] − µ(
1
2
I + (Kκ

D)∗)[ψl] = µ
∂Hl

∂n
on ∂D.

(5.28)

By the linearity of integral equations, one can see that there exists a positive constant
C independent of ε such that

||φ − φl||L2(∂D) + ||ψ − ψl||L2(∂D) ≤ C

(
ε−1||H− Hl||L2(∂D) + ||∇(H− Hl)||L2(∂D)

)
.

Since
||H− Hl||L2(∂D) ≤ C|∂D| 12 ||H − Hl||L∞(∂D)

≤ C|∂D| 12 εl+1||H||Cl+1(D)

and

||∇(H − Hl)||L2(∂D) ≤ C|∂D| 12 εl||H||Cl+1(D),

we arrive at

||φ − φl||L2(∂D) + ||ψ − ψl||L2(∂D) ≤ C|∂D| 12 εl = C|∂B| 12 εl+1. (5.29)

By Theorem 4.4, we write

u0(x) = U0(x) + Gκ
D[ψl](x) + Gκ

D[ψ − ψl](x), x ∈ Ω \ D,
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and therefore, by estimating for x far away from z,

|Gκ
D[ψ − ψl](x)| ≤ C

(∫
∂D

|Gκ
D(x, y)|2dσ(y)

) 1
2

||ψ − ψl||L2(∂D)

≤ C|∂D| 12 εl+1 = C|∂B| 12 εl+2,

we may conclude that

u0(x) = U0(x) + Gκ
D[ψl](x) + O(εl+2), (5.30)

uniformly in x away from z.
Recall that D = εB + z. Since Γεκ(x) = εΓκ(εx), we have, after an obvious scaling,

Sκ
D[φ](εξ + z) = εSεκ

B [φ̃](ξ), ξ ∈ ∂B, (5.31)

where φ̃(ξ) = φ(εξ + z). Having (5.31) in mind, let the pair (φ̃j , ψ̃j) ∈ L2(∂B)×L2(∂B)
(with φ̃j − ψ̃j ∈ L2

0(∂B)) be the solution to the following system of integral equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Sεκ̃

B [φ̃j ] − Sεκ
B [ψ̃j ] =

∑
|α|=j

1
α!

∂αH(z)ξα on ∂B,

µ̃(−1
2
I + (Kεκ̃

B )∗)[φ̃j ] − µ(
1
2
I + (Kεκ

B )∗)[ψ̃j ] = µ
∂

∂n

∑
|α|=j

1
α!

∂αH(z)ξα on ∂B.

(5.32)
Then, by the change of variables and the linearity of integral equation, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φl(z + εξ) =
l∑

j=0

εj−1φ̃j(ξ),

ψl(z + εξ) =
l∑

j=0

εj−1ψ̃j(ξ),

(5.33)

where (φl, ψl) is the solution of (5.28). Using the Taylor expansion

Gκ(x, z + εξ) =
+∞∑
|β|=0

ε|β|

β!
∂β

z Gκ(x, z)ξβ, ξ ∈ ∂B,

which holds uniformly in x away from z, we obtain from (5.30)

u0(x) = U0(x) +
l∑

|β|=0

l−|β|∑
j=0

ε|β|+j+1

β!
∂β

z Gκ(x, z)
∫

∂B

ξβψ̃j(ξ) dσ(ξ) + O(εl+2), (5.34)

uniformly in x away from z.
Now we calculate the terms in the expansion (5.34) explicitly. First we claim that

∫
∂B

ξβψ̃j(ξ) dσ(ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− µ̃

µ
ε2κ̃2|B|U0(z) + O(ε3), for (|β|, j) = (0, 0),

O(ε2), for (|β|, j) = (0, 1), (1, 0),

κ2|B|U0(z) + O(ε2), for (|β|, j) = (0, 2).

(5.35)
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To prove (5.35), we first note from (5.32) that

ψ̃j =
(

1
2
I + (Kεκ

B )∗
)

[ψ̃j ] −
(
−1

2
I + (Kεκ

B )∗
)

[ψ̃j ]

= − ∂

∂n

∑
|α|=j

1
α!

∂αH(z)ξα +
µ̃

µ

(
−1

2
I + (Kεκ̃

B )∗
)

[φ̃j ] −
(
−1

2
I + (Kεκ

B )∗
)

[ψ̃j ].

Because of (4.14), it follows from Green’s formula (4.11) that∫
∂B

ψ̃j =
µ̃

µ

∫
B

∆Sεκ̃
B [φ̃j ] −

∫
B

∆Sεκ
B [ψ̃j ] −

∑
|α|=j

1
α!

∂αH(z)
∫

∂B

∂ξα

∂n

= − µ̃

µ
ε2κ̃2

∫
B

Sεκ̃
B [φ̃j ] + ε2κ2

∫
B

Sεκ
B [ψ̃j ] −

∑
|α|=j

1
α!

∂αH(z)
∫

∂B

∂ξα

∂n
. (5.36)

According to (4.6) we have⎛⎝ Sεκ̃
B −Sεκ

B

µ̃(−1
2
I + (Kεκ̃

B )∗) −µ( 1
2I + (Kεκ

B )∗)

⎞⎠ = A0 + εB + O(ε2), (5.37)

where

A0 =

(
S0

B −S0
B

µ̃(−1
2 + (K0

B)∗) −µ( 1
2 + (K0

B)∗)

)
and

B =

⎛⎜⎝− κ̃
√
−1

6π

∫
∂B

· dσ −κ
√
−1

6π

∫
∂B

· dσ

0 0

⎞⎟⎠ .

From (5.37) we get

‖φ̃j‖L2(∂B) + ‖ψ̃j‖L2(∂B) ≤ C,

and hence it follows from (5.36) that∫
∂B

ψ̃1 = O(ε2) (5.38)

and ∫
∂B

ψ̃2 = −
∑
|α|=2

1
α!

∂αH(z)
∫

∂B

∂ξα

∂n
+ O(ε2) = κ2|B|H(z) + O(ε2). (5.39)

Equation (5.37) also tells us that(
φ̃0

ψ̃0

)
= (A−1

0 − A−1
0 BA−1

0 )
(
H(z)

0

)
+ O(ε2) =

(
(S0

B)−1[H(z)]
0

)
+ O(ε2). (5.40)

It then immediately follows that ∫
∂B

ξiψ̃
0 = O(ε2). (5.41)
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Using (5.36) we also conclude that∫
∂B

ψ̃0 = − µ̃

µ
ε2κ̃2

∫
B

Sεκ̃
B [φ̃0] + ε2κ2

∫
B

Sεκ
B [ψ̃0]

= − µ̃

µ
ε2κ̃2|B|H(z) + O(ε3). (5.42)

By (4.38) we can write

(H− U0)(x) = Dκ
Ω[θ − θ0](x), x ∈ Ω.

This yields

|∇(H − U0)(z)| + |(H− U0)(z)| ≤ C||θ − θ0||L2(∂Ω),

since z is away from ∂Ω. On the other hand, since u0 = g on ∂Ω, we have, by (4.30) and
(4.38),

θ − θ0 =
(

1
2
I + Kκ

Ω

)−1 [
Sκ

D[ψ]
∣∣
∂Ω

]
.

Because

Sκ
D[ψ]i(x) = ε2Γκ

ij(x − z)
∫

∂B

ψj(z + εy) dσ(y) + O(ε3), x ∈ ∂Ω, (5.43)

we obtain

‖θ − θ0‖L2(∂Ω) ≤ Cε2,

and hence

|∇(H− U0)(z)| + |(H− U0)(z)| = O(ε2). (5.44)

By (5.38), (5.39), (5.41), and (5.42), the claim (5.35) follows.
We are now ready to derive the inner and outer expansions. It follows from (5.34) and

(5.35) that

u0(x) − U0(x)

=
2∑

k=0

εk+1Gκ(x, z)
∫

∂B

ψ̃k(ξ) dσ(ξ) + ε3
3∑

i,j,l=1

el∂jG
κ
li(x, z)

∫
∂B

ξjei · ψ̃1(ξ) dσ(ξ)

= ε3
[
κ2 − µ̃κ̃2

µ

]
|B|Gκ(x, z)U0(z) + ε3

3∑
i,j,l=1

el∂jG
κ
li(x, z)

∫
∂B

ξjei · ψ̃1(ξ) dσ(ξ)

(5.45)

modulo O(ε4). To calculate the last term in the above, let (φ̂, ψ̂) be the pair defined in
(5.4). Then by the linearity of the solution to the integral equation in (5.4), we have

ψ̂ =
3∑

p,q=1

∂qU0(z)qψ̂pq. (5.46)
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Moreover, we have from (5.37)

(
φ̃1

ψ̃1

)
= A−1

0

⎛⎝ ∇H(z)ξ

µ
∂

∂n
(∇H(z)ξ)

⎞⎠+ O(ε)

= A−1
0

⎛⎝ ∇U0(z)ξ

µ
∂

∂n
(∇U0(z)ξ)

⎞⎠+ O(ε) =

(
φ̂

ψ̂

)
+ O(ε). (5.47)

It then follows from (5.46), (5.47), and (5.15) that∫
∂B

ξjei · ψ̃1(ξ) dσ(ξ) (5.48)

=
∫

∂B

ξjei · ψ̂(ξ) dσ(ξ) + O(ε)

=
3∑

p,q=1

∂qU0(z)p

∫
∂B

ξjei · ψ̂pq(ξ) dσ(ξ) + O(ε)

=
3∑

p,q=1

∂qU0(z)pV
pq
ij +

3∑
p,q=1

δij∂qU0(z)p

∫
∂B

d(ξ) · ψ̂pq(ξ) dσ(ξ) + O(ε). (5.49)

Note that
3∑

i,j,l=1

el∂jG
κ
li(x, z)

3∑
p,q=1

δij∂qU0(z)p

∫
∂B

d(ξ) · ψ̂pq(ξ) dσ(ξ) = 0,

since Gκ is divergence-free. Substituting (5.49) into (5.45) yields (5.12), and Proposition
5.2 is then proved.

We now drive the inner expansion (5.11). Having the representation (4.29) of u0 in
mind, we first observe that

Sκ̃
D[φ] = Sκ̃

D[φ1] + O(ε2), (5.50)

which follows from (5.29) with l = 1. Further, by (4.6) and (5.33), we have, after obvious
scaling,

Sκ̃
D[φ1](z + εξ) = εSεκ̃

B [
1
ε
φ̃0 + φ̃1](ξ) = εS0

B [
1
ε
φ̃0 + φ̃1](ξ) + O(ε2).

By (5.40) and (5.47), we obtain

S0
B[φ̃0](ξ) = H(z), S0

B[φ̃1](ξ) = S0
B[φ̂](ξ) + O(ε).

It then follows from (5.3) and (5.44) that for x ∈ D,

u0(x) = Sκ̃
D[φ](x) = U0(z) + εS0

B[φ̂]
(x − z

ε

)
+ O(ε2). (5.51)

Similarly, we have

Sκ
D[ψ1](z + εξ) = εS0

B [ψ̂](ξ) + O(ε2),
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and hence, for x = z + εξ /∈ D,

u0(x) = H(x) + Sκ
D[ψ1](z + εξ) + O(ε2)

= U0(x) + εv̂1

(x − z

ε

)
−∇U0(z)(x − z) + O(ε2), (5.52)

where the last equality holds because of (5.3). Combining (5.51) and (5.52) yields (5.11)
and Proposition 5.1 is then proved.

6. Reconstruction method. Based on the inner asymptotic expansion (5.11) of
δu(:= u−U) of the perturbations in the displacement field that are due to the anomaly,
we propose a new reconstruction method of binary level set type.

The original level set method was proposed by Osher and Sethian [33] for tracing
interfaces between different phases of fluid flow. In [16], Chan and Tai have performed a
study on the conductivity inverse problem using continuous level set functions (distance
functions) in a standard level set formulation. The use of binary represented level set
functions for solving that problem has been proposed in [32].

The first step for our reconstruction procedure is to locate the anomaly. This can be
done using the measurements δu(:= u−U) of the perturbations in the displacement field
far away from the anomaly in much the same spirit as the works in [7, 25] and recent
text [3].

Suppose that z is reconstructed. Since the representation D = z + εB is not unique,
we can fix ε. Following [32], we use a binary level set representation f of the scaled
domain B:

f(x) =
{

1, x ∈ B,

−1, x ∈ R
3 \ B.

(6.1)

Let
2h(x) = µ̃(f(

x − z

ε
) + 1) − µ(f(

x − z

ε
) − 1), (6.2)

and let β be a regularization parameter. Then the second step is to fix a window W (a
sphere containing z) and solve the following constrained minimization problem:

min
µ̃,f

L(f, µ̃) =
1
2

∥∥∥∥ δu(x)− εv̂1

(x − z

ε

)
+∇U0(z)(x− z)

∥∥∥∥2

L2(W )

+β

∫
W

|∇h(x)| dx, (6.3)

subject to (5.1). Here,
∫

W
|∇h| dx is the total variation of the shear modulus, and |∇h|

is understood as a measure:∫
W

|∇h| = sup
{∫

W

h∇ · v dx,v ∈ C1
0(W ) and |v| ≤ 1 in W

}
.

This regularization indirectly controls both the length of the level set curves and the
jumps in the coefficients.

The local character of the method is due to the decay of v̂1((·−z)/ε)−∇U(z)(·−z)/ε

away from z. Replacing W by Ω in the above formulation does not lead to a better
reconstruction of the shape and the shear modulus of the anomaly. This is one of the
main features of our method.

The minimization problem (6.3) corresponds to a minimization with respect to µ̃

followed by a step of minimization with respect to f . The minimization steps are over
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the set of µ̃ and f and can be performed using a gradient-based method with a line
search. Of importance to us are the optimal bounds satisfied by the viscous moment
tensor V . We should check for each step whether the bounds (5.24) and (5.25) on V are
satisfied. In the case when they are not, we have to restate the value of µ̃. Another way
to deal with (5.24) and (5.25) is to introduce them into the minimization problem (6.3)
as a constraint. Set A = Tr(V ) and B = Tr(V −1) and suppose for simplicity that µ̃ > µ.
Then (5.24) and (5.25) can be rewritten (when d = 3) as follows:⎧⎪⎪⎨⎪⎪⎩

A ≤ 2(µ̃ − µ)(3 +
2µ

µ̃
)|D|,

2µ(µ̃ − µ)
3µ + 2µ̃

|D| ≤ B−1.

(6.4)

In what follows we extend the definition of the Lagrangian L(f, µ̃) to include not only
binary functions but also functions of bounded variation and then define an augmented
Lagrangian functional which incorporates the fact that the solution we seek is a binary
function. To find a discrete saddle point for this augmented Lagrangian functional, the
Uzawa algorithm for variational binary level set methods can be used. The convergence
analysis follows [17].

6.1. Variational formulation of (5.1). Here we derive a variational formulation of (5.1)
for the purpose of extending the definition of the Lagrangian L(f, µ̃) to include functions
of bounded variation.

Recall that the solution v̂1 of equation (5.1) defines the first-order correction in the
inner expansion of the displacement field. Set for the sake of simplicity z at the origin.
Let O be a sphere of radius R such that B ⊂⊂ O. Define Hdiv(O) = {w ∈ H1(O) :
∇·w = 0}. Following [21, 22], introduce the transparent operator T on H1/2(∂O) defined
by

T (g) = −
(

pN + µ
∂w
∂N

)
on ∂O,

where w is the solution to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆w + ∇p = 0 in R
3 \ O,

w = g on ∂O,

∇ · w = 0 in R
3 \ O,

w(ξ) → 0 |ξ| → +∞,

p(ξ) → 0 |ξ| → +∞.

According to [22], the operator T is continuous from H1/2(∂O) to H−1/2(∂O). It is
self-adjoint, and

〈Tg,g〉 1
2 ,− 1

2
= ||g||2H1/2(∂O),

where 〈·, ·〉 1
2 ,− 1

2
denotes the duality pair between H1/2(∂O) and H−1/2(∂O).

Writing

(µ̃−µ)
∫

∂B

(∇U(0)+∇U(0)T )N(ξ)·w(ξ) dσ(ξ) = −
∫
O
∇ĥ(ξ)·(∇U(0)+∇U(0)T )w(ξ) dξ,
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it is easy to see that v̂1(ξ)−∇U(0)ξ is the solution to the variational formulation: find
v ∈ Hdiv(O) such that∫

O
ĥ(ξ)(∇v(ξ) + ∇v(ξ)T ) : ∇w(ξ) dξ + 〈Tv,w〉 1

2 ,− 1
2

=
∫
O
∇ĥ(ξ) · (∇U(0) + ∇U(0)T )w(ξ) dξ (6.5)

for all w ∈ Hdiv(O), where ĥ is given by

ĥ(ξ) =
{

µ̃, ξ ∈ B,

µ, ξ ∈ O \ B.

6.2. Lagrangian formulation of the problem. We now derive an augmented Lagrangian
formulation of the problem. We first simplify (6.3). Notice that L actually depends on
h, and according to the chain rule we have

∂L

∂f
=

∂L

∂h

∂h

∂f
,

∂L

∂µ̃
=

∂L

∂h

∂h

∂µ̃
.

Thus we may consider L as a function of h only. Set O = 1
ε W and ṽ(ξ) = v̂1(ξ)−∇U(0)ξ.

By a change of variables, (6.3) becomes:

min
ĥ

L0(ĥ) =
ε

2

∥∥∥∥ δu(εξ) − εṽ(ξ)
∥∥∥∥2

L2(O)

+ β

∫
O
|∇ĥ(ξ)| dξ, (6.6)

subject to (6.5). We should emphasize that this functional depends on ĥ, both through
the regularization term and through the solution ṽ of (6.5) itself.

Next, we relax the definition of the anomaly by reformulating the definition of f .
Notice that (6.5) can be extended to any ĥ of bounded variation, which is exactly the
idea behind a Lagrangian formulation. So we define the anomaly by f ∈ BV (O), the
space of functions of bounded variation on O, and let ĥ be defined through (6.2), namely

2ĥ(ξ) = µ̃(f(ξ) + 1) − µ(f(ξ) − 1). (6.7)

Set K(f) = f2−1. Then f , being a binary function, is equivalent to K(f) = 0. We shall
thus replace (6.3) by the relaxed formulation, referred to as the augmented Lagrangian
formulation:

min
ĥ,λ

L(ĥ, λ) =
ε

2

∥∥∥∥ δu(εξ) − εṽ(ξ)
∥∥∥∥2

L2(O)

+ β

∫
O
|∇ĥ(ξ)| dξ + λ

∫
O

K(f)2(ξ) dξ (6.8)

subject to (6.5), where f = (2ĥ − µ̃ − µ)/(µ̃ − µ), the minimization is over ĥ ∈ BV (O),
and λ ∈ R

+ is the Lagrangian multiplier.
In order to investigate the saddle points of this functional, we shall compute its deriv-

ative with respect to the variable ĥ. For calculating the gradient of this functional, we
use the adjoint state method, which requires us to use the variational form (6.5).
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6.3. Adjoint state method. The functional L0 in (6.6) depends on ṽ which itself de-
pends on ĥ. Let us write ṽ = ṽ(ĥ). We define for ĥ ∈ BV (O), v,w ∈ Hdiv(O):

L1(ĥ,v,w) =
ε

2

∥∥∥∥ δu(εξ) − εv(ξ)
∥∥∥∥2

L2(O)

+ β

∫
O
|∇ĥ(ξ)| dξ

+
∫
O

ĥ(ξ)(∇v(ξ) + ∇v(ξ)T ) : ∇w(ξ) dξ + 〈Tv,w〉 1
2 ,− 1

2

−
∫
O
∇ĥ(ξ) · (∇U(0) + ∇U(0)T )w(ξ) dξ.

Since ṽ satisfies (6.5), it follows that for all w ∈ Hdiv(O),

L0(ĥ) = L1(ĥ, ṽ,w).

Thus for any η ∈ BV (O), the derivative ∂L0

∂ĥ
in the direction η is given by〈

∂L0

∂ĥ
, η

〉
=
〈

∂L1

∂ĥ
(ĥ, ṽ,w), η

〉
+
〈

∂L1

∂v
(ĥ, ṽ,w),

∂ṽ

∂ĥ
[η]
〉

, (6.9)

where

∂ṽ

∂ĥ
[η] = lim

ε→0

ṽ(ĥ + εη) − ṽ(ĥ)
ε

,

which exists in Hdiv(O). This formula gives access to the derivative ∂L0

∂ĥ
, as soon as

w = w̃, given by

∂L1

∂v
(ĥ, ṽ, w̃) = 0. (6.10)

Suppose (6.10) is fulfilled. Differentiating with respect to ĥ, we get〈
∂L0

∂ĥ
, η

〉
= −β

∫
O
∇ · ( ∇ĥ

|∇ĥ|
)(ξ)η(ξ) dξ +

∫
O

η(ξ)(∇ṽ(ξ) + ∇ṽ(ξ)T ) : ∇w̃(ξ) dξ

+
∫
O

η(ξ)∇ · (∇U(0) + ∇U(0)T )w̃(ξ) dξ,

or equivalently,

∂L0

∂ĥ
= −β∇ · ( ∇ĥ

|∇ĥ|
) + (∇ṽ(ξ) + ∇ṽ(ξ)T ) : ∇w̃ + ∇ · (∇U(0) + ∇U(0)T )w̃, (6.11)

ṽ being defined by the variational formulation (6.5) and w̃ being determined as the
adjoint state, by ∂L1

∂v (ĥ, ṽ, w̃) = 0. This is equivalent to the following variational formu-
lation: find w̃ ∈ Hdiv(O) such that for all z ∈ Hdiv(O),∫

O
ĥ(x)∇w̃(ξ) : (∇z(ξ) + ∇z(ξ)T ) dξ + 〈T w̃, z〉 1

2 ,− 1
2

= ε2
∫
O

z(ξ) · (δu(εξ) − εṽ(ξ)) dξ.

(6.12)
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6.4. Lagrangian saddle points-algorithm. We investigate the saddle points of the La-
grangian functional L0 and evolve the different parameters from an initial guess f0, µ̃0, λ0

toward those saddle points. We use a gradient type method, and thus we summarize the
derivatives of the Lagrangian functional L0: f and µ̃ being fixed, ĥ is fixed and we solve
(6.5) and (6.12) to compute ṽ and w̃.

According to the chain rule, we obtain that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L0

∂f
(f, µ̃) =

∂L0

∂ĥ

[
∂ĥ

∂f

]

=
(µ̃ − µ)

2

(
− β∇ · ( ∇ĥ

|∇ĥ|
) + (∇ṽ(ξ) + ∇ṽ(ξ)T ) : ∇w̃ + ∇ · (∇U(0) + ∇U(0)T )w̃

)
,

∂L0

∂µ̃
(f, µ̃) =

∂L0

∂ĥ

[
∂ĥ

∂µ̃

]

=
〈
− β∇ · ( ∇ĥ

|∇ĥ|
) + (∇ṽ(ξ) + ∇ṽ(ξ)T ) : ∇w̃ + ∇ · (∇U(0) + ∇U(0)T )w̃,

f + 1
2

〉
,

∂L

∂f
=

∂L0

∂f
+ 4λfK(f),

∂L

∂µ̃
=

∂L0

∂µ̃
.

(6.13)
The parameters evolve following the gradient direction ∇L, in order to minimize the

Lagrangian. One introduces an artificial time variable and states the following time-
evolutive PDE:

∂f

∂t
= −∂L

∂f
,

∂µ̃

∂t
= −∂L

∂µ̃
,

which leads to the following discrete update scheme:

fk+1 = fk − ∆tf · ∂L

∂f
(fk, µ̃k, λk),

µ̃k+1 = µ̃k − ∆tµ̃ · ∂L

∂µ̃
(fk+1, µ̃k, λk),

(6.14)

where ∆tf and ∆tµ̃ are well-chosen time steps. To update λ we perform as suggested in
[32]:

λk+1 = λk + ∆λK(fk+1), (6.15)

where ∆λ is a fixed parameter. We perform this update k → k + 1 until the change in
these variables, or the differentials of the Lagrangian, is small enough. To conclude, we
draw the main features of a classical gradient descent algorithm:

• Initialization: define f0, µ̃0, λ0 and set k = 0;
• update f :

compute ṽ, w̃ using the variational formulations (6.5) and (6.12);
update fk → fk+1 using (6.14);

• update µ̃:
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compute ṽ, w̃ using the variational formulation (6.5) and (6.12) (with the
updated value of fk+1);

update µ̃k → µ̃k+1 using (6.14);
• update λ using (6.15);
• estimate ||∇L|| and do k → k + 1 until ||∇L|| is small enough.

7. Some extensions. In this section we first briefly discuss how to extend our ap-
proach to detect the shape and the anisotropic shear modulus of an anisotropic anomaly.
In general, the viscoelastic parameters of biological tissue show anisotropic properties,
i.e., the local value of elasticity is different in the different spatial directions [36].

7.1. Anisotropic anomaly. Let A and Ã be two positive-definite symmetric matrices
with A �= Ã. Suppose that Ã−A is either positive-definite or negative-definite. Introduce

∂

∂NA
=

1
2
A(∇ + ∇T ) · N,

∂

∂NÃ

=
1
2
Ã(∇ + ∇T ) · N.

Suppose that the shear modulus takes the anisotropic form A and Ã in Ω \ D and D,
respectively.

Following the same lines as in the derivation of the modified Stokes system in Section
3, we can reduce the anisotropic elasticity system to an anisotropic Stokes system. Define
ŵ as the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∆ŵ + ∇p̂ = 0 in R
3 \ B,

Ã∆ŵ + ∇p̂ = 0 in B,

ŵ|− − ŵ|+ = 0 on ∂B,

(p̂N +
∂ŵ

∂NÃ

)|− − (p̂N +
∂ŵ

∂NA
)|+ = 0 on ∂B,

∇ · ŵ = 0 in R
3,

ŵ(ξ) −∇U0(z)ξ → 0 |ξ| → +∞,

p̂(ξ) → 0 |ξ| → +∞.

(7.1)

To reconstruct the anisotropic shear modulus Ã and the shape of the elastic anomaly
D, we can prove by exactly the same arguments as those given for the isotropic case that
it suffices to replace the minimization problem (6.3) with

min
Ã,f

1
2

∥∥∥∥ δu(x) − εŵ
(x − z

ε

)
+ ∇U0(z)(x − z)

∥∥∥∥2

L2(W )

+ β

∫
W

|∇h(x)| dx,

subject to (7.1).
7.2. Transient elastography. The results and techniques of this paper work for tran-

sient elastography. The time-dependent elasticity system in the presence of the anomaly
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D is given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lλ,µu − ρ∂2
t u = 0 in Ω \ D × [0, T ],

Lλ̃,µ̃u − ρ̃∂2
t u = 0 in D × [0, T ],

u
∣∣
− = u

∣∣
+

on ∂D × [0, T ],

∂u
∂ν̃

∣∣∣∣
−

=
∂u
∂ν

∣∣∣∣
+

on ∂D × [0, T ],

u
∣∣
∂Ω×[0,T ]

= g,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) in Ω.

By combining the arguments of this paper with those in [5], we can prove without any
new difficulty that the following approximation holds:

δu(x, t) ≈ εv̂
(x − z

ε
, t
)
−∇U0(z, t)(x − z) for x near z, and t ∈ [0, T ],

where v̂ is the solution to (5.1) with ∇U0(z) replaced with ∇U0(z, t), i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ∆v̂ + ∇p̂ = 0 in R
3 \ B,

µ̃∆v̂ + ∇p̂ = 0 in B,

v̂|− − v̂|+ = 0 on ∂B,

(p̂N + µ̃
∂v̂
∂N

)|− − (p̂N + µ
∂v̂
∂N

)|+ = 0 on ∂B,

∇ · v̂ = 0 in R
3,

v̂(ξ) −∇U0(z, t)ξ → 0 |ξ| → +∞,

p̂(ξ) → 0 |ξ| → +∞.

(7.2)

Here U0(x, t) is the background solution, that is, the solution in absence of any anomalies.
The minimization problem for reconstructing the shape and the shear modulus of the

anomaly reads

min
µ̃,f

1
2

∥∥∥∥ δu(x, t) − εv̂
(x − z

ε
, t
)

+ ∇U0(z, t)(x − z)
∥∥∥∥2

L2(W×[0,T ])

+ β

∫
W

|∇h(x)| dx,

subject to (7.2).

8. Conclusion. In this paper we have designed a new and promising way for re-
constructing the shear modulus and the shape of a small elastic anomaly from internal
measurements of displacement fields. Our approach combines the inverse problem tech-
niques for small viscous anomalies and a binary level set algorithm. Its extension to
detect anisotropic anomalies follows immediately. It is also expected that our method
will allow an accurate reconstruction of the map of the mechanical coefficients, in par-
ticular in the presence of anomalies. Concerns about the robustness of our method, with
respect to incomplete and noisy data, will be discussed in a forthcoming work.
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[24] L. Ji and J.R. McLaughlin, Recovery of the Lamé parameter µ in biological tissues, Inverse Problems,
20 (2004), 1–24. MR2044603 (2005b:74069)

[25] H. Kang, E. Kim, J.-Y. Lee, Identification of elastic inclusions and elastic moment tensors by
boundary measurements, Inverse Problems, 19 (2003), 703–724. MR1984885 (2004c:74025)

[26] A. Kozhevnikov, On the first stationary boundary-value problem of elasticity in weighted Sobolev
spaces in exterior domains of R

3, Appl. Math. Opt., 34 (1996), 183–190. MR1397779 (97d:35217)
[27] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English

Edition, Gordon and Breach, New York, 1969. MR0254401 (40:7610)
[28] R. Lipton, Inequalities for electric and elastic polarization tensors with applications to random

composites, J. Mech. Phys. Solids, 41 (1993), 809–833. MR1214019 (94d:73005)
[29] A. Manduca, T.E. Oliphant, M.A. Dresner, J.L. Mahowald, S.A. Kruse, E. Amromin, J.P. Felmlee,

J.F. Greenleaf, and R.L. Ehman, Magnetic resonance elastography: Non-invasive mapping of tissue
elasticity, Medical Image Analysis, 5 (2001), 237–254.

[30] J.R. McLaughlin and J.R. Yoon, Unique identifiability of elastic parameters from time-dependent
interior displacement measurement, Inverse Problems, 20 (2004), 25–45. MR2044604 (2005b:74070)

[31] R. Muthupillai, D.J. Lomas, P.J. Rossman, J.F. Greenleaf, A. Manduca, and R.L. Ehman, Magnetic
resonance elastography by direct visualization of propagating acoustic strain waves, Science, 269
(1995), 1854–1857.

[32] L.K. Nielsen, X.-C. Tai, S.I. Aanonsenzand, and M. Espedal, A binary level set model for elliptic
inverse problems with discontinuous coefficients, Int. J. Numer. Anal. Model., 4 (2007), 74–99.
MR2289734

[33] S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based
on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), 12–49. MR965860 (89h:80012)

[34] S. Ozawa, Singular variation of domains and eigenvalues of the Laplacian, Duke Math. J., 48 (1981),
767–778. MR782576 (86k:35117)

[35] R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, High-resolution tensor
MR elastography for breast tumour detection, Phys. Med. Biol., 45 (2000), 1649–1664.

[36] R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, Imaging
anisotropic and viscous properties of breast tissue by magnetic resonance-elastography, Mag. Res.
Med., 53 (2005), 372–387.

[37] R. Sinkus, M. Tanter, T. Xydeas, S. Catheline, J. Bercoff, and M. Fink, Viscoelastic shear properties
of in vivo breast lesions measured by MR elastography, Mag. Res. Imag., 23 (2005), 159–165.

[38] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam,
1979. MR603444 (82b:35133)

[39] M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due
to the presence of inhomogeneities, Math. Model. Numer. Anal., 34 (2000), 723–748. MR1784483
(2001f:78024)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf


