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LETTER

A method of defense against cache timing attack in non-volatile memory
Juhee Choi1, a)

Abstract Attackers of modern computer architecture found that cache
access latency difference between cache hit and cache miss is a point where
secure data are overlooked. To prevent such data leakage, cache partitioning
technique is utilized for defenders via cache hit isolation. Although this
approach is effective in increasing resistance against cache timing attack, it
is not suitable for emerging memory system, which is based on non-volatile
memories, because it overlooks the weaknesses of the write operations.
This paper proposes a secure-aware partitioning guide architecture to im-
prove performance and write endurance by removing the necessity of cache
flushing. During changing cache partitioning status, the write counts are
considered for the new status and no cache lines are evicted in the proposal.
As a result, the lifetime is extended by 1.77 times and the penalty of cache
flushing is saved by 7.8%.
Keywords: non-volatile memory, STT-RAM, security, side channel attack
Classification: Integrated circuits

1. Introduction

Cache side-channel attack is a well-known course through
which secure data leak out in modern processor techniques,
such as cache and speculative access [1, 2]. Typically, a
cache can mitigate the performance gap between the main
memory and processors, so-called memory wall problem.
Furthermore, out-of-order execution and speculative access
change the order of instruction execution and data access
to speed up the performance unless the final results of the
program are corrupted. These schemes show dramatic im-
provement in performance, resulting in essential parts of the
modern computing systems.
However, they also bring a critical side effect, namely

providing vital hints to attackers. The latency difference
between cache hit and cache miss is inevitable, and it is
one of the sources which makes the security of the system
weak. Out-of-order execution and speculative access imply
that the secure data are touched without permission check if
the attacker generates a wrong prediction. The latency gap
between cache hit and miss becomes a tool to check whether
the target data are stored in the cache. Meltdown [3] and
Spectre [4], including its variants [5], are some of the most
famous attack methods by exploiting these weaknesses.
One of the promising solutions to the problem is cache

partitioning [6, 7]. Traditionally, this field is considered
a performance related study topic. Some research groups
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concentrated on the quality of service (QoS) of the specific
program [8], while others aimed to improve utilization of
the cache [9]. On the contrary, Kiriansky et al. reported
that cache partitioning helps data isolation among ways and
developed this approach as dynamically allocated way guard
(DAWG) [6].
Although Kiriansky’s work achieved defense against at-

tackers, it is not perfectly suitable for the emerging mem-
ory system based on non-volatile memory (NVM). One of
the important considerations in designing an NVM-based
cache architecture is reducing the write counts. This is be-
cause updating the information of NVM cells introduces
several problems, such as limited write endurance, high en-
ergy consumption, and long latency for write operations.
In this context, the present paper proposes a secure-aware
partitioning guide architecture (SaPGA). Since there is no
strict cache partitioning restriction for tag matching process,
no cache flush is needed during partitioning change in the
SapGA. Instead, each cache line has its own secure flag to
check whether it is a secure-aware cache line. In addition,
to manage the secure-aware partitioning guide considering
the lifetime of the cache, write counter array and manager
are also inserted.

2. Background and motivation

2.1 Background
With advancement of fabrication technology, leakage en-
ergy consumption has become one of the major concerns
to the manufactures due to low operating voltage. As a
complementary product, researchers have focused on NVMs
[10, 11, 12, 13] because of their significantly low amount
of static power dissipation. Since a bit information is indi-
cated as a state of the material of NVM instead of electric
current, no or a few electric sources are required to sustain
the information. The names of each type of NVM usually
come after its type of memory cell, such as phase change
memory (PCM) and spin-torque transfer magnetic RAM
(STT-MRAM).
For example, the PCM [10, 14] is composed of alloy

material such as Ge2Sb2Te5 and AgInSbTe. Its phase is
determined from electrical resistivity and optical reflectivity.
There are two phases such as an amorphous phase and a
crystalline phase to store “0” value or “1” value in a bit.
Upon employing NVMs, the disadvantages of write oper-

ations are found to accompany. Updating the states of cells
consumes a significant amount of energy and takes long la-
tency compared with the traditional volatile memories. In
addition, the capacity of the number of write operations is
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small due to poor write endurance, resulting in limited life-
time problem. About 107–108 times of writing to the PCM
cell is allowed, while SRAM endures more than 1015 writing
times. One of approaches to overcome the write problems
of NVM is to avoid redundant bit-writing by observing the
new value and the old value in NVM cells [15, 16, 17]. Plus,
hybrid cache architecture (HCA) was introduced [18] to re-
duce the write-intensity of NVM by containing SRAM cells
as well as NVM cells in the same structure. It can be applied
from L1 cache level [19, 20] to last-level cache [21] or main
memory [22, 23, 24]. In addition, FPGA or IoT devices are
also objectives of HCA studies [25, 26, 27].

2.2 Motivation
The cache partitioning schemes have commonly assumed
that the domain policy is dynamically adjusted to maximize
the utilization of all ways [8, 9, 28, 29]. Since the access
pattern to the cache varies across the working set of the
program, fixing the usage of each way during execution
cannot be done efficiently. The methods to estimate the
optimal partitioning policy differ according to their prime

interests. Some research groups studied for fairness [28] or
QoS [8], while others concentrated on energy saving [9, 29].
However, there is a fundamental difference between the

secure-aware partitioning and previous partitioning studies
in terms of cache hit isolation. A generic cache system
ignores the current partitioning status during tag matching.

Fig. 1 Motivation. A1 is a cache line of Group A, and B1, B2, and B3
are cache lines of Group B. N1 is a cache line of Group N, while S1, S2,
and S3 are cache lines of Group S.

Fig. 2 Operations.
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For example, let us assume that A and B are two partition
groups in Fig. 1(a). Although B1 is dedicated to the group
B and it is located in the second way, which is assigned to
the group A, access to the cache line ends up with success.
On the other hand, a cache hit is prohibited for S1 in

Fig. 1(b) for the mismatched group in the secure-aware par-
titioning schemes to hide any latency difference. In this
regard, the concept of secure way indicator (SWI) was intro-
duced to store the characteristics of each way, i.e. secure way
or non-secure way. The traditional tag matching process was
modified for the SWI to determine the cache hit. The detailed
implementation can vary with schemes; “set_metadata” and
“policymask” are the variant of the SWI in DAWG.
The previous approaches are cost-efficient for a fixed par-

titioning scheme; however, they are not suitable when the
partitions are adjusted dynamically. If a way in group A is
changed to group B, all the cache lines in the way are flushed
in advance before switching. It can be easily expected that
frequent cache flushing generates performance hurt. For an
NVM-basedmemory system, another point to consider is the
penalty of extra write counts caused by cache invalidation.
Therefore, to realize performance improvement and lifetime
extension, only applying the traditional schemes to secure-
aware partitioning does not solve the problems, and a novel
scheme is required to this end considering the characteristics
of NVM.

3. Secure-aware partitioning guide architecture

3.1 Operations
Fig. 2 demonstrates the process of changing the cache parti-
tioning status of the traditional scheme and SaPGA in detail.
The key idea of the proposed scheme is that cache flushing
is not necessary to adjust the cache partitioning status, while
the previous scheme required cleaning up the cache lines of
the ways which are supposed to be switched.
The initial status of cache partitioning in Fig. 2 is that the

first way and the second way are dedicated to secure ways,
while the thirdway and the fourthway aremarked as the non-
secure ways. The cache partitioning policy manager tries to
change the second way and the third way by switching their
secure flag bits. S and S’ cache lines are for the secure group,
while N and N’ cache lines are for the non-secure group.
In the conventional scheme, all cache lines in the second

way and the third way are evicted before modifying the
information of the SWI (a-1). Then, the target bits are
changed (a-2). After consecutive cache misses for all cache
lines, the cache lines are refilled (a-3).
However, in SaPGA, the cache partitioning status is sim-

ply changed bymodifying a secureway guide (SWG) register
(b-1). The SWG does not participate in cache hit process
unlike the SWI, but it only provides a blueprint for efficient
cache partitioning status; only the SWG is activated during
Victim selection process. Instead, each cache line has its
own secure flag (SF) to confirm the guaranty of its security.
All SFs in a cache set are simultaneously updated when

any cache line in the set is accessed. If the values of the
SFs differ from the current SWG, the cache lines are ex-
changed or invalidated according to the SWG (b-2). As

Algorithm : Dynamic Secure-cache partitioning
* Parameters
N: Number of ways
S: Number of sets
Address: Address for cache access
TagAddr: Tag for cache line from Address
Way[i]: ith way
SF: Secure flag
UF: Update flag
* Read Operation
1 : TagAddr← extract tag from address(Address)
2 : for i← 1 to N:
3 : if TagAddr != Tag of Way[i]:
4 : if SecureAccess and SF of Way[i] == 1 or
5 : NonSecureAccess and SF of Way[i] == 0:
6 : Forward cache line to requestor (Cache hit occurs)
7 : end if
8 : end if
9 : end for
10: if UF == 0:
11: for i← 1 to N:
12: if UF of Way[i] != SWG[i]:
13: for j ← i+1 to N:
14: if UF of Way[j] == SWG[j]:
15: exchange cache lines Way[i]↔Way[j]
16: UF of Way[i]← 1 - UF of Way[i]
17: UF of Way[j]← 1 - UF of Way[j]
18: exit to
19: end if
20: end for
21: else
22: UF of Way[i] = 1 - UF of Way[i]
23: Invalidate cache line of Way[i]
24: end if
25: end for
26: UF← 1
27: end if
* Update cache partitioning Status
1 : Update SWG from the cache partitioning manager
2 : for i← 1 to S:
3 : UF← 0
4 : end if

Fig. 3 Algorithm of dynamic cache partitioning.

the application executes, all the cache sets are accessed and
cache partitioning is completed without any extra cycle of
unnecessary cache flushing (b-3). Fig. 3 shows the detailed
processes of the SaPGA in terms of read operation and cache
partitioning updating.

3.2 Overall architecture
Fig. 4 depicts the overall architecture of SaPGA. The basic
components of cache are given in gray boxes and the newly
inserted components of SaPGA are illustrated in orange.
For tag array, two kinds of flag bits were introduced and
cache hit detection logic was modified. A secure bit (S bit)
was appended to the conventional tag information of each
cache line. It indicates that the corresponding cache line
has permission for secure access. The cache hit detection
logic utilizes the S bit to decide the cache hit as well as tag
matching.
A table was also added to contain an array of update flag

(U bit) for each cache set. A secure way guide (SWG)
register, a cache partitioning manger, and a write counter
array were inserted in the data array. When a cache line
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Fig. 4 Overall architecture.

Fig. 5 Normalized penalty for dynamic cache partitioning adjustment.

Fig. 6 Normalized lifetime.

is written, the corresponding write counter increased by
1. Periodically, the cache partitioning manager checks the
variation of write counts in each cache set. If a particular
way is more frequently updated than the other ways, it is
exchanged by the least frequently written way in the same
set. Note that this paper focuses on handling the weakness of
NVM, thus, discussing cache partitioning mechanism itself
is beyond the scope of this paper. Currently, the manager
simply considers the write counts, however, the detailed
combination of the other previous schemes and the manager
in the SaPGA will be studied in the future work.

3.3 Overheads
To implement SaPGA, storage overhead needs to be dis-
cussed. Eq. (1) shows the relationship between extra area
and cache configurations

Overhead Rate =
4 ∗ CL + S + M ∗ CL + Total

Total
(1)

Table I Storage overheads.

Cache Configuration Overhead Rate
8-way 256KB 3.32%
8-way 512KB 3.32%
8-way 1MB 3.32%
16-way 2MB 3.23%
16-way 4MB 3.23%

where CL refers to the total number of cache lines, S means
the number of sets, and Total indicates the original capacity
of the cache.
The traditional secure-aware cache partitioning requires

only N bits to indicate a cache partitioning status, where N is
the number of ways. However, the proposed scheme inserts
1 bit (S bit) for each cache line. Furthermore, each cache
set has a U flag for tag array while, the write counter array
contains an M bits counter for every cache line. Table I lists
the overhead rates for various cache configurations. Regard-
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less of capacity and set-associativity of cache, around 3.3%
extra storage is required on average.

4. Experimental results

Experiments were performed using gem5 [30], which is
a well-known cycle-accurate simulator for cache studies.
Some programs were selected from the SPEC2006 bench-
mark suite [31] to evaluate the effectiveness of the proposal.
A two-level cache hierarchy was utilized for experiments;
an L1 4-way 32KB instruction cache, an L1 4-way 32KB
data cache, and unified L2 cache with various configura-
tions, such as 8-way 256KB, 8-way 512KB, 8-way 1MB,
16-way 2MB, and 16-way 4MB were used. The baseline
for normalization is the value of the DAWG.
The main points of the simulation results are summarized

in Fig. 5 and Fig. 6 with various sizes of adjustment periods
from 100K to 10M cycles. The penalty in Fig. 5 refers to the
extra cycles to flush cache lines when the cache partitioning
status changes. If the cache partitioning adjustment is fre-
quently performed, the penalty also increases, resulting in
more performance hurt. A smaller normalized value implies
a lesser amount of penalty is generated.
On average, about 7.8% access latency is reduced in

SaPGA compared with that of DAWG for 100K. The penalty
gap starts to narrow as the period extends to 1M or 10M.
It was observed that 4.0% and 3.3% cycle overheads are
saved for 1M-cycle period and 10M-cycle period, respec-
tively. The improvement ratio of write endurance with vari-
ous periods is shown in Fig. 6. On average, the lifetime was
prolonged by 1.77 time, 1.51 times, and 1.33 times for 100K,
1M, and 10M period, respectively. This trend is opposite
to that of the normalized penalty. In general, the cache ac-
cess patterns significantly vary across program executions.
Therefore, if inspection of the write endurance is frequently
performed, it is helpful to modify the cache partitioning
adaptive to the write behavior of the current working set.

5. Conclusion

The current study proposed SaPGA to compensate the prob-
lems when secure-aware cache partitioning schemes are ap-
plied to NVM-based cache structure. In the proposal, each
cache line has its own secure flag bit instead of separate flag
registers to indicate which ways are dedicated to the secure
and the non-secure groups. By monitoring the write counts
of data array, the frequently written cache lines are dynam-
ically moved to the non-write-intensive ways to improve
the write endurance of the system. The simulation results
showed that the SaPGA achieved 77% lifetime improvement
and 7.8% reduction in the penalty of dynamic adjustment of
cache partitioning with small storage overhead.
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