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A Method of Comparing the Areas

under Receiver Operating

Characteristic Curves Derived from

the Same Cases’

Receiver operating characteristic (ROC)

curves are used to describe and compare

the performance of diagnostic technology

and diagnostic algorithms. This paper re-

fines the statistical comparison of the

areas under two ROC curves derived

from the same set of patients by taking

into account the correlation between the

areas that is induced by the paired nature

of the data. The correspondence between

the area under an ROC curve and the Wil-

coxon statistic is used and underlying

Gaussian distributions (binormal) are as-

sumed to provide a table that converts the

observed correlations in paired ratings of

images into a correlation between the two

ROC areas. This between-area correlation

can be used to reduce the standard error

(uncertainty) about the observed differ-

ence in areas. This correction for pairing,

analogous to that used in the paired t-

test, can produce a considerable iflcrease

in the statistical sensitivity (power) of the

comparison. For studies involving multi-

pie readers, this method provides a mea-

sure of a component of the sampling van-

ation that is otherwise difficult to obtain.

Index term: Receiver operating characteristic curve

(ROC)
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S EVERAL questions dealing with comparative benefits for altemna-

tive diagnostic algorithms, diagnostic tests, or therapeutic regi-

mens have recently emerged in medicine. For example, how do we

know whether one diagnostic algorithm is better than another in

sorting patients into diseased and nondiseased groups? Whether the

addition of a new test or procedure to an established algorithm im-

proves its performance? Whether it matters who of several available

readers interprets a mammogram? Whether one type of hard-copy

unit in radiology is better than another? Whether reading a CT scan

in conjunction with the patient’s history allows a more accurate di-

agnosis than reading it without the history? The analyses of such

problems have started with construction of receiver operating char-

acteristic (ROC) curves (1-3). Generally these analyses have used as

cutoff points either different posterior probabilities on a continuous

scale or different thresholds on a discrete rating scale. The latter ap-

proach has been particularly popular in radiology.

Major gaps in the understanding of statistical properties of ROC

curves have limited their usefulness, especially for questions in-

volving comparisons of curves based on the same sample of subjects

or objects. These comparative situations contrast with those involving

a single data set and a single ROC curve. In such cases, the investigator

generally only needs to know that a single modality or diagnostic

approach has “poor”, “moderate”, or “good” accuracy, and the loca-

tion of the ROC curve gives a rough assessment. However, when a

comparison of two algorithms or modalities is relevant, more formal

statistical criteria are needed in order to judge whether observed

differences in accuracy are more likely to be random than real. Thus

far these criteria have not been fully developed for ROC curves.

In a recent paper (4) we dealt with one popular accuracy index that

can be derived from and used as a summary of the ROC curve. We

showed that the relationship of the area under the ROC curve to the

Wilcoxon statistic could be used to derive its statistical properties, such

as its standard error (SE) and the sample sizes required to measure the

area with a prespecified degree of precision (reliability) and to provide

a desired level of statistical power (low type II error) in comparative

experiments. This paper extends our statistical analysis to another

large class of situations, where the two or more ROC curves are gen-

erated using the same set of patients. In these situations, it is map-

propriate to calculate the standard error of the difference between

two areas (Area1 and Area2) as

SE (Area1 - Area2) s/�E�(Ar#{234}ai)-l-SE�(Ar#{234}a2) (1)

since Area1 and Area2 are likely to be correlated. This correlation is

likely to be positive; if the vagaries of random sampling of cases

produce a higher/lower than expected accuracy index for one mo-

dality (e.g., if the sample consisted of a larger than usual number of

easy/difficult cases), then the accuracy of the second modality will

probably also be correspondingly higher/lower than one would ex-

pect. In other words, while the two indices may fluctuate indepen-
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dently by amounts SE1 and SE2 in sep-

arate samples, they will tend to fluc-

tuate in tandem when derived from a

single sample.

In this paper we have developed an

approach to take account of this corre-

lation. In brief, we indicate that the

relevant standard error for such com-

parisons is not that shown in Equation

1 but rather

SE(Ar#{234}a1- Area2)

= s/�E�(Ar#{234}ai) + SE2(Ar#{234}a2)

-2rSE(Ar#{234}a1) SE(Ar#{234}a2) (2)

where r is a quantity representing the

correlation introduced between the

two areas by studying the same sample

of patients. This paper reviews the

calculations for comparing the ROC

curves of two modalities and illustrates

this new approach using data from a

series of experiments involving phan-

toms.

METHODS

The general approach to assessing

whether the difference in the areas

under two ROC curves derived from

the same set of patients is random or

real is to calculate a critical ratio z, de-

fined as

- A1-A2 3

z - VSE� + SE� 2rSE1SE2 �

where � and SE1 refer to the observed

area and estimated standard error of

the ROC area associated with modality

1; where A2 and SE2 refer to corre-

sponding quantities for modality 2; and

where r represents the estimated cor-

relation between � and A2.2 This

quantity z is then referred to tables of

the normal distribution and values of

z above some cutoff, e.g. ,z � 1 .96, are

taken as evidence that the “true” ROC

areas are different. The importance of

introducing the 2rSE1SE2 term in the

above equation is obvious: failure to

subtract out from the sampling van-

ability those fluctuations that the

paired design has already eliminated

will leave the denominator of Equation

3 too large and z too small, thereby re-

ducing the chance of detecting a dif-

ference between two modalities.

Calculating Areas

Areas under ROC curves can be ob-

2 � we will see later, the SE of an estimated

area depends on the magnitude of the underlying

or “true” area. When calculating z to test the null

hypothesis that this underlying area is the same

for both modalities, one should equate SE5 and

SE,., calculating them both from a common esti-

mate of the area. In this case the denominator

becomes �2SE�(1 - r) or SE �2(1 - r).

tamed in three ways: (i) by the trape-

zoidal rule; (ii) as output from the

Dorfman and Alf maximum likelihood

estimation program (5); or (iu) from the

slope and intercept of the original data

when plotted on binormal graph paper

(3). As indicated in our companion

paper (4) the trapezoidal approach

systematically underestimates areas.

Because the Dorfman and AIf approach

is becoming readily accessible to those

interested in this area, we will calculate

areas using this approach. (For those

limited to graphical methods, the area

can be derived from the slope and in-

tercept according to the rule Area

Percentage of Gaussian distribution to

left of ZA ‘ where ZA Inter-

cept/�1 + slope2).

Calculating Standard Errors

The standard errors associated with

areas can be obtained in three ways: (i)

as output directly from the Dorfman

and Alf maximum likelihood estima-

tion program; (ii) from the variance of

the Wilcoxon statistic as illustrated in

detail in Reference 4; or (iii) from an

approximation to the Wilcoxon statistic

by making an assumption, shown to be

conservative (compared with assuming

a Gaussian-based ROC curve), that the

underlying signal (diseased) and noise

(nondiseased) distributions are expo-

nential in type (4). We will use the

standard errors estimated from the

Dorfman and Alf program.

Calculating the Correlation

Coefficient, r, Between Areas

Two intermediate correlation coef-

ficients are required, which are then

converted into a correlation between

1 and A2 via a table that we supply

below. The first is rN, the correlation

coefficient for the ratings given to im-

ages from nondiseased patients by the

two modalities. The second is rA � the

correlation coefficient for the ratings

of diseased patients imaged by the two

modalities. Each of these can be calcu-

lated in traditional ways using either

the Pearson product-moment correla-

tion method or the Kendall tau. The

former approach is usually used for

results derived from an interval scale

whereas the latter is more appropriate

for results obtained from an ordinal

scale. ROC curves in radiology are de-

rived from ordinal scale data and

therefore we have used the Kendall tau

for calculating rN and rA. Standard

statistical packages (e.g., SPSS, SAS)

provide tau; when the number of rat-

ing categories is small, however, say

four or less, the calculation can also be

performed manually.

Once the correlations between the

ratings (rN among the normals, rA

among the abnormals) are obtained, it

is necessary to calculate the correlation

that they induce between the two areas

1 and A,. for ease of notation we have

called this r (without any subscript).

This is the coefficient present in

Equations 2 and 3. Tabulation of r

(TABLE I) is the fundamental contribu-

tion of this papers; therefore, in our

subsequent example we will illustrate

its use.

Experimental Data for

Illustrative Examples

We studied 1 12 phantoms that were

specially constructed to evaluate the

accuracy of two different computer al-

gorithms used in image reconstruction

for CT. Fifty-eight of these phantoms

were of uniform density and were

designated “normal”; the remaining 54

contained an area of reduced density to

simulate a lesion and were designated

“abnormal”. Two images of each

phantom were reconstructed using the

two different algorithms, which we

will refer to as modality 1 and modality

2. A single reader read each image and

rated it on a 6-point scale: 1 = Defi-

nitely Normal; 2 Probably Normal;

3 = Possibly Normal; 4 Possibly Ab-

normal; 5 = Probably Abnormal; 6

Definitely Abnormal. From the re-

sulting data, we constructed two ROC

curves. The data were submitted to the

Dorfman and Alf maximum likelihood

program to produce areas under the

ROC curves and standard errors.

RESULTS

Our results will be divided into two

parts. First, the analysis of the example

involving CT phantoms will be illus-

trated. Then, in order to verify that the

z statistic performs correctly, results of

several simulations will be summa-

rized.

CT Phantom Example

The basic data are presented in the

Appendix, along with the calculations

produced from them. The areas under

the ROC curves were 89.45% (SE 3.0%)

and 93.82% (SE 2.6%). The (Kendall tau)

correlations between the paired ratings

were rN 0.39 (nondiseased patients)

and rA 0.60 (diseased patients), giv-

ing an “average” correlation between

the ratings of 0.50. With this average

correlation of 0.50 and with an average

area of (89.45 + 93.82)/2 91.64, TABLE

3 Mathematical derivation available upon re-

quest.
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I indicates that the correlation r be-

tween areas is approximately 0.40.

Equation 3 was then used to calculate

the critical ratio z in order to test the

null hypothesis that the observed dif-

ference between observed areas was

merely a result of random sampling.

Using the above data

z = (0.9382 - 0.8945)/

�/O�O�z+ 0.0262 2(0.4)(0.03)(0.026)

= 0.0437/0.0309 = 1.41

As mentioned earlier, one might av-

erage the two areas to obtain a common

area of 0.9164, and use the formula in

Reference 4 to predict each of the

standard errors as 0.0281; using 0.0281

���/2(1 - 0.4) = 0.0308 in the denomi-

nator of Equation 3 yields an almost

identical z value of 1.42.

If we have reason to believe a priori

that modality 2 is likely to be better

than modality 1 and are only interested

in improvements, then a one-tailed test

is appropriate. The Gaussian distribu-

tion indicates that a value of 1.41 or

higher should occur roughly once in

every 13 samples (p = 0.079); this evi-

dence suggests that the observed dif-

ference may not be random. This con-

trasts with the weaker inference that

would be drawn from a critical ratio of

1.10 (or a p value of 0.136 or 1 in 7) that

would have been calculated had the

correlation between areas been as-

sumed to be equal to zero (in other

words, had we failed to take into ac-

count the increased sensitivity induced

by studying the same set of patients

with both modalities). If we had no a

priori interest in one particular direc-

tion, then a two-tailed test would have

been appropriate.

TABLE I: Correl ation Coefficients*

Average

Correlation

between

Ratingst

Average Area�

.700 .725 .750 .775 .800 .825 .850 .875 .900 .925 .950 .975

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01

0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02
0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.02
0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.04 0.03

0.10 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.04

0.12 0.11 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.08 0.08 0.07 0.05

0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.10 0.09 0.08 0.06
0.16 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.12 0.11 0.11 0.09 0.07

0.18 0.16 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.13 0.12 0.11 0.09

0.20 0.18 0.18 0.18 0.17 0.17 0.17 0.16 0.15 0.15 0.14 0.12 0.10

0.22 0.20 0.20 0.19 0.19 0.19 0.18 0.18 0.17 0.16 0.15 0.14 0.11

0.24 0.22 0.22 0.21 0.21 0.21 0.20 0.19 0.19 0.18 0.17 0.15 0.12

0.26 0.24 0.23 0.23 0.23 0.22 0.22 0.21 0.20 0.19 0.18 0.16 0.13

0.28 0.26 0.25 0.25 0.25 0.24 0.24 0.23 0.22 0.21 0.20 0.18 0.15

0.30 0.27 0.27 0.27 0.26 0.26 0.25 0.25 0.24 0.23 0.21 0.19 0.16

0.32 0.29 0.29 0.29 0.28 0.28 0.27 0.26 0.26 0.24 0.23 0.21 0.18

0.34 0.31 0.31 0.31 0.30 0.30 0.29 0.28 0.27 0.26 0.25 0.23 0.19
0.36 0.33 0.33 0.32 0.32 0.31 0.31 0.30 0.29 0.28 0.26 0.24 0.21

0.38 0.35 0.35 0.34 0.34 0.33 0.33 0.32 0.31 0.30 0.28 0.26 0.22

0.40 0.37 0.37 0.36 0.36 0.35 0.35 0.34 0.33 0.32 0.30 0.28 0.24
0.42 0.39 0.39 0.38 0.38 0.37 0.36 0.36 0.35 0.33 0.32 0.29 0.25

0.44 0.41 0.40 0.40 0.40 0.39 0.38 0.38 0.37 0.35 0.34 0.31 0.27
0.46 0.43 0.42 0.42 0.42 0.41 0.40 0.39 0.38 0.37 0.35 0.33 0.29

0.48 0.45 0.44 0.44 0.43 0.43 0.42 0.41 0.40 0.39 0.37 0.35 0.30
0.50 0.47 0.46 0.46 0.45 0.45 0.44 0.43 0.42 0.41 0.39 0.37 0.32

0.52 0.49 0.48 0.48 0.47 0.47 0.46 0.45 0.44 0.43 0.41 0.39 0.34

0.54 0.51 0.50 0.50 0.49 0.49 0.48 0.47 0.46 0.45 0.43 0.41 0.36

0.56 0.53 0.52 0.52 0.51 0.51 0.50 0.49 0.48 0.47 0.45 0.43 0.38

0.58 0.55 0.54 0.54 0.53 0.53 0.52 0.51 0.50 0.49 0.47 0.45 0.40

0.60 0.57 0.56 0.56 0.55 0.55 0.54 0.53 0.52 0.51 0.49 0.47 0.42

0.62 0.59 0.58 0.58 0.57 0.57 0.56 0.55 0.54 0.53 0.51 0.49 0.45

0.64 0.61 0.60 0.60 0.59 0.59 0.58 0.58 0.57 0.55 0.54 0.51 0.47

0.66 0.63 0.62 0.62 0.62 0.61 0.60 0.60 0.59 0.57 0.56 0.53 0.49

0.68 0.65 0.64 0.64 0.64 0.63 0.62 0.62 0.61 0.60 0.58 0.56 0.51

0.70 0.67 0.66 0.66 0.66 0.65 0.65 0.64 0.63 0.62 0.60 0.58 0.54
0.72 0.69 0.69 0.68 0.68 0.67 0.67 0.66 0.65 0.64 0.63 0.60 0.56

0.74 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.67 0.66 0.65 0.63 0.59

0.76 0.73 0.73 0.72 0.72 0.72 0.71 0.71 0.70 0.69 0.67 0.65 0.61
0.78 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.72 0.71 0.70 0.68 0.64

0.80 0.77 0.77 0.77 0.76 0.76 0.76 0.75 0.74 0.73 0.72 0.70 0.67

0.82 0.79 0.79 0.79 0.79 0.78 0.78 0.77 0.77 0.76 0.75 0.73 0.70

0.84 0.82 0.81 0.81 0.81 0.81 0.80 0.80 0.79 0.78 0.77 0.76 0.73

0.86 0.84 0.84 0.83 0.83 0.83 0.82 0.82 0.81 0.81 0.80 0.78 0.75

0.88 0.86 0.86 0.86 0.85 0.85 0.85 0.84 0.84 0.83 0.82 0.81 0.79

0.90 0.88 0.88 0.88 0.88 0.87 0.87 0.87 0.86 0.86 0.85 0.84 0.82

S Correlation coefficient r between two ROC areas � and 2 as a function of average correlation

between ratings (rows) and average area (columns).

t (rN + TA)!2.

t (A1 + A2)/2.

General Performance of the

Paired Test

A good statistical test should mdi-

cate a difference when one is really

present, but it should minimize in a

predictable way the number of in-

stances in which a difference is said to

exist when, in fact, none does exist

(high sensitivity and specificity). To

determine these characteristics for this

new statistical test, we examined its

diagnostic performance over a range of

simulated situations, using methods

analogous to those used by Pollack and

Hsieh (6) and Metz and Kronman (7).

In order to calculate the specificity,

400 simulated analyses were performed

for each of several combinations of

underlying ROC areas and correla-

tions. The tabulated distributions of the

test statistic z obtained from these

various simulations were for all prac-

tical purposes indistinguishable from

Gaussian ones and had standard den-

vations acceptably close to 1 . The

false-positive rates were low, and close

to what one should expect. Specifically,

among the 4,800 trials (12 combina-

tions each run 400 times) the average

proportion of z values above 2.0 or

below -2.0 (values often taken as in-

dicating a statistically significant dif-

ference) was 5.1%, i.e., a specificity of

94.9%. In a perfect Gaussian distnibu-

tion, this would have been 4.6%, i.e., a

specificity of 95.4%.

Evaluation of the sensitivity (power)

for this statistic required comparison of

two modalities with different ROC

areas. For this purpose, sets of 200 ex-

peniments were simulated from vary-

ing correlation coefficients. The per-

formance was evaluated by tabulating

the percentage of paired and unpaired

tests indicating a significant difference.

Over four combinations of correlations

and baseline accuracies, one could

project that the paired test would raise

a 50% sensitivity (expected from an

unpaired analysis) to 60-75%.

DISCUSSION

In this investigation we have de-

scnibed a method of comparing the

areas under two ROC curves derived

from the same sample of patients. Two

immediate results are apparent. We

have shown that the comparison can be

made more sensitive if the investigator

takes into account the smaller sampling

variability of the difference in areas

induced by studying each patient

twice. Second, our data can be extrap-

olated to indicate the statistical econo-

my that emerges from this kind of ex-

perimental design and analysis. We

discuss these points in turn.

The larger the correlation between

the areas, the more sensitive the paired

z test will be. This observation may

explain why a-number of studies using
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an unpaired z test that assumed the two

areas were statistically independent

failed to find a significant difference

between the modalities. The degree of

correlation expected between ROC

areas obtained with different modali-

ties varies considerably depending

upon the types of modalities involved.

For example, if the two images are ob-

tamed from the same machine with

two different settings or if a radiologist

reads a CT scan with and without ex-

tensive clinical history, high correla-

tion can be expected. In this study in-

volving different reconstruction algo-

nithms with CT, the correlation be-

tween the paired ratings of abnormal

phantoms was 0.60 and between paired

ratings of normal phantoms was 0.39.

We have observed similar results in a

study of ours (8) involving the inter-

pretation of CT studies of the head

with and without extensive clinical

history. On the other hand, when the

only common denominator in the

comparison is the patient, the correla-

tions are likely to be weaker. For ex-

ample, a study by Alderson et al.(9)

comparing CT, ultrasound, and nuclear

medicine imaging in the diagnosis of

liver metastases found considerably

lower rating-pair correlations (0.36 in

abnormal patients and 0.28 in normal

patients). Obviously, in the latter sit-

uation the gains from using a paired

rather than an unpaired analysis are

smaller.

Two other points must be made

about correlation coefficients. First, in

general we have noted that whatever

the modalities under study, the matings

tend to be less correlated in the non-

diseased patients than in the diseased

patients. This suggests that in diag-

nostic imaging agreement tends to be

greater if there is in fact underlying

disease, and less if there is not. Second,

if an investigator knew a priori that the

correlations between the modalities

under study were small, then an ex-

penimental design that did not involve

pairing could be used, provided that it

was no more difficult to separate

(diagnose) the patients studied by one

modality than it was to diagnose those

studied by the other modality.

The statistical economy resulting

from this new statistical test is large.

Statistical economy relates to the

question of how many more patients

are required in an unpaired design

then in a paired design to achieve the

same sensitivity or statistical power. A

comparison of Equations 1 and 2 pro-

vides an answer to this question. Each

of the standard errors is inversely

proportional to the square root of the

sample size n . Also, the equations can

be simplified by assuming that the

standard errors of the two areas are

equal; in this case, Equation 2 differs

from Equation 1 only in the presence of

the factor (1 - r). When the sample

sizes associated with the two tech-

niques are arranged so that the paired

and unpaired tests produce the same z

value, then a simple algebraic identity

emerges:

or

flu = fl�/(1 - r)

flp = (1 - r)fl�

where n� and fl� are the numbers of

patients per modality in the respective

unpaired and paired designs4. For ex-

ample, if r is anticipated to be roughly

0.3 and an unpaired design called for

100 patients per modality, then a paired

design should require only 70 per

modality. Thus the total number of

images read would be 140 rather than

200. This efficiency is even more im-

portant if the limiting factor is the

number of available patients with a

proved outcome (rather than the

number of images a reader can be ex-

pected to read), since the total of 140

paired images is obtained from just 70

patients, rather than from 200 patients

in the unpaired design. The investi-

gator must weigh very carefully the

practical and statistical issues, keeping

in mind that if one uses an unpaired

design, one must establish (through

case matching and/or random alloca-

tion) that the method of constructing

two independent samples of subjects

does not give one modality an inbuilt

advantage.

The discussion thus far has centered

on a rather restricted design where just

one reader read the images generated

by the two modalities being compared.

The statistical test simply asked the

question: if this one reader read an in-

finite rather than a finite number of

images, would his/her accuracy be

comparable in both modalities?5

Clearly, a more general question is

relevant: how do the modalities com-

pare over many readers?

For the sake of completeness, we

refer briefly to this problem of multiple

readers and readings in each modality.

This situation has been discussed ex-

tensively by Swets and Pickett (10); our

main reasons for mentioning it here are

to draw readers’ attention to a very

extensive treatment of the design and

analysis of imaging experiments, and

to point out that our method of ob-

4 This simple relation allows the user to mul-

tiply the sample sizes in TABLE III of our first

publication (4) by the appropriate (1 - r)and use

them for paired designs.

5 One could also use the z test to compare two

specific readers on one modality.

taming r now allows the methods

therein to be used with greater sensi-

tivity. This is best appreciated by re-

producing the formula that the authors

give (Equation 2, Chapter 3) for the

standard error of a difference between

the value of an accuracy index (such as

the area under an ROC curve) for one

modality (averaged over 1 readers, each

reading each image m times) and the

value of the same accuracy index (again

averaged over readers and readings)

for a second modality. The expression

involves three sources of variation: S�,

the variation in the index due to dif-

ferences in mean difficulty of cases

from case sample to case sample; S�,

between-reader variance due to dif-

ferences in diagnostic capability from

reader to reader; and � within-reader

variance due to differences in an mdi-

vidual reader’s diagnoses of the same

case in repeated occasions. It also in-

volves two correlation coefficients: r�

to denote the correlations introduced

by using similar (or even the same)

cases with both modalities and rb� to

denote correlations between the accu-

racy index obtained by using matched

(or possibly the same) readers. With

this notation, the formula becomes

SE (differefice)

�J2IS�(1 - r�) + S�(1 - rj,�)/l + S��/lm�

The authors describe fully via several

worked examples how to evaluate each

of these terms. They point out, how-

ever, that the estimation of the two

components r� and S� creates prob-

lems. First, if m 1, i.e., if each image

is read just once, then S�. and S� are

not separable, and one is forced to

overestimate the SE. The second, and

more serious, problem is that if m 1

and if one does not have a large num-

ben of cases, enough (for example) to

split them into a number of subsamples

and fit an ROC curve to each, one is

unable to estimate r�. In such cases, the

authors explain that one has no alter-

native but to assume r� 0, thereby

giving up any benefits attainable from

case matching.

The method we have presented here

means that if one uses the area under

the ROC curve as an index of accuracy,

one is not forced to assume r� = 0. The

quantity we have called r, which is

obtainable via TABLE I from the area

and from the correlations between

ratings, is the same quantity �

mentioned in Equation 5, Chapter 4 of

Swets and Pickett (8)6. The interested

6 If m > 1, one can correct the quantity �

(obtained from TABLE I) for the “attenuation”

produced by S�, and estimate the “true” corre-

lation r� introduced by using similar(or the same)

cases.



Rating* Rating* with Modality 2

with Normal Phantoms Abnormal Phantoms

Modalityl 1 2 3 4 5 6 Total 1 2 3 4 5 6 Total

1 9 3 - - - - 12 - - 1 - - - 1

2 17 9 2 - - - 28 1 - 2 - - - 3

3 3 4 1 - - - 8 1 1 1 3 - - 6

4 1 2 2 1 - - 6 1 1 1 9 1 - 13

5 1 1 - 2 - - 4 - - - 7 10 5 22

6 4 5 9

Total 31 19 5 3 - - 58 3 2 5 19 15 10 54

* Ratings: from 1 Definitely Normal to 6 Definitely Abnormal.

(b) Correlation between ratings (Kendall

tau): modality 1 vs. modality 2 TA = 0.60

modality 1 vs. modality 2 TN 0.39 average correlation 0.50

(c) ROC analysis:

Rating Standard

Modality 1 2 3 4 5 6 Slope Intercept ZA Area Error (Area)

Modality 1

Normal 12 28 8 6 4 - 0.945 1.72 1.25 0.8945 0.030
Abnormal 1 3 6 13 22 9

Modality 2

Normal 31 19 5 3 - - 0.467 1.70 1.54 0.9382 0.026

Abnormal 3 2 5 19 15 10

(d) Test statistic: z 0.0437/�0.0302 + 0.0262 2(0.040)(0.030)(0.026) 1.41
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reader can consult that reference for

full details on how it is used.

In summary, then, we have provided

a method for estimating the correlation

between the areas under two ROC

curves derived from the same sample

of patients and have shown how to use

this correlation to perform a more

sensitive comparison of the areas.

Moreover, this provides an item that

was previously only guessed at, or un-

denestimated, in studies of multiple

readers.
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APPENDIX
Ratings given to two images of each of

1 12 phantoms, together with calculations

(a) Basic data:

Difference in areas 0.0437.

Average area 0.9146.

Correlation between areas 0.40.

of z test to test whether one modality sub-

tended a greater ROC area than the other:


