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A Method of Factoring and the Factorization of F7

By Michael A. Morrison* and John Brillhart

Dedicated to D. H. Lehmer on his 10th birthday

Abstract.   The continued fraction method for factoring integers, which was introduced

by D. H. Lehmer and R. E. Powers, is discussed along with its computer implementation.

The power of the method is demonstrated by the factorization of the seventh Fermât

number   F~   and other large numbers of interest.

"Quand on a à étudier un grand nombre, il faut commencer par en déterminer quelques
résidus quadratiques."

M. Kraitchik

1. Introduction. The continued fraction method discussed in this paper was in-
troduced in 1931 by D. H. Lehmer and R. E. Powers [11]. At that time, and for sev-
eral decades afterwards, this method was considered by hand computers to be of little
practical value because of its fallibility and so was not used. This judgment was based
on the discouraging and exceedingly frustrating experience of computing for hours on
a desk calculator only to find, time after time, that every combination of numbers
produced, failed to factor your number (" . . . your butterfly net was empty.").

With the advent of electronic computers the practical basis for this negative
judgment disappeared, since the calculations and the inhibiting, complicated data hand-
ling could now be done swiftly and automatically.  Thus several failures in a row were
of no particular importance,  as long as they were followed by at least one success.
That the situation had in fact changed was not recognized, however, until 1965, when
the second author suggested privately that this method (even with its many failures)
might well be powerful enough to factor the seventh Fermât number—a number of 39
digits which had previously withstood many factorization attempts.

In 1967 this suggestion and details of the method along with its computer im-
plementation came to the attention of D. Knuth, who, after communicating with D. H.
Lehmer and the second author, included an account of it in the second volume of
his excellent series, The Art of Computer Programming [4].   Although it is there at-
tributed to Legendre, this is not entirely correct.as will be shown in Section 6.

In the summer of 1970 the authors decided to use the IBM 360/91 at the UCLA
Campus Computing Network to attempt the factorization of Fn   by the continued
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184 MICHAEL A. MORRISON AND JOHN BRILLHART

fraction method.  At that time the method had never been programmed, and there was
still skepticism being expressed that it would work, especially on a number as large as
F1.  It was felt by the authors, however, that the accumulation of data in the method
would eventually overwhelm the number being factored, even though there might be
initial failures.

After a full summer of developing the method, programming and testing, and pro-
duction runs, the factorization of F7 was obtained on the morning of September 13,1970.

2. The Method.   Let A > 1   be an odd, composite integer.  In rough outline
the method is then the following:

Step A.   Expand \JN,  or   \JkN   for some suitably chosen integer  k>l,  into
a simple continued fraction

VkÑ= [q0,qx,"-,qn_x,i-JkÑ +Pn)IQn]
to some point « = «0. For each value of «, 1 < « < «0,  the familiar identity

(0 A2n_x-kNB2n_x=(-l)"Qn,

where AjBn   is the  «th  convergent, implies the congruence

(2) A2n_x=t-l)nQn      (mod A).

We shall speak of the pair of positive integers  (An_x, Q„)  m this congruence as an
"A - Q  pair".

Remark 2.1.  The value of «0   is initially large enough to produce the number
of A - Q  pairs estimated to be sufficient for the method to succeed.

Step B.   Find among the set of A - Q  pairs generated in Step A certain subsets,
called   "5-sets",   each having the property that the signed product   tl,.(- 1)'Q¡   of its
ß,'s is a square. If no 5-set can be found, return to Step A to expand \JkN further.

Step C.   Each 5-set found in Step B gives rise to the congruence

(3) A2 = X\A2_ . = Xl(- 1)'Ö,. = Q2      (mod A),
i i

where   1<A<N.   Compute the A   and  Q  of (3) and the GCD(^ - Q, A) = D
for the  5-sets produced in Step B.  If  1 < D < A for some  S-set, the method suc-
ceeds and D  is a nontrivial factor of A.   Otherwise, return to Step A.

Remark 2.2.  Observe that  Q2   in (3) is not reduced (mod TV).

3. The Method in Detail.   In this section, Steps A, B, and C outlined above will
be explained in enough detail to enable one to write a factoring program using this
method.  The majority of ideas concerned with writing a fast, efficient program will be
presented in Sections 4 and 5.

Step A.  Expand \[kN   into a simple continued fraction by the following algo-
rithm (note Example 3.1):

(i)  Set A_2 =0,^_j = l,Ô_j =kN,r_x = g, P0 = 0, Q0 = 1,  and g =
[V kN],  where the bracket indicates the greatest integer.
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METHOD OF FACTORING AND FACTORIZATION OF   Fn 185

(ii)  Use (4) below to generate  qn   and rn   for « > 0.
(iii)  Use (5) to compute An   (mod TV)  for n > 0. (Note that it is not necessary

to compute  Bn   in this algorithm.)
(iv)  Use (6) to generate g + Pn+X   for « > 0.
(v)  Use (7) to produce  Qn+X   for « > 0.  (For hand computation see Remark

3.7.)
(vi)  Increase  n  by   1   and return to (ii).

(4) g + Pn = qnQn + rn, where 0 <rn < _„,

(5) ^„=M«-i+^n-2     (modTV),

(6) ^+JP„+1=2i-z-„,

(?) Ö„+I =Qn-l+1n(rn-'-n-iy

Example 3.1. Let A= 13290059 and zc= 1. (See [11, p. 773].) Then g = 3645.
The following table contains selected results from the expansion of sfkÑ up to n = 52:

Table 1

- i
o
i
2

3
4

S

10

22
23

26

31

40

52

S + ^H

3645
7290
4034
6513
6997
6898
6318
4779
7144

5622

6248
6576
7273

ß«

13290059
I

4034

3257
1555
1321
2050
1333
4633

226
3286
5650
4558

25

'hi

3645
1

1

4

5

3

4

290

' n

364 S
0

3256
111
293
392
748
986
146
138

2336
598

2018
23

An-\  (mod N)

0
I

3645
3646
7291

32810
171341

6700527
5235158
1914221

11455708
1895246

3213960
2467124

Qn  factored

2 . 2017
3257

5 . 311
1321

2-52-41
31 .43

41-113

2-113
2-31-53

2 - 52 - 113
2-43-53

Remarks.   3.1.   By definition qn = [(V/cA + Pn)IQn],  which is easily seen to
be identical to   [ig + P„)IQ„],  where the bracket indicates the greatest integer.  This
suggests that the algorithm for the continued fraction expansion be arranged so that
the binomial g + Pn   is used instead of Pn.

3.2. The integers Pn  and  Qn   always lie within the following bounds:   0 <
P„ < V/cTV   and  0 < Qn < 2sfkÑ for « > 0.

3.3. The fact that  Qn   satisfies  0 < Qn < 2\JkN   can be used as a .running
check on the arithmetic of the algorithm, since an error will most likely cause  Qn  to
eventually fall outside these bounds.
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186 MICHAEL A. MORRISON AND JOHN BRILLHART

3.4. One method of calculating g  is the following modification of the Newton-
Raphson recursion:   With an initial estimate x0 > \JkN   (which can be calculated
using the square root of the leading part of kN),  successively compute xn+x =
[(x2 + kN)/2xn]   for  « > 0, where the bracket indicates the greatest integer.  When

xn+l -xn>°-   then  8 = xn+V
3.5. The continued fraction expansion of \JkN   is always periodic, because of

the bounds on Pn   and  Qn.  In those cases where the period of y/N   is too short
for the method to succeed, it is necessary to expand   sJkN    for some   k > 1.
For example, the Fermât numbers Fm = 22"1 + 1, m> 1,  require such a multiplier,
since Fm = \g, 2g],  where g - 22"1-1.  More will be said about multipliers in Re-
marks 4.5, 4.7, and 5.3.

3.6. Observe that the congruences (2), (3), and (5), as well as the computations
in Step C, involve only A,   not  kN,  even when a multiplier  k > 1   is being used.
Also observe that  Qn  is already reduced (mod A),  since  k is always small in com-
parison with A and thus  0 < Qn < 2\/kÑ< N.

3.7. Although formula (8) below requires a division and is thus not as good as
(7) for rapid, automatic calculation, it does make hand computation more reliable,
since the division must be exact.

(8) Qn+l =(kN-P2n+x)lQn    for n > 0.

3.8. It may be possible to factor A directly, if Qn   is a square and  «   is even.
For then (1) can be written as kNB2n_x = A2n_x -(Vß„)2, and the GCD(4„_, -\¡Qn, A)
may yield a factor of A.   A special case of this is when  Qn = 1, which occurs only
at the end of a period.  (For most numbers the period length of the expansion of
y/kN   is approximately  VkN.)

Example 3.2.  In the expansion of V13290059    shawn in Table 1,  Q52 = 25
and the  GCDC451 - \[Qç~2, TV) = GCD(2467119,13290059) = 4261.

Example 3.3.   Let A = 209  and  k = 1.  In the expansion of \/2Ö9, An =
153   and  Q8 = 1.  Thus   1532 = 1   (mod 209), which yields the factorization
209 = 11-19.

Step B.  This phase of the method is twofold: namely, determine if any S-sets
exist in the set of A - Q pairs generated in Step A and find some of them when they
do.  As it happens, a simple procedure can be devised which will solve both of these
problems simultaneously.   It requires, however, that the  ß„'s  involved have been com-
pletely factored.

For the present we set aside the question of factoring the   _"„'s  (this is dealt
with in Section 4), only mentioning here that not every  Qn  generated in Step A is
completely factored, since the present method works much more rapidly if the  Qn's
with large prime divisors are not used.

Suppose, then, that we have a set of  A - Q   pairs in which each Qn   has
been completely factored.   Let F be the set of these  gn's  and let / be the cardin-
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METHOD OF FACTORING AND FACTORIZATION OF  F? 187

ality of F. It is clear that when multiplying Qn's from F to form a square, those
primes which divide some  Qn   to an odd power ("odd-power" primes) must be given
special consideration.  To do this efficiently, we first introduce binary "exponent" vec-
tors and devise a procedure for working with them.  To record our work, each expo-
nent vector is assigned a companion "history" vector.

Let the  ßn's  in F be given a definite ordering.  Let the odd-power primes
dividing the members of F also be given a definite ordering, say, p1; p2, ••• ,pr
(this is usually derived from the ordering of F). With the  z'th element of F (say it is
Qn) associate the signed "exponent" vector e¡ = (a0, ax, ••• , ar), where

!1,  if «  is odd,
0,  otherwise,

and for   1 < / < r,

!1,   if p-  divides  Qn   to an odd power,

0,    otherwise.

Note that the sign bit  a0   corresponds to the sign  (-1)"   in Eq. (2) and is found
from the subscript «  of Qn   and not from the index z  of the ordering of F.

For each e,-,  the companion "history" vector is hi = (ßx, ß2, •••, ßA where
for   1 <«? </

!1,    if m = i,
0,    otherwise.

Example 3.4.   Using the data of Table 1, let  F = {ß3 = 5 • 311, ßs = 2- 52 -41,
_>22 = 41 • 113} and let the elements of F be ordered as listed.   Then   / = 3   and
r = 5.  Let Pj = 5, p2 = 311, p3 = 2, p4 = 41,  and p5 = 113.  The exponent and
history vectors are then:

ex = (1, 1, 1,0, 0, 0) and «,=(1,0,0),
e2 =(1,0, 0, 1, 1,0) and «2 = (0, 1, 0),

e3 =(0, 0, 0, 0, 1, 1)   and   «3 = (0, 0, 1).

Note in e2   that a0 = 1,  since the sign is  (- l)5,  and a, = 0,  since Pj = 5
divides Q5   to an even power.

Given these associations, it is obvious that a signed exponent vector can also
be associated in the same way with the product of two ß„'s from F, and that this vector
will merely be the vector sum of the exponent vectors associated with these ß„'s, the sum
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188 MICHAEL A. MORRISON AND JOHN BRILLHART

being computed in the r + 1 dimensional vector space Z2      over Z2,   the integers
(mod 2).  Furthermore, that these particular  ßn's were multiplied can be "recorded"
by also adding their two companion history vectors in the vector space  ZÇ

Example 3.5.  Using the vectors of Example 3.4, it is clear that (1, 0, 0, 1, 0, 1) =
(1, 0, 0, 1, 1,0) + (0, 0, 0, 0, 1, 1) = e2 + e3   represents the square-free part of
(- ß5) (ß22) = - 52 • 2 • 412 • 113.  (Note the order.) The history vector associated
with this product is  (0, 1, 1) = (0, 1,0) + (0, 0, 1) = «2 + «3,  the sum being com-
puted in Z\.

Suppose now that F contains all the  ßn's belonging to some S-set.  Then the
set of exponent vectors associated with F contains a subset whose sum is the zero
vector, since this is the vector associated with a (positive) square.  Thus the existence
of an S-set among the A — Q  pairs under consideration is equivalent to the set of ex-
ponent vectors being linearly dependent in Z2+1.

The following reduction procedure, which is the forward part of Gaussian elim-
ination (carried out from right to left), will determine whether the set of exponent
vectors is linearly dependent in Zr2  1. Note that the effect of step (iii) (b) is to re-
cord which vectors have been combined.

In describing this procedure, the phrase "rightmost 1" will refer to the 1 far-
thest to the right in an exponent (not history) vector.   For example, the rightmost 1
in  e = (1, 0, 0, 1, 0, L 0, 0)  has been underlined.  The components of the expo-
nent vectors are numbered  0  to  r  from left to right.

Reduction Procedure

(i) Set ; = r.
(ii) Find the "pivot" vector e,  of smallest subscript whose rightmost 1 is in the

;'th  component.   If none exists, go to (iv).
(iii) (a)  Replace every vector  em, i <m <fi  whose rightmost 1 is in the

/th component, by the sum  e¡ + em,  computed in Zr+l.

(b)  Whenever  em   is replaced by  e¡ + em,  replace  hm   by  «,- + «m,
computed in Z{.

(iv) Reduce / by 1.  If j> 0,  return to (ii).  Otherwise, stop.

If upon the completion of the above procedure some vector, say  es,  is zero,
then an S-set exists.   For each such S-set,   we say that an   S-congruence,
A2 = Q2   (mod A),  is produced.  The actual A - O  pairs involved are easily deter-
mined from the history vector hs.

Example 3.6. For hand computation, each exponent vector and its companion his-
tory vector may be placed side by side to form a row of an  / x (r + 1 + f)
matrix.  Using the information from Table 1, let F= {Q5, Qx0, Q22, Q23, Q26, ß31, _40}-
Suppose F has been ordered as listed, and let the order of the primes be as below.
(Note a column for   5   is not used.)  Then the initial matrix would be:
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Sign    2    41    31    43    113    53

1
0
0
1
0
1
0

1
0
1
0
0
0
0

0
1
0
0
1
0
0

0
1
0
0
0
0
1

0
0
1
1
0
1
0

0
0
0
0
1
0
1

12    3    4    5    6    7

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10
0 0 0 0 0 0 1

Reducing the above matrix in the manner described earlier yields:

**

**

Sign    2    41    31    43    113    53

1
0
0
0
0
0
0

1
0
0
0
1
0
0

1
0
1
0
0
0
0

0
1

0
0
1
0
0

0
1
0
0
0
0
0

0
0
1
0
0
0
0

0
0
0
0
1
0
0

12 3 4 5 6 7

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
10 110 0 0
0 0 0 0 10 0
10 10 0 10
0 10 0 10 1

The three starred rows in the reduced matrix represent S-congruences. The
A's  and ß's  of these congruences will be computed in Step C below.

Remarks.   3.9. Care must be taken that only those vectors (rows) are combined
whose rightmost   l's  are in the component (column) being examined.  Thus, for exam-
ple, in the reduced matrix it is wrong to combine rows 1 and 3 (assuming that the third
column-that under 41-is being processed).

3.10. For reasons of speed, which will be discussed further in Remark 5.11, the
procedure for processing the exponent vectors was carried out from right to left, rather
than the more customary left to right.

3.11. In a binary computer, vector addition (mod 2) is equivalent to the opera-
tion "exclusive-or".

3.12. Sometimes the form of  A   provides an  "A - Q  pair"   which can be
input to the program.  For example, if A = Fm   is a Fermât number, then
(22m~')2=-l   (mod TV).  Or, if A divides the Fibonacci number   U2n+l,  then
the identity   U2n+X = U2n+X + U2n   yields   U2n+x=~U2n   (mod TV).

Step C.   Since this step is directed toward the calculation of the  GCDL4 - Q, TV),
it is sufficient to know both A   and  ß  (mod A).
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By virtue of its definition in (3), A   (mod TV)  may be computed by simply
forming the product of the appropriate A ¡'s,  reducing  (mod TV)  after each multiplica-
tion.

The value of ß  (mod TV)  may, of course, be found directly by first computing
the product  ß2,  taking a square root, and then reducing the result  (mod TV).  (Note
that the reduction cannot be done before the square root is taken.)  This direct ap-
proach, however, makes use of modular arithmetic only once-the final reduction.  It
also requires that the square root of an extremely large number be calculated, which is
a time-consuming process even on a fast computer.

In contrast, the indirect approach outlined below makes full use of modular re-
duction, takes advantage of the "overlap" of the  ß,'s,   and quickly produces  Q,   the
least positive remainder of ß (mod TV).  For convenience, let the  ß,  of the particu-
lar 5-set be renumbered  ß,, ß2, •••, Qs, s>2.  The letters /, Q, R, and X repre-
sent variables, while the arrow indicates replacement.

Square Root Procedure

(i)  2~* I, 1 -»• Q, Ql —Ä        (V)/+1_>_
(ü)  GCD(/?, Qj) —*■ X (vi)  IF / < s  GO TO (ii)

(iii) XQ   (mod N)-^Q (vii) y/R -> X
(iv)  iR/X) (Qj/X) -» R (viii)  XQ   (modA)^ß

The value of R in step (vii) above is relatively small. For this reason ordinary meth-
ods will quickly produce the square root required (see Remark 3.4).

The actual GCD calculations in this part are straightforward and present no
difficulty. On a binary computer they can even be performed without division, as
noted in Knuth [4, p. 297].

Example 3.7.  Using the history vector in row 7 of the reduced matrix in Exam-
ple 3.6, we have the following 5-congruence:

(6700527 • 11455708 • 3213960)2 = (2 • 31 • 43 • 53)2   (mod A)

or   1412982 = 1412982  (mod TV).  This represents one of two types of failures which
can occur.

Using the history vector in row 6, we have

(171341 • 5235158 • 1895246)2 = (2 • 52 • 41 • 113)2  (mod TV)

or   130584092 =2316502   (mod TV).  But the   GCD(12826759, 13290059) = 1
and the method fails.

Using the history vector in row 4, we have

(171341 -5235158. 1914221)2 =(2-5-41 • 113)2   (modA)

or   14695042 = 463302   (mod A).  This time the  GCD(1423174, 13290059) = 4261
and A =3119-4261.
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Remarks.   3.13. It should be mentioned that multiplying two „-congruences,
each of which has failed to factor A,   will produce another 5-congruence which will
also fail to factor A.

3.14.  Although not evident from Example 3.7, it seems that fewer failures are
encountered if those   S-congruences corresponding to zero vectors of largest sub-
script are tested first.  This is equivalent in the matrix formulation to trying those at
the "bottom" of the matrix first.

4. Factoring Qn. As was mentioned earlier, it is faster to ignore ßM's containing
large prime divisors than it is to completely factor every Qn generated in Step A. This is
not really surprising, since the true worth of any  Qn   is based on whether or not we
can find an S-set to which it belongs, and when a large prime divisor p  is involved,
there is little chance it will appear to an even power.  Thus we must discover at least
two  ßn's  having p  as a divisor before there is any possibility of finding 5-sets con-
taining such  ß„'s.  However, it is unlikely that the continued fraction algorithm will
produce two such numbers in a reasonable amount of time.

Having made an a priori decision, then, as to when a prime shall be considered
"too large", we proceed by attempting to factor the  ß„'s using only primes less than
this predetermined value.  In our original program, written to factor F7,  we adopted
this simple strategy, using in Step B only those  ßn's  which completely factored over
the given set of primes, called the "factor base".

The following theorem is of great practical importance, since it enables one to
exclude about one half of the primes which might otherwise be included in the factor
base.

Theorem.   If in the continued fraction expansion of \JkN  an odd prime p
divides Qn,  « > 1,  then the value of the Legendre symbol (kN/p) is 0 or  1.

Proof.   Suppose   «>1   and  plß„.   Then Eq. (1) implies that  A2_1 =
kNB2_x   (mod p).  But p  cannot divide Bn_x,   since it is known that
GCD(An_v Bn_x) = 1.  Thus  iAn_x¡Bn_x)2 =kN (mod p)  and  kN  is a quadra-
tic residue of p.    Q. E. D.

The factor base can now be chosen by selecting a certain number of the smallest
possible odd primes p  for which  tkN/p) = 0  or   1.  In addition, the prime 2 is
always included in the factor base.  (In selecting these primes, one should, of course,
check that no p  divides A.)

A refinement of the factor base approach, which effectively cuts the total run-
ning time by almost one half, has been used in later versions of our programs.  It is
based on the fact that after discovering the second largest prime divisor of a  Qn,  the
factorization is essentially completed.  It is possible to identify the second largest prime
divisor whenever, after having removed all prime divisors of Qn   which belong to the
factor base, the remaining cofactor is less than p2   (where px   denotes the largest
prime in the factor base).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



192 MICHAEL A. MORRISON AND JOHN BRILLHART

Since p\   is quite large (even for px   as small as, say, 503), it becomes neces-
sary to introduce an "upper bound" (UB) so that essentially worthless factorizations
(those with large prime divisors) can be recognized and ignored as before.  Thus in the
refined approach, a  Qn   is passed to Step B only if either (1) it completely factors
over the factor base, or (2) all of its prime factors, except the largest, lie in the factor
base, and the largest is less than UB.

The advantage of this modification is that a much smaller factor base can be used
and thus the set of factored  ßn's  can be produced with considerably less dividing
(see Remark 7.2).   Regardless of which of these factor base techniques is used, when
a "reasonable" number of the  ß„'s  have been factored, the A - Q  pairs obtained
are processed in the manner described in Steps B and C.

Remarks.   4.1.  Determining the optimal values for the number FB of primes in
the factor base and the upper bound UB seems mainly to be a matter of experience.
Currently, we are using the values listed in Table 2.

Table 2

Number of
digits in A FB UB

< 20 60 3000
21-23 150 10000
24, 25 200 14400
26-28 300 22500
29, 30 400 29000
31,32 450 36000
33, 34 500 36000
35, 36 550 36000
37, 38 600 44000
39, 40 650 53000
41-46 700-1000        63000

4.2. The factoring of the ßn's is time-consuming, requiring better than 90% of the
total running time for most numbers. A slight increase in speed may be obtained by dis-
carding those  ôn's which still remain larger than some predetermined value (such as
1015), after a certain number of the primes in the factor base have been tested (say
one half).

4.3. The Legendre symbol is evaluated as usual by the quadratic reciprocity law
and the formula  (2/p) = (- 1)0> -O/s   On a binary computer the symbol's evalua-
tion can be carried out rapidly in a way similar to the binary GCD method in Knuth

[4, p. 297].
4.4. It appears from experience that most of the primes in the factor base do

divide some  Qn.  Thus, it seems unlikely that there are other conditions which could
be used to reduce the factor base further.  (Note that the primes dividing  k  should
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be included in the factor base. For example, in the expansion of \J251F1, the prime 257 di-
vides   ß80 j 8 = 24 • 3 • 7 • 43 • 257 • 503 • 4733 • 5303 • 9431   as well as many other
Qn)

4.5. A multiplier  k  may be chosen in such a way that many of the small primes
lie in the factor base.  This seems to be advantageous, even though in doing so  k  may
have to be a two or three digit number.   For larger  k,   the advantage of having numer-
ous small primes in the factor base must be balanced against the resulting increase in
the size of the ß„'s. (See Remark 5.3.)

4.6. In the interest of maximum output, several inconclusive experiments have
been conducted in which only certain  ß„'s were selected for factoring.  Such strate-
gies have included considering only  ß„'s  which were smaller than a fixed amount, say
\JkN/ 103;  or  ß„'s which were divisible by 24 or 30; or, as suggested privately by
R. Schroeppel, only  ßn's  for which qn   exceeds a fixed value (as high as 300 for
large TV).  There is considerable need for further experimenting here.

4.7. If several  fc's  are used for the same A,   the complete set of A - Q  pairs
obtained can still be processed in Step B.  (See Remark 3.6.)  In general, of course, a
single value of k  should be used, since otherwise more factored  ß„'s would be re-
quired to produce an 5-set.

5. Program Details.  It was decided early in our work that two programs should
be written in order to have an economical set-up which would run easily in the time-
sharing system at UCLA.  The first program, RESIDUE, would generate the A - Q
pairs and factor the  ßn's, while the second program, ANSWER, would process the re-
sulting information.

The alternative was a single program which would factor a  Qn   and then process
the A - Q  pair immediately.  Such a program would continue to require more mem-
ory space the longer it ran, thereby proving to be both expensive and difficult to operate.

The following comments give a description of each program's capabilities as well
as a more technical discussion of various time-saving ideas.  (The major input param-
eters are also given.)  It should be pointed out that both RESIDUE and ANSWER are
PL/1 programs using machine-language subroutines for multi-precise arithmetic compu-
tations, factoring the  ß„'s, and vector manipulation.

RESIDUE.   This program accepts as input:
- the number A to be factored  (< 46 digits)
- integers G  and H (if known) such that  G2 = - H2   (mod TV)
- a multiplier  k,  0 < k < 231   (see Remark 5.3)
- the number (FB) of primes desired in the factor base
- an upper bound (UB) (see Section 4)
- the number (LIM) of factored  ß„'s  desired (see Remark 5.5)
- an upper limit (QL) on the subscript  «   (see Remark 5.6)
- restart values (when used) «, An_ x, Qn_ x,An, g + Pn, Qn, qn, rn  (see Re-

mark 5.7).
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In addition to its main function of generating A - Q  pairs whose  ßn's have
been completely factored, RESIDUE prints both input and restart data, tests A to de-
termine whether it is composite or pseudo-prime (see [1]), checks restart values, and
attempts to factor A when it recognizes that some  Qn   is a square.

Remarks.   5.1.  When computing qn,   three subtractions of   Qn   from g + Pn
were tried before division was resorted to.  This was based upon the fact that approxi-
mately 41% of the partial quotients in a simple continued fraction expansion are 1,
while about 17% are 2 and 9% are 3.  (See [9, p. 122].)  Since multi-precise division is
significantly slower than subtraction, this approach produces the expansion more rapidly.

5.2. On the IBM 360/91 a fixed-point divide requires 36—37 cycles, while a
(double-precision) floating-point divide takes at most twelve cycles.   (One cycle equals
sixty nanoseconds.)  For this reason, floating-point arithmetic was used to factor the
Qn 's.  For each prime p in the factor base (the primes were stored in memory in
floating format), it required only one floating divide to check whether p   divided  Qn
if Qn < 255,  and even though the remainder had to be computed, the overall result
was a divisibility test performed'in less than one half the time required by fixed-point
operations.  Notice that two fixed-point divides would have been necessary for  Qn >
231, with three divides needed for  Qn > 262.  On the average the floating-point pro-
gramming was capable of about 800,000 divisibility tests per second.

5.3. If k = 0  is input to the program, then RESIDUE chooses its own multi-
plier in the range   1 < k < 97  according to a strategy slightly more complicated than
the following:   for each  k  in the range which allows either 3 or 5 to be in the factor
base, determine the number of primes p, < 31   such that the Legendre symbol
(/cA/p,-) = 0  or   1.  Choose as the multiplier that  k  which allows the largest number
of such primes.  If several  k's  allow this maximal number, compute   2(l/p,-)  for
each, where the sum is over those primes in the factor base which are  < 31.  Pick the
smallest  k having the largest sum.

5.4. The recommended values for factor base size (FB) and the upper bound
parameter  (UB), which are listed in Table 2, represent several years experience and a
considerable amount of experimentation.  Nevertheless, they are only at best a compro-
mise to cover a large range of numbers and seldom represent optimal values for a partic-
ular A.

5.5. When LIM = 0  is input to the program (the recommended procedure),
RESIDUE terminates itself when the number of factored  ß„'s  exceeds the appropriate
value of LIM in Table 3.  This dynamic limit is recomputed each time a new  Qn   is
factored.  Table 3 contains empirical formulas for predicting when sufficient informa-
tion exists to factor A by means of an 5-congruence.  These formulas are designed to
be used with the values of UB listed in Table 2.   The results to date have been fairly
satisfying.  If, however, it happens that there is not sufficient data to factor A,   then
additional A - Q  pairs (with  Qn   factored) are obtained, 50 or 100 at a time.

5.6. The purpose of the input parameter  QL  may not be readily apparent.  It is
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Table 3

Number of Dynamic
digits in A LIM

< 30 .80(FB + Y)
31-34 .82 (FB + Y)
> 35 .84ÍFB + Y)

Y = current number of factored   ßn's  with
their largest prime divisors lying outside
the factor base,

FB = number of primes in the factor base.

possible that, in the time allotted, RESIDUE might not be able to obtain the required
number of factored  ß„'s.  In such a case, the operating system would terminate the
program and no restart values would be printed, necessitating that the program be rerun
if A cannot be factored with the data at hand. To avoid this, RESIDUE is designed to
terminate (with restart data printed) whenever the subscript n  exceeds  QL.  In practice,
then, the value of QL  is determined by the speed of the particular computer and the
allotted running time.

5.7. Whenever restart values are entered, RESIDUE verifies them by the follow-
ing four checks performed in sequence:

(i)  Is A2„_l=i-l)"Qn   (mod TV)?
(ii)  Does  Q__. = (kN - P2JQnl

(iii)  Does g + Pn= qnQn + r„1
(iv)  Is A2n=(-\)"+lQn+x   (mod A)?

(To find  Qn + j   use (7), after first computing g  and  rn_x(= g - Pn   from (6)).)
5.8. The output from RESIDUE for each A - Q  pair (for which  Qn   was fac-

tored) was designed to fit on two cards;   the first contained  n, An_x,  and  Qn; the
second contained  n  and the odd-power primes (up to fifteen in number) dividing  Qn.

ANSWER.   This program accepts as input:
- the number A to be factored  (< 46 digits)
- integers  G  and H (if known) such that  G2 = - H2   (mod A)
- the total number  (QTOT)  of A - ß  pairs to be input (Note: QTOT = f)
- an upper bound  (PTOT)  on the total number of distinct primes in the factor-

izations (usually  FB + Y)
- the (card) data output by RESIDUE (see Remark 5.8).
In addition to deciding whether any S-congruences exist (and attempting to fac-

tor A if they do), ANSWER prints the input data (exclusive of the A - Q  pairs) and
performs a pseudo-prime test on any discovered factors of A.   In the event that there
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are composite factors of A,   ANSWER continues to process any remaining 5-congru-
ences in an attempt to completely factor A.

Remarks.   5.9.  ANSWER constructs six arrays in memory: two arrays of multi-
precise numbers (one for the j4„_j's and one for the ß„'s), two arrays of bit vectors
(one for exponent vectors and one for their associated history vectors), a table of
primes, and a table of pointers.  All six arrays are constructed simultaneously as the
A - Q  pairs and the factorizations of the  ßn's  are input.

5.10. The table of primes mentioned in Remark 5.9 is constructed and used as
follows:   The first prime of the first factorization is placed in the first position of the
prime table and the first bit of the first exponent vector is set to 1 (recall that the sign
is placed in the zeroth bit).  Subsequently, any prime p  of a particular factorization
is compared with the primes Pj, p2, •••, pm   already in the prime table.  If p  equals
some Pj, then the ;th bit of the corresponding exponent vector is set to 1.  Other-
wise, p  becomes pm + x   and the  (m + l)st  bit is set to 1.  All the vector arrays are
"zeroed out" initially.

5.11. The main reason the reduction procedure of Step B is performed from right
to left on the exponent vectors is that there will be less combining of vectors than if
the operation proceeded from left to right.  This is a result of the construction of the
prime table which tends to place the small primes in the early part of the table.  They
are thus represented by the left components of the exponent vectors, while the large
primes tend to be represented on the right.   Hence, vectors which may have small
primes in common will be excluded from any mutual combining very quickly if their
largest primes do not agree.

5.12. The pointer table mentioned in Remark 5.9 enables the procedure dis-
cussed in Step B to be done swiftly with only occasional scanning of the (rather
sparse) exponent vectors.  To each exponent vector there corresponds an entry in the
pointer table—its pointer (see Remark 5.13).   The value of this pointer indicates the
vector component containing the rightmost 1.  Two pointers agree if and only if their
corresponding exponent vectors have their rightmost l's in the same component.

In using the pointer table, a scan pointer is first established.   Initially, this corre-
sponds to component  r.   Beginning with the first pointer in the table, each entry in
the pointer table is compared with the scan pointer.  If a match does not exist, then
no exponent vector has a rightmost 1 in that component.   In such a case, the scan
pointer is reduced so that it points to the next component to the left and the process
is repeated until all components have been examined.

If, on the other hand, a match occurs, the first match establishes the "pivot"
vector.  This vector is exclusive-ored (component-wise addition in Z2)  into those
exponent vectors corresponding to subsequent matches with the scan pointer.  Thus,
only this pivot vector will retain its rightmost 1 in the component being considered.
When the pivot vector has been combined with another vector, it is necessary to locate
the new rightmost 1 in the new vector and update its pointer.   (It is during this opera-
tion that zero vectors are found.)
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When no further matches with the scan pointer exist, it is reduced so that it
points to the next component to the left, and the entire process is repeated until all
components have been examined.

5.13. Pointer design.   Assume the computer being programmed has a 32 bit
(4 byte) word.   Suppose each exponent vector begins on a full word boundary.   Let
this be the Oth word of the vector.  Assuming the bits of each word are numbered 0
to 31 (left to right), it is possible to uniquely identify the rightmost 1 of any expo-
nent vector in terms of its word number and its bit number; e.g., given the vector

Word 0 Word 1
26_

10010000000000010100000100000111      0000010 •••0.

The rightmost 1 has word number 1, bit number 5.
Let each entry in the pointer table occupy two consecutive bytes (or a full word

if the machine lacks half-word capability).  The left byte contains the word number,
the right byte (in its five most significant bits) the bit number.   For the vector above
the pointer would be

Left byte       Right byte
00000001       00101000-

When constructing an exponent vector, each time you advance one component
to the right, the addition of 8 to a register containing the pointer will correctly update it.

5.14. ANSWER, as presently written, requires large amounts of core as indicated
by Table 4.  However, as indicated in Table 7, it requires very little running time.
RESIDUE, on the other hand, seldom needs more than 140K.

Table 4

Number of Average core for
digits in  A ANSWER (in   K)

20 150
21-25 220
26, 27 280
28-30 360
31,32 440
33, 34 500
35, 36 750
37, 38 880

By sacrificing speed, ANSWER may be tailored for machines with limited core.
It is not necessary, for example, to store the A - Q  pairs internally.  They may be
placed on disk or tape in such a way that it is possible to locate any desired pair rather
simply.  Also, it is not necessary that the array of history vectors (when considered as
a matrix) be rectangular-lower triangular is sufficient.

The output of RESIDUE may be scanned before it is passed to ANSWER.
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During such an intermediate step, a factorization is flagged if its largest prime is un-
matched and lies outside the factor base.  It will then be ignored by ANSWER.  For
most A, 25% or more of the factored A — Q  pairs can be discarded on any given run
of ANSWER.  Of course, the factorization of any  Qn,  which is completed within the
factor base, would not be flagged.

If a scan step is used, the values of UB in Table 2 can be increased in order to
take fullest advantage of possible matches without increasing core requirements.

Finally, the exponent and history vectors may be stored in a compact format and
fully expanded only when they are to be combined.

5.15.  As an option, ANSWER also has the capability of verifying the congruence
A2n_ , = (- 1)" Qn   (mod A)  for each A - Q  pair input.  To date this check has
never caught the IBM 360 in error.

6.   Related Factoring Methods.  The factoring method discussed in the preceding
sections is based on a combination of ideas due to Legendre and Kraitchik.  It is the
purpose of this section to consider these ideas and illustrate their relationship to the
method at hand.

(a)  Legendre [7] wrote Eq. (1) as  kNB2n_x = ^_i ~ (- l)"ß„.  The right
side of this equation can be written as x2 ± ay2,  where x = An_x   and ay2 = Qn,
"a"  being square-free.  Thus, if p  is a prime dividing A,   it must have a linear form
associated with divisors of x2 ± ay2.  For example, if kNB2_x   can be expressed as
x2 - 2y2,  then p  must have one of the forms  8m ± 1.

By combining enough linear forms Legendre built a sieve which excluded many
of the possible divisors of A.   A good enough sieve can be used to find a factor of A
by merely trying (as possible divisors) those numbers which survive the sieve.  When
A is small, a sieve may even be able to establish primality by excluding all possible
factors  < -v/TV

The factoring method of Legendre can, therefore, be described as a direct search
technique which uses a sieve to create a sequence of trial divisors.   As such, it may
fail to find a large prime factor of A.

In contrast, the method of this paper does not use a direct search, since no se-
quence of trial divisors is created.   In fact, the real power of the method lies in
its "indifference" to the relative size of the prime factors of A.   It is thus probably
not correct to refer to the method of this paper as that of Legendre, even though both
depend on the continued fraction expansion of \JkN   (cf. [4, p. 351]).

It is important to note, however, that Legendre's method and other sieving tech-
niques are often quite effective in factoring rather large integers (see [1, p. 88]).   For
example, it was by this method that D. H. Lehmer, G. D. Johnson, and the second
author factored   2101 - 1   on the  IBM 704 (see [4, p. 354]).

Many devices have been constructed to assist in making the use of sieves more
automatic and reliable. The stencils of D. N. Lehmer and the Hollerith card version
of J. D. Elder [13] are of great value in hand computation.  (The booklet accompany-
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ing Lehmer's stencils and Elder's sieve cards contains an excellent resume of factoring
methods.)

Over the last forty-five years, D. H. Lehmer and his associates have built various
powerful machines to carry out the sieving process automatically, rapidly, and accu-
rately (see [8], [10], [12]).  A new shift-register sieve, SRS-181, capable of process-
ing 20,000,000 values per second, is presently being built at Berkeley and is expected
to be operational by the end of 1974.

(b) The factoring methods of Kraitchik [5] do not use continued fractions. In-
stead, he obtains quadratic residues of A by rather ad hoc methods in which the ex-
pressions XA - x2 or A - Xx2 are completely factored for certain choices of X and
x.   For example [5, p. 27], if A = (1023 - l)/9   and  X = 1,  then

A- 1054086570452 = 2 • ll2 • 13 - 592 • 712 - 107- 131 • 163
or

1054086570452 = - 2 ■ ll2 - 13 - 592 • 712 • 107- 131 • 163   (mod A),

which implies - 2 • 13 • 107 • 131 • 163   is a quadratic residue of A.
The residues found in this way are then employed either to set up a sieve, as in

Legendre's method, or to create "cycles" (Kraitchik's terminology), that is, to select
certain congruences, „?= R{  (mod TV),  whose product will yield a square on the
right side (possibly with some cancelling).  For example [6, p. 201], if A = 721 • 228
+ 1 = 193541963777,  then he finds the congruences

4399352 = 28 • 72 • 67    and    16092 • 72 • 67 = 4494902   (mod A).

Multiplying these and cancelling  72 - 67  gives  7078554152 = 71918402 (mod A).
Thus the  GCD(700663575, A) = 9342181   and A = 20717 • 9342181.  (Readers of
Kraitchik's works should beware of numerical errors.)

Remarks.   6.1.  It should be pointed out that when cycles are used, it is not
necessary to set up a sieve as in Legendre's method.  This is a great advantage, since
sieves demand considerable care in their construction and use.

Even though the use of cycles is a major part of the present method, it is not
correct to attribute this method to Kraitchik, since he did not use continued fractions
to obtain quadratic residues of A,   as in (2).

6.2. Kraitchik uses the multiplier X as we do to gain some control over which
primes can divide  X/V - x2   (cf. Remarks 4.5 and 5.3).

6.3. When A is expressed as x2 - y2,  a nontrivial representation infallibly
gives a factorization of A.   Unfortunately, this representation is usually discovered by
sieving, and sieving, at present, does not compete with the method of this paper.  At
this time, the only known possible rival to the present general method is that due to
Shanks [17].   However, Shanks' method has not yet been programmed in machine
language, so an accurate comparison cannot be made.

7.  Numerical Results.  Factoring F7.  In 1905, Morehead [14] and Western
[18] each proved that
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F7 = 2128 + 1 = 340282366920938463463374607431768211457

is composite.  They used the well-known theorem of Proth [16] which states that Fm =
2im + 1   is prime if and only if 3(Fm~ 1)/2 = - 1   (mod Fm),  m > 1.

In our attempt to factor F7   it was first necessary to choose a multiplier  k > 1,
both to produce an expansion with a long period and to allow small primes to be in
the factor base.  The choice  k = 257  was made only after some experimenting with
other values, such as   17, 3617, 22697, and 1516609494.  Each was compared with
257 on the basis of how many of the first 5000  Qn's  could be completely factored
over a factor base of the first 2700 "acceptable" primes.

From the first 1,330,000  ß„'s  of the expansion of \J2S1F7, 2059   complete
factorizations were obtained.   On the average, the program processed   250 ß„'s per
second and yielded one completely factored  Qn   about every three seconds.  After
the program was run for about ninety minutes over a period of seven weeks, the accu-
mulated data was processed by ANSWER using 1504K bytes of memory.   The first
four S-congruences failed to factor F7.  The factorization of F7   (see [15]), which
is the first entry of Table 6, was found using the congruence:

2335036483808358521772321436182279564762
= 2518647814572804129731227193485202122232 (mod F7).

Although in its current form the factoring program could now probably factor
F7 in about fifty minutes (using â small factor base and an upper bound), the pros-
pects of using it to factor F8, a number of seventy-eight digits, are not very bright,
since the size of each  Qn   would be about that of F7.

Remarks. 7.1.   In the expansion of \J2S1F7,   the even   ß„'s  were automat-
ically divisible by 8.  This is a result of Eq. (1), which states that A2_x - 257F7B2_X =
(- l)"ß„,  and the fact that the  GCD(,4n   ,, Bn^x) = 1.  For if Qn   is even, then
both An_ ,   and  Bn_x   must be odd.  Thus, the equation taken (mod 8) implies
that   8|ß„.

7.2.  Table 5 contains some statistics, derived from the expansion of \/251F7,
which strikingly illustrate the increased rate at which factored  ßn's  can be produced
when a small factor base is used and the largest prime divisor of a factored  Qn   is not
required to be in the factor base.  (Note that 52183 was the largest prime in any fac-
tored  Qn.  See Section 4, Paragraph 2.)

Other Results.   With the factorization of F7   completed, the original programs,
and later revisions, were used to factor other numbers of interest.  These are mainly
of two types:

(1) a" ± 1,   or one of its composite, primitive factors,
(2) Un or Vn, or one of their composite, primitive factors. Here Un de-

notes the zzth Fibonacci number and Vn denotes the «th term of the associated
Lucas sequence (see Jarden [3]).
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Forty-two factorizations (including F7), which were completed by the method
of this paper, are given in Table 6.  In each case the factorization accomplished con-
sisted of finding the two largest (nonalgebraic) prime factors.

Table 5

%ß„   indicates the percentage of factored  Qn (out of a total of 2059)
whose 2nd largest prime divisor is less than the BOUND.

%P    indicates the percentage of primes in the factor base (out of a
total of 2700) less than the BOUND.

BOUND %Qn_%P_
8000 43.90 17.78
9000 47.94 19.85

10000 52.45 22.11
11000 56.14 24.33
12000 59.64 26.00
13000 63.14 28.11
14000 66.39 30.07
15000 69.74 32.30
20000 80.91 42.33
25000 88.00 51.96
30000 93.35 60.59
40000 98.45 79.26
52183 100.00 100.00

The forms of the numbers in entries 4 and 10 of Table 6 arise from the Auri-
feuillian factorizations:

6!2«+6 +  j  =(64„ + 2  +  1)(64n + 2_63n + 2  +3.62«+l   _6«+l   +  j)

.(64n + 2  +63« + 2  +3-62„+l   + çn + 1   +  j)

and
126«+3 + j = (122"+« + l)(l22n+1 -6- 12" + 1)(122"+1 + 6- 12" + 1).

In Table 6, any algebraic (see [1, p. 87]) factors are placed before the colon,
while an asterisk following a factor indicates it was first discovered by either D. H.
Lehmer, Emma Lehmer, and J. L. Selfridge, or by Bryant Tuckerman at the IBM Re-
search Center, Yorktown Heights, New York.  These factors are included here with
their kind permission.

Remark 7.3.  Although the most effective strategy for choosing a multiplier
seems to be rather elusive, the following three examples clearly illustrate the importance
of the multiplier  k.

1.  The composite thirty-one digit cofactor A  of   K273   (entry 34 of Table 6)
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factored in about seventy seconds with a multiplier of k = 1.  Here  (A/p) = 1   for
seventeen out of the twenty-four odd primes less than one hundred as shown below:

A = 1895779504507826667970479592081.

The factor base included   3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 53, 59, 61, 71, 73, and 79.

Table 6

1. 2128 +  1 = 59649589127497217-5704689200685129054721

2. 577 - 1 = 22-19531-12207031:527093491*- 8090594434231-162715052426691233701

3. 593 +  1 = 2-32-7.1303-21207101-28086211607 : 258065887*-75005167927
•5 3345671490722200466369

4. 646 + 635 + 3-623 + 612 +  1 = 97: 23027140435639321-279219519230141641

5. 753 +  1 = 23: 107-345449549*-35416476134069-58902316970027001503

6. 775 +  1 = 23-ll-43-191-6568801-79787519018560501 : 151.6005492312551
•7021370289199888801

7. ll41 +  1 = 22.3 :711628063*-1216150172449.479378523680060338823

8. 11 5S — 1 = 2-52-322L15797-1806113: 25301-39161-643170158708221
•645654335737185721

9. ll60 +  1 = 2-41-7321-10657-20U3-1120648576818041 : 52020741601
•40589999671017742452961

10. 1233 - 6- 1216 +  1 = 1657 : 5690162377645219.43504476926662819

11. 1237 +  1 = 13 : 5250079*.4150805645839.30023720899326796981

12. 1238 +  1 = 5-29 : 1977673*.176477034940417.2016864235215616489

13. 1270 +  1 =  52-29-673-85403261-13156924369: 71874601*. 10365509281*
•1612092376073761.5298455664688950121

: 1639343785721-389678749007629271532733

: 15761-25795969-227150265697-717185107125886549

16. U229 = :457-2749-40487201.132605449901-47831560297620361798553

17. !7243 = 2.17-53-109.2269.4373- 19441 : 448607550257-16000411124306403070561

18. t/249 = 2-99194853094755497: 1033043205255409-23812215284009787769

19. U279 = 2-17-S57-2417-4531100550901 : 11717-594960058508093-6279830532252706321

20. U37S = 2-53-61-3001-230686501-158414167964045700001 : 9001-169501
•41510105455501-9906293406944653501

21. VX52 = 47 : 562766385967-2206456200865197103

22. VX69 = 521 : 596107814364089-671040394220849329

23. VX76 = 2207 : 1409-6086461133983-319702847642258783

24. K179 = :359-1066737847220321-66932254279484647441

25. K181 = :97379.21373261504197751-32242356485644069

26. Kj84 = 47 : 367-37309023160481-441720958100381917103

27. V19l = :22921-395586472506832921-910257559954057439
22-4021-24994118449 : 2686039424221-940094299967491

199-9349 : 419-20669776469-2959707364050967146316591

See Section 7.
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30. K246 = 2-32-163-800483-3S0207569 : 67031206681-46724505421882309671121

31. V249  = 22-221806434537978679: 499-43084912634851-572087591261946589

32. V250 =  3-41-401-570601 : 1353439001-5465167948001-84817574770S89638001

33. V2M =  2-47-1103-52337681992411201 : 893844775132847-3068718630789795983

34. K273 = 22-29-79-211-521-859-689667151970161 : 1836084445651-1032512153239041931

35. V2S0 - 47-1601-3041-10745088481 : 6135922241.164154312001.13264519466034652481

36. V290 =  3-41-347-1270083883:5801-52201-96281-6854280100961-372961972274566497161

37. V29X =  22-3299-56678557502141579:5496409-320657355925861-4959318126280687189

38. K294 = 2-32-83-281-1427-5881-61025309469041 : 587-1150184101339307
•190773791763188929

39. V297  = 22-19-199-991-2179-S779-9901-1513909 : 220862269-1369471729429
•137096217949680001

40. K303 = 22-809.7879.201062946718741:77569-3334819.42669355669
•37202043349013064289

41. K318 = 2-32-1483-2969-1076012367720403 : 14627.346656889-57157491464963
•116171668216510969

42. V342 =  2-32-227-26449-29134601-212067587 : 683-20521-47881-6368731219987307
•324968740886536921

2. The Fibonacci number  UX73 = 638817435613190341905763972389505493
required more than 800 seconds to factor with  k= 1  (see entry 14 in Table 6). A later
test-run using the program-selected multiplier k = 2  showed that the number could
have been factored in less than 200 seconds.

3. Using multipliers of comparable size, entry 27 of Table 6 required 1016 sec-
onds to factor, while entry 29 (approximately the same size) needed only 365 seconds.

8.  General Remarks.   8.1. The factor programs described in this paper no longer
exist at UCLA.  The latest versions closely approximate a single stage program in their
operation and are now running at the Department of Mathematical Sciences, Northern
Illinois University, DeKalb, Illinois.  By means of JCL, control is passed back and forth
between RESIDUE and ANSWER until in most cases A is factored.  In their present
forms these programs are suitable for general use at a computer center, especially if a
reasonable limit on the size of A is established in order to avoid excessive use of
both time and core.  The power of this factoring package is evidenced in some part by
the information in Table 7 (these figures are based on a comparatively small number
of factorizations).

8.2. Any method which could consistently produce quadratic residues of A
(see (2)) considerably smaller than  2\/A   would be of great interest, since the size of
the residues effectively determines the practical limits for this approach.

8.3. For some reason that is not entirely clear, composite numbers with several
prime divisors seem to factor much more quickly than those of comparable size with
only two prime divisors.  The fact that these extra prime divisors tend to produce fac-
tor bases containing primes slightly larger than normal does not seem to fully account for
the phenomenon.
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Table 7
Average Factorization Times (sees.)

Number of IBM 360/65 IBM 360/91
digits in A RESIDUE    ANSWER    TOTAL TOTAL

16 6.0 2.0 8.0 2.0
17-18 7.5 2.0 9.5 2.5
19-20 19.0 3.0 22.0 5.5
21-22 43.5 5.5 49.0 12.5
23-24 65.5 14.5* 80.0 20.0
25 134.5 15.5* 150.0 37.5
26 275.0 19.0* 294.0 72.0
27 326.5 19.5* 346.0 82.0
28 364.0 20.0* 384.0 88.0
29 585.0 25.0* 610.0 140.0

Assumes an average of 1.5 runs of ANSWER (cf. 8.1)

8.4. It does not appear that either prior knowledge of the form of the factors of
A or knowledge that A has no factors below a certain limit can be used in any way
to speed up the continued fraction factoring method.

8.5. It can happen, as observed in [11, p. 771], that A and  Qn   can have a
factor in common.   Such a factor must also divide Pn   and P„+x.   For example, in
the expansion of s/209, P4 =P5 = ß4 = 11.  However, in some expansions such
as  V2813,   the   GCD(A, ß„) = 1   for every   n.   Whether or not such an approach is
practical in trying to factor a large A has not been investigated, as far as we know.

8.6. It is unfortunate that there does not appear to be any practical approach to
finding S-sets which does not require the complete factorization of some collection of
ß„'s.  If such a technique did exist, it would no doubt greatly speed up the present
method.

8.7. It is very important to realize that once  S-sets begin to appear, increasing
the number of factored  ß„'s by as little as 50 tends to produce a large increase in
the number of 5-sets.

8.8. Having about seven 5-congruences is usually sufficient to factor A. The
method seldom seems to succeed, however, when there is only one such congruence,
and there are examples where it has failed with as many as 25  ^-congruences.
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