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A METHOD OF IMPROVING POWER
SYSTEM TRANSIENT STABILITY
USING CONTROLLABLE PARAMETERS

I. INTRODUCTION

Introduction

To meet the growing demand for economical power, distant
regions are interconnected electrically. A good example is the

Pacific Northwest-Southwest Intertie (15, unnumbered preface).

These lines will tie together electric systems --
public and private -- all the way from Vancouver,

B. C., and Seattle to Los Angeles and Phoenix, in-

cluding the biggest hydro system in America (the

Bonneville Power Administration system), the biggest

municipal system (Los Angeles Department of Water and

Power), and one of the biggest private systems (the

private utilities of California).

As a power system grows, the difficulty of withstanding
unexpected disturbances without disintegration increases.
Immediately following a distufbance, mechanical oscillation
occurs in each generator relative to a reference axis rotating
at nominal shaft speed. The rapid extinction of this oscilla-
tion, which is called damping, improves the system's ability
to remain intact.

Transient stability is a condition which exists if a dis-
turbance does not cause power system disintegration. The addi-

tion of damping will improve transient stability to include an

enlarged class of system disturbances.



It is desirable that the mechanical oscillation of every
generator be given a nearly equal rate of damping since system
separation can occur if a single machine (generator) remains
undamped. Uniform power system damping is that condition which
exists if equal damping is given to every machine oscillation.
Several techniques which introduce damping at local points in
the power system are cited in the Literature Review. A method
of coordinating these techniques is necessary to provide uniform
system damping.

A method is presented in this thesis governing the control
of basic power system parameters to improve transient stability
with nearly uniform damping. The method can be employed to

coordinate local damping techniques.

Statement of the Problem

Power System Model

Power systems are basically composed of a set of generating
plants, a distribution network and a combination of industrial,
commercial and residential loads. An example of a partial power
system is given in Figure 1. In this diagram, a single line
represents a full three phase transmission tie. Ei_éAi is the
effective phase-to-neutral voltage and phasor angle of the ith

machine.
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A positive sequence network model is used in this thesis as
given in Figure 2, The positive sequence network representation
is satisfactory when balanced loading appears on all three elec-
trical phases. Under unbalanced conditions, the zero and nega-
tive sequence networks must also be employed. Power system
disturbances can occur in balanced or unbalanced form. The
positive sequence form can be used for damping purposes when the
disturbed transmission line is removed quickly by circuit breaker
action.

The "dynamic swing equation' which describes oscillation of

the ith generator for a system composed of N generators is

M S =W, -P, -C.4. (1)

6i = the angular rotor displacement from a synchronously
rotating reference axis,

M. = the generator inertia constant,

W. = the mechanical input power to the ith machine minus
all generator and prime mover losses,

C. = the internal generator damping coefficient

and the electrical power output Pi is given by

N
P. - E.%G, +ZE.E.Y..§.. (2)
i i i 1] 13 1)
j=1
where
N
_ (3)
G E‘ij“s 9 3
j=1

Yo LTy = -4 ;5405 for i j, (4)
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A
Y3 LT =0 (5)
A
B..=Cos (T,, - A, +A.) (6)
1 1] 1 J
and
Yij Z:E)ij = a network admittance resulting from (7)

delta-star simplification.

The terms Wi, Ei and Gi can be independently controlled to
introduce power system damping. This thesis provides the de-
velopment of explicit equations for the control of Wi, Ei and
Gi to give nearly uniform power system damping. This work pro-
vides the basis for the coordinated application of local damping

techniques,

Controllable Parameters

Local damping techniques, which are cited at the end of this
chapter, can be shown to control Wi, Gi’ Ei and Yij L Tij'

Each power system generator has a system for controlling the
mechanical input power which is Wi plus all mechanical and
electrical machine losses. Since these losses are on the order
of one per cent, damping action which controls the mechanical
input power also controls.wi. Each generator also has an
excitation system which is normally used to regulate the terminal
vol tage Ei' A supplementary signal may be introduced to control
Ei to give power system damping.

Dynamic braking is a damping technique which involves the

temporary application of special dissipative loads called braking



resistors and the limited removal of consumer loads for short
periods which is called load shedding. Dynamic braking is
principally reflected in the model presented as step changes in
G..

i

Damping may be obtained by the switching of series capaci-

tors in transmission lines which is reflected in the model as
step changes in Yij Z Tij' No equation is developed for the
control of Yij Z Tij’ however, since step changes in this

parameter do not uniquely define switching operations in the

real system,

The Fundamental Error Quantity

To obtain uniform damping it is desirable to employ the
angular acceleration of each generator (3;) as a controlling
error quantity. By this choice, equal emphasis is given to
machines of large or small generating capacity. The "dynamic

swing equation" may be written as

o+ Sig =T h (8)
oMo M,
1 1

Since internal generator damping is light, the right side of
equation (8) represents a good approximation of Zi and is

defined as the fundamental error quantity ei.

Thus

ne>

=
!

lav)

i i : (9)



When the magnitude of ei is large, it closely approximates i,
and forcing ei toward zero also results in forcing Zitoward
zero. As the magnitude of ei becomes small, equation (8) may

be approximated by

which has a stable solution for 3,of

0\-
]

k. exp (-Cit/Mi) (11)

and for Xi of

. C
= - _i - \ (12
3 _i exp( Cit/Mi) )
M,
i
where Ci/Mi must be positive,
Thus for large and small magnitudes of Ei, control action which

forces ei to zero also forces the system to a stable equilibrium

condition.

The Fundamental Error Function

The fundamental error function is defined as

N
I 2z (13)
2) i,

2;1

This positive definite function is employed to determine regula-

ne>

g

tion of controllable parameters which gives uniform power system

damping. The time derivative of equation (13) is



N
g= ) e W, -P) 1 . (1)
j=1 M

If all components of @ are continuously negative, @ asymptoti-
cally approaches zero which implies that ei approaches zero
also. Explicit equations are derived in Chapter II which cause

as many terms of é to be negative as possible.

Measurement of the Fundamental Error Quantity

To apply the damping control equations which have been de-
veloped, €i must bé measured at each generator in the power
system. Currently rotor angular acceleration, zi’ is estimated
by using the approximate time derivative of generator frequency
as given in Figure 3 (5, 11). These devices are used on a
limited scale for damping low frequency tie-line oscillations.
The response of this instrumentation system is limited by the
slow frequency transducers.

Blythe has presented a method for estimating ei as given
in Figure 4 (2).

Under transient conditions, Pi oscillates about Wi' By
employing the filter, G (s), the highest oscillation frequencies
are attenuated, thus giving an approximation of Wi. The esti-
mated ei is the difference between the approximate Wi and Pi'
Although Blythe used a first order filter of time constant 0,
high order forms may also be used. To measure Pi’ a high speed

power transducer must be used. Although a high speed power
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transducer is considered to have lower accuracy than the slow
responding thermocouple model, no difficulty is expected since

only the relative magnitude of éi is necessary.

Statement gi Results

* L ]
Explicit equations governing the control of Wi, Gi and Ei

*
are now given., The expression for Wi control is

]
w. = -¥M. ¢, €, (31)
i 1717
where
Y= a positive system coefficient
and
1 for d|€;1| /dt < 0
99. = (30)
i
0 for d|€i|/dt > o0 .

The general expression for Gi control is

G, = NM €, (34)
E?
i
Where
A = a positive system coefficient.

For discretely operated controllers this becomes
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&, = ZMin U (¢-T,) (43)
1 2
E:
1
where
[1 €>0
i 2
and AG.E"/M. < |€,]
1 1 1 1
n. ={-1 €<o (Lk)
1 1
0] AG EZ/M >le.l
{ i7i’% i
Uo(t—Ti) = a unit impulse occurring at t = T,

and

AGi = the magnitude of the change in Gi'

The term Ti is defined as the time at which |€&| reaches a

maxima.

L
The general expression for Ei control is

E. = n¢ € (52)
ERi + €Li
where
P = a positive system coefficient,
N ~ ~
gnié Z EjYij Bij + Bji €;), (46)
j=1 Mi ei
~ A
B,. =Cos (T.. - A. + A.) (6)
1] 1] 1 J
and
€Li 4 2B,6, (L5)

M.
i



14

The form may be reduced to

E - h¥i& (53)

! Cu

at generators having a relatively large driving point conduct-
ance, G.. An expression controlling Y. . L T.. is not presented
i ij ij

since its interpretation in the actual network is not unique.

Discussion of Results

The equations presented may be used explicitly to govern
the application of local damping devices. It is not necessary
that the parameter responses exactly follow the given equations
although sign agreement should be maintained.

All control equations are based around the fundamental
error quantity ei. A practical method of estimating this
quantity is given on page 9.

The equation for control of Wi is the simplest of those
given. Furthermore, this parameter is the most desirable to
employ for system damping since it does not directly introduce
voltage fluctuation (as does Ei control) and it does not re-
quire temporary dropping of any customer loads (as can Gi
control). Unfortunately, this is the most difficult parameter
to control in practice because of the slow response of the
generator and turbine systems.

Some success has been achieved by Schleif, Martin and

Angell for low frequency oscillations (11). Fruitful ideas
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leading to rapid control of Wi are highly desirable.

The equation for control of Gi may be directly employed in
the application of dynamic braking. This provides the solution
to the three primary difficulties:

1. Relative brake resistor sizes are given for each

generating plant by equation (35).

2. The time of application is given for each switching

operation in terms of a locally measurable parameter.

3. A decision function is provided by equation (42) to

determine when braking operations must be terminated.
It is most desirable if braking resistors are applied at the
generator sites. If load shedding is employed, it must be
determined which loads within the system selectively influence
the driving point conductances.

With the introduction of improved exciter systems, the
control of Ei has become a reasonable method of introducing
damping. Two equations are given for the control of Ei of
which one requires the knowledge of many system parameters, and
the other, only local parameters. From the three-generator
example of Chapter III, it was found that the local equation gave
results almost as satisfactory as the total system equation.

By examination of equations (45) and (46) it appears that
generafors with large driving point conductance values are most

amenable to the local voltage control equation.
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The derived equations give instruction for the control of

W., G,
1 1

and Ei to obtain nearly uniform power system damping.

Further extension of this method is intended by the author.

Recommendation for Further Study

The following topics are recommended for further study:

1.

The extent of.applicability of the local voltage
control equation should be determined.

Further work should be conducted on circuits for
rapid measurement of the fundamental error quantity,
Gi.

The most desirable range of system coefficients ¥, N
and . should be determined.

Procedures should be prepared for determining how
shed loads influence Gi'

The damping method should be simulated on a large

power system model.

Literature Review

The subject of power system transient stability is very

active in the literature. Methods have been proposed for de-

termining the boundary region of system stability using the

direct method of Liapunov. Other emphasis has been on locally

controlled damping techniques.
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By the direct method of Liapunov, a positive definite
(always positive) function V is defined in terms of system state
variables. The time derivative & may be explicitly determined
by using the system differential equations. Asymptotic sta-
bility of the system response is guaranteed over the region for
which G is always negative.

Tf a good Liapunov function is chosen, the negative region
of G closely corresponds to the true region of system stability.
Liapunov functions have been derived for several degrees of re-
finement (3, 6, 17). A useful resulting concept is the deter-
mination of the maximum time within which a disturbance must be
cleared to maintain stability (3).

The local damping techniques presented are intended for
"on-line" operation. Much work has been done by Schleif of
the U. S. Bureau of Reclamation on damping by prime mover con-
trol. This work was prompted by serious oscillations in
Northwest-Southwest tie lines through Utah and Colorado. Fre-
quent line tripping occurred as a result of drifting tie-line
load and periodic swings at six cycles per minute (5). The
work by Schleif has resulted in prime mover control at Grand
Coulee and McNary dams based on the time derivative of local
frequency (11, 12)., Satisfactory damping of low frequency
tie-line oscillations was obtained.

The introduction of damping by generator terminal voltage

control has received interest because of the low modification
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cost. The generator voltage may be controlled by changing the
current of the field winding located on the rotating generator
shaft. The exciter system which provides the field winding
current must be driven to high voltage magnitudes to give a
rapid change in generator terminal voltage. Techniques of
bang-bang (discrete output) exciter control have been developed
by O, J. M. Smith and G. A. Jones (7, 13). Smith uses local
shaft angle, shaft velocity, field current and power flow as
inputs to decision making controllers which command exciter
voltage to be maximum positive, maximum negative, or normal.

Much work has also been done by Blythe on generator
voltage control of the Peace River Transmission System in
Canada. Preliminary digital simulation studies were conducted
using frequency deviation from nominal 60 cycles per second as
a control signal (4). Blythe and Shier have also given a
comparison of damping possible with rotating and static
(thyrister) excitation systems. The static exciter gives a
significant improvement in the ability to control terminal
voltage for this purpose (2, 16).

A damping technique which has received much discussion pro
and con is dynamic braking (10). Although the application of
discrete braking resistors is considered by some to be a drastic
measure, others maintain that this is necessary for the severe
oscillations which may occur in interconnected systems. It has

been suggested that damping resistors may be applied for one to
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one and one-half seconds following a disturbance (4). The
feasibility of employing braking resistors is being considered
by Bonneville Power Administration.

The switching of series capacitors is being employed in
the Pacific Northwest-Southwest Intertie (15). ’The insertion
of series capacitors in transmission lines increases line
admittance which may be used to improve transient stability
(8, 10). One plan of application is to insert series capacitors
immediately following a disturbance and leaving them in until
system conditions return to normal operation. Another method
is to insert series capacitors when the electrical phase angle
between transmission line terminals is increasing and removal

of capacitors when the angle is decreasing (10).

Nomenclature

English Symbols

A = the phase angle of the phase-to-neutral voltage for the

ith generator, in radians.

ﬁij = a variable defined by equation (6).

Ci = the internal damping coefficient for the ith generator,
in per-unit power second/radian.

Ei = the magnitude of the phase-to-neutral voltage of the ith
generator, in per-unit voltage.

é: = the value used for ﬁi in the Runge Kutta numerical inte-

gration subroutine, in units of per-unit voltage/second.
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the local voltage control variable defined by equation
(45).

the remote voltage control variable defined by equation
(46).

the exciter voltage of the ith generator, in per-unit
vol tage.

a transfer function,

the driving point conductance of the ith generator de-
fined by equation (3), in per-unit admittance.

the magnitude of the change in Gi resulting from
dynamic braking.

the nominal value of Gi when dynamic braking is not
applied, in per-unit admittance.

the d.c. field current of the ith generator, in per-unit
current.

a generator model constant.

a constant of integration.

the inductance of the field winding of the ith generator.
the inertia constant for the ith generator, in per-unit
power secondz/radian.

the number of generators in the power system.

the electrical power output of the ith generator given
by equation (2), in per-unit power.

a Runge Kutta vector defined by equation (61).

a Runge Kutta vector defined by equation (62).
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the field winding resistance of the ith generator, in
per-unit resistance.

a Runge Kutta vector defined by equation (63).

the time at which a dynamic braking switching operation
occurs, in seconds.

the phasor angle of the transfer admittance defined by
equation (4), in radians.

a Runge Kutta vector defined by equation (64).

the mechanical input power to the ith generator minus
all generétor and prime mover losses, in per-unit power.
a Runge Kutta vector defined by equations (57) and (60).
a transfer admittance magnitude defined by equation (4),
in per~-unit admittance.

an admittance magnitude resulting from delta-star net-
work reduction, in per-unit admittance.

a variable defined in equation (28).

Symbol s

a coefficient used in the development 6f the Wi control
equation,
a coefficient used in the development of the Ei control
equation,

. -1
the system coefficent for control of Wi, in seconds .,
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the angular displacement of the>rotor of the ith genera-
tor from a synchronously rotating reference axis, in
radians.

the fundamental error qQuantity defined by equation (9),
in units of radians/secondz.

the value of ei immediately following a dynamic braking
switching operation.

the change in Gi resulting from a'dynamic braking
switching operation.

a phasor admittance angle resulting from delta-star
network reduction.

the system coefficient for control of Gi’ in seconds-l.
the system coefficient for Ei control, in seconds-l.

the time constant of the first order filter, G(s), in
seconds.,

the delay time between a disturbance and the application
of dynamic braking, in seconds.

the fundamental error function defined by equation (13),
in radiansz/secondé.

a component of @ defined by equation (22),
a component of é defined by equation (21).
a component of @ defined by equation (20).
a component of é defined by equation (23).

the decision function defined by equation (30).

a decision function defined by equation (44).
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II. DERIVATION OF DAMPING EQUATIONS

Expansion of @

The basic power system model and damping criteria are pre-

sented in Chapter I. Details of the derivation of parameter

control equations are given in this chapter.

The fundamental error quantity is defined as

A
= (W, = 1
€, = (W, Pi)/Mi (15)
and may be expanded by equation (2) to
N
€ - (W, - EZ. - Z E.E.Y, B, .)/M., (16)
i i ii iTjiijoij i
j=
The time derivation of ei is
3 . 2e
b W, 2E .G .E. E. G.
el = __1 - 1 1 1 - 1 1
M, M. M,
i i i
N i - [ d
(E.Y, .B. .E, Y. .B. .E,. (17)
- S: iij 123 Jj + J 13 13 1
M M,
i




The time derivative of the fundamental error function

1

N
§- Y €€

i=1
which may be expanded by equation (17) to give

B =B+ B+ By + By

where
N
¢W 4 z €;¥;
Mo,
i=1
N
[ 2 2
[} 4 _ Z Ei€1€'1
@ M
. ’
i=1 o
N N
» é < 2E.G E.Y =~ ~ .
¢E_—Z i (2704 +z il’](Bl\].‘.Bji‘i‘l)
M, M €
i=1 1 j=1 *
and
N N
e é _ C E E, =
Bop = Z i Z ; i oaly, B, )/at .
i=1 J=1 i

is

24

(18)

(19)

(20)

(21)

(22)

(23)

The basic plan is to control the parameters Wi, Gi and Ei to

force @ to be as negative as possible.
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e

Control Equation

L

)
It can be shown by equation (20) that ¢W is always negative

®
if Wi is defined as

ne>

. - 24
W, x. € (24)
where cxi is a positive coefficient. Control action is applied

equally to all generators having equal €i if c(i is defined as

<« 2 ¥wum (25)

where ¥ is a positive coefficient. The resulting equations for

¢W and Wi are

N
é’w‘ - z Ygiz (26)
i=1
and
W= -YM. €. . (27)

It may be shown by substitution of equation (27) into equation
(1) that this action acts continuously to reduce angular accel-
eration of Si‘at each generator., Strictly from the standpoint
of damping oscillation this action is desirable, but in terms of
transient stability, a further modification is necessary.

This modification is a result of consideration of power

system equilibrium points. El-Abiad and Nagappan have derived
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equations for estimating stable and unstable equilibrium points
(3). The relative rotor angle of a stable equilibrium condition

between the ith and jth machine is approximately

(8, - d,) = sin (3 (28)

where
MW, - MW, - M.E.ZG.+M.E.2G.
3»: j i i3 j i i 1 J
(M, + M) EE Y, Sin(T..)
1 J 1 J 13 1]

and the unstable condition is given by

1

(8 - &) = ™ - sin™! (93). (29)

By examining the principal angles of sin~! (%), it may be
shown that for a stable system equilibrium point, the angles
(di - Jj) should lie within + 90 degrees. An unstable equilib-
rium condition exists if any (éi - Sj) lies between 90 and 270
degrees. Figure 5 illustrates the set of principal equilibrium
points for the thrée—generator system considered in Chapter III.
It is desirable that damping action does not drive the
relative system angles toward the region of unstable equilib-
rium points since stability may be lost. For this reason, the
retarding angular acceleration should not be diminished when

dlEiI is positive.

dt
The derivation of the Wi control equation is complete with

the addition of



27

200 ¢
0 <
v
v 160 P
6
v <
A \
€ 120 T y
\g) Unstable Points
1 80 P
-
-0

Yo } 4: ¢

Stable Paint
o re a a2 a2 _a

o 40 80 120 160 200

§, - 53 in Degrees

Figure 5. Principal Equilibrium Points for the
Undamped Three-Generator Model of Chapter III.
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1 for dIGil /dt £ O
@. a (30)
. o for dlgl/at > o

thereby giving

W, o= -YMigpiei . (31)

[
G, Control Equation

[ ]
It can be shown by equation (21) that ¢G is always negative

if éi is defined as

De
ne>

iT Bi€; (32)

where /31 is a positive coefficient. Control action is applied

equally to all generators having equal Gi.if /3i is defined as

3 = Miz)\ | | (33)

E,
i

where N 1is a positive system coefficient.

In equation (33), Ei can be approximated by its nominal
value since deviations from the nominal value are generally
small.

The technique of dynamic braking appearing in the literature
involves step changes in Gi rather than continuous control as

given by
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6, = MNiNe,. (34)

To provide for discrete changes in Gi,a unit impulse term
Uo(t—Ti) is employed which occurs when the argument t—Ti is
zero. If only one size braking resistor is available at each

generation site, the magnitude should be determined by

(35)

where the nominal terminal voltage is used for Ei. With a fixed
magnitude discrete braking operation, the resulting change in

¢G is given by

M, = - N Uy (¢-T)) (36)

where U_|(t—Ti) is the unit step occurring at t=T,.

It can be seen from equation (21) that a maximum decrease in
¢G is sustained if the switching occurs when |€jJ is at a maxi-
mum value. Studies have indicated that it is desirable to apply
dynamic braking immediately following a disturbance (4). This is
compatible with the maximum |€i’ criterion since |€i| always
reaches a maxima immediately following a disturbance.

Since a switched or discretely controlled operation is

employed, it is necessary to develop a criterion to distinguish

when dynamic braking should be applied and when it should be
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discontinued following an application. If a switching opera—?z

tion will result in a reversal of the sign of éj.following a

fault, no switching action is taken. Furthermore, dynamic

braking is discontinued following a sustained application if

further switching will result in a reversal of the sign of éii.
To determine the switching criterion, equation (2) is

substituted into equation (9) giving

N
1 a2 E.E.Y. . B, .) (37)
ej_ = ‘Pl— (Wi EiGi - Z 1 J 1] 1] .

1

The term AGi is added to Gi if a braking resistor is applied,
and is substracted from Gi if load shedding occurs. Immediately

following a switching operation, equation (37) becomes

N
o _ L - g2 E.Y. B, . 8
€ =% (W, - B; (G, »46) - Z BiEsY15515) (38)

1 J=l

where e& is the resulting fundamental error quantity. The
change in €i, AGi, is

rAE. = €, - €. = . (39)

1 1 i

The braking resistor is applied when €i reaches a maximum
positive value providing a sign reversal of E;i will not occur.

Thus if the inequality
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256

E. .
lg;l ~-i i >0 (40)
M,
i
is satisfied, a braking resistor may be applied. Load shedding

may be applied when Gi reaches a maximum negative value if a

sign reversal of ei does not result. Thus, if the inequality

- legl o+ BjA6; ¢ o (41)

is satisfied, load shedding may be applied. By inspection it is
seen that equation (40) and equation (41) are the same inequality

and may be written as

2
l€ll b EiAGi (42)

i

and is called the dynamic braking switching criterion.
When the conditions of this inequality are not satisfied at
the switching time Ti’ dynamic braking must not be continued or
[

initiated. With the inclusion of the switching criterion, Gi

may be written as

De

Mixniuo(t-Ti) (43)

E?
i

where
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2
1 €,> 0 and 86.E"/M, < 1€ |
2
ny=q 0 86ES/M S TE (44)
2
| -1 €,< 0 anda AGES/M <I€,I

and T, is equal to the time at which dléiil/dt reaches a maxima.

Figure 6 illustrates the application of dynamic braking at
one generator for a hypothetical case. Braking resistors and
load shedding are specified by equal conductance magnitudes.

If a disturbance occurs on a transmission line, the line is
opened by circuit breaker action and generally followed by an
attempted reclosure. If the disturbance is of a temporary
nature, such as a lightning stroke, the reclosure is successful
and dynamic braking unnecessary. To allow for this possibility
a delay time T may be introduced at the outset of a disturb-
ance. If €i remains large enough to warrant switching follow-
ing the delay, normal switching is begun. This case is illus-
trated in Figure 7. If fast circuit breaker action is employed
this delay is not detrimental because the €i function changes
slowly at the outset due to generator rotor inertia.

E

i Control Equation

Equation (22) for éE contains two terms which may be

defined as
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Figure 6. Dynamic Braking Following a Simple Power System Disturbance.
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Figure 7. Dynamic Braking Applied Following a 9 Second Delay
Allowed for Attempted Line Reclosure.,
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™M

ne
V)
=
o

Li it i (45)

and

ne
=
[

Eri

iij (B, «+ Ta'ji €,/ €;)- (46)

Thus the equation for éE may be written as
N
[ J
—_ - ]
P = Z €,(&, + eRi)Ei. ' (47)
j=1

J:

[ ] [ 4
¢E is always negative if Ei is defined as

£ 4 n€E; (48)

where § is a positive system coefficient. Control applied to
Ei by equation (48) is called total voltage control.
It can be seen that as éi goes to zero, gRi becomes

infinite. This, however, does not present a problem since

lim{w € /(€ , €0} = ©0- (49)
€ij—» O

The use of nominal voltages for Ei and Ej can lead to a serious
error in the computation of equation (48) since at any instant
the denominator can involve the combination of positive and

negative numbers.



36

To employ é:Ri’ remote system parameters must be tele-
metered to each generation site. It is desirable, however, if
this complication can be avoided.

If the inequality
€, > |€g] | (50)

is valid when ELi and £Ri are of opposite sign, then the

simplified form

Py A .
E, = p€i (51)
€.,

1

also gives a continuously negative 6E. The control of Ei by
equation (51) is called local voltage control. In the expansion
of equation (51), E; can be approximated by its nominal value
since deviations from the nominal are generally small and the
denominator involves only one term. Further investigation of
the extent of applicability of equation (51) is warranted. It
may be shown by substitution of equation (48) into‘equation (1)
that ii control acts continuously to reduce the angulér accel -
eration of Ji' On the basis of the same argument presented for

®
Wi control, the function

1 for dleil/dt < o
(30)

ne>

&

0 for. d|€i|/dt > o
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is used in the total system voltage control equation to give

éi - rYE; (52)
Ep; *+ &1

and in the local voltage control equation, giving

E,= v, €; | (53)
€L;

A comparison of the two forms is given by example in

Chapter IIl.

d(YijBij)/dt Control Equation

The expression d(YijEij)/dt may be further expanded as
o~ L]
d(Y, . B,.)/dt = Y, . Cos(T,.-A +A) (54)
ij ij 1] iJ 1 ]

-Y. (%, -A.+A.)Sin(T, .-A +A.).
lJ 1] 1 J 1] 1 J

The terms iij and iij reflect changes in the network configura-
tion such as switched series capacitors. A very serious diffi-
culty arises from attempting to employ these parameters for
damping control. Any specified values for Yij and Tij cannot be
related uniquely to the real physical network (9, p. 87). For

this reason, a control equation for d(Yijﬁij)/dt is not pre-

sented.
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Conceptually, however, the d(Yijﬁij)/dt term occupies an
interesting role. If a network disturbance occurs such as an
opened transmission line, the initial displacement in g is a
result of an impulse in d(Yijﬁij)/dt. The terms Ai and Rj are
dependent variables which constitute the dynamic response of ¢

which must be damped to a steady-state condition.
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III. THE DAMPING METHOD APPLIED
TO A THREE-GENERATOR MODEL

Model

System

The three generator system of Figure 8 is used to demon-

strate the damping method. This

system is chosen since it dis-

plays interactions similar to those of large systems for which

the method is intended. System constants are expressed in the

per-unit system for which

1 per-unit power

1 per-unit voltage

and

1 per-unit admittance

10 MVA,

12 KV

0.0694 mhos.

The numerical values used for the parameters of Figure 8 are:

Wi = 2.127 per-unit for i =
Ei = 1.100 per-unit for i =
Mi = 0.100 per-unit for i =

Y1 yA 8, = 0.718 L -15.8°

322 YA 922 =1.930 / -13.2°}

Y33 L 34 = 3.100 / -17.5°

1 to 3,
1 to 3,
1 to 3,
per-unit,
per-unit,

per-unit,

Yo L 8, = 1.219 / -101.2° per-unit,

le L 913 =1.192 / -108.1° per-unit

and

Y03 L 60,3 = 1.183 / -115.3° per-unit.



Figure 8,

H.sLG'S
Y22l 622 g ‘juLezz
—— EylT, —
§ Y32 L Oy
Gen.
W, ,‘:;‘

Positive Sequence Diagram of the Three-Generator Model

System.

0%
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The resulting driving point conductance and transfer admittance

values as determined by equations (3) and (4) are:

G, = 0.0866 per-unit,
G2 = 1.149 per-unit,
G3 = 2.085 per-unit,

le yA le =1.219 / 78.78° per-unit,

= o - :
Y13 [ T13 =1.191 / 71.91° per-unit
and

Yo, VA Tyy = 1.130 J 64.74° per-unit.

An ideal generator model is used for this example having a
voltage source of magnitude anq angle Ei Z Ai’ where the rotor
angle, Ji’ corresponds identically with Ai' Although this
repfesents a significant simplification of the real generator,
the dynamic characteristics of the damping method are demon-
strated. The magnitude of the source voltage is directly

related to the rotor field current by

(55)

=
[

~
H

~
I

a positive generator constant
and

Ifi = the d.c. field current.



The generator field is driven by

differential equation

E .
X1
where
E .
x1i
Lfi
and
R
fi

Leilei*ReiTes

the exciter output voltage),

the field winding inductance

the field winding resistance.

a static exciter

42

having the

(56)

The field winding time constant, Lfi/Rfi’ is chosen to be six

seconds which is representative of that found in large genera-

tors.

Simulation Program

A F@RTRAN program was developed to simulate a power system

of N generators including the generator model described on

page 4l.

Main Program

Voltage Damping Subroutine

Dynamic Braking Subroutine

Numerical Integration Subroutine

The flow chart is found as follows:

“Appendix

Appendix
Appendix

Appendix

The fourth order Runge Kutta method is used to obtain a numeri-

cal solution to the differential equation
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').( ] [ . = 1
1i Es
X X (57)
x21 = 3i 57
L
X3i £, (XX
for the ith generator where
X4 7 By
Xop = & = A
X. . = £ = A
3i Ji Ai’
ﬁ; = the required éi to be held constant over the
integration period At
and
£f.(X ,X_ ) =1 v.-x, Za, (58)
i 71k’ 2k - i T1i i
i
3
- T, .-X_.+X_.
2: XlixleijCos( 157 %24 23)}
J=1
The Runge Kutta recursion formula is
X.(ms#l) = X, (m)+1 Q.+1 R, +1 5. +1 V. (59)
i i _— ] =— i =1 i
6 3 3 6
where
x1i
X = (60)
xi x2i
X



Lb

[~ b " . o«
Q5 By
aQ = = l
Q, Q,. x31 At (61)
Q31 fi(xlk’x2k) |
.R . -, -
1i E
R. = R_. = t 62
i oi x3i+03i/2 A ) (62)
R3i fi(Xlk+Elk,X2k+EEk)
2 2 |
_ - . .
S £
1i i
§ = . =
i Sai X3i*R35 /0 At (63)
S
3i 5 X Ry o Ry
t P N 2 2 J
-v - [ " |
li i
Vv, = v = X t 6k)
i 2i 3i*534 A (
VBiJ fi(xlk+slk,x2k+52k)
. L -
and
m = the number of the last computed period.

For all cases given, a step size, At, of 0.0l seconds is used.
The accuracy of these solutions have been verified by using a

step size of 0,005 seconds.,



Reference Case

L5

A disturbance may be introduced in the system by off-

setting the initial relative angles

‘{3 and Jz- 53 from

the steady-state equilibrium point for this system illustrated

in Figure 5. The undamped dynamic response with initial

relative angles of zero degrees is given in Figure 9. Damped

cases are to be given for this disturbance to demonstrate and

compare the damping methods.

Voltagg Control Damping Cases

The damping equation for total voltage control is

éi= Py €y
6:Li + E:R

i

and for local voltage control is

The required exciter output voltage, Ex

i’

(52)

(53)

may be found in terms

of Ei by substitution of equation (55) into equation (56) to

give

B = (! Zti) :Ei"Ei}

Rfi
R K.

fi 1

(65)
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Figure 9, The Undamped Three-Generator Reference Case
with Time Intervals Marked in Seconds on the Trajectory.
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If the magnitude of the required exciter output voltage exceeds
five times its nominal value, a limit is imposed. The flow
chart for the voltage control subroutine is given in Appendix B.

Ap of ten is used for this system on both local and total
voltage control cases. It has been determined from other cases
not included in this thesis that damping increases as P is made
large although a limit is reached due to exciter saturation.

The dynamic response with total voltage control is given in
Figure 10 and the response with local voltage control is given
in Figure 11, It is noticed that these cases are quite similar
although somewhat better damping is obtained for total voltage
control.,

For the purpose of comparison, the norm is defined as the
linear angular distance between the undamped steady-state
equilibrium point of Figure 9, and the maximum excursion of the
first overshoot. In both cases the norm is reduced by 59 per
cent from the undamped case.

The voltage response of each generator for both forms of
control is illustrated in Figure 12, The greatest difference
between the response with total and local voltage control occurs
at generator number two which has the least oscillation of all
three generators.

System responses not included in this thesis were also made

for initial relative angles of:
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Figure 10. Total Voltage Control Applied to the Three-
Generator Reference Case with Time Intervals Marked in
Seconds on the Trajectory.

(B = 10 per-unit)
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Figure 11. Local Voltage Control Applied to the Three-
Generator Reference Case with Time Intervals Marked in
Seconds on the Trajectory.

(0 = 10 per-unit)



Figure 12. The Voltage Response of Each Generator with
Local and Total Voltage Control Applied to the Three-
Generator Reference Case.

(0 = 10 per-unit)
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- &5 $o- &
40° 0°
4o° 4o°
80° 20°

Results of damping for these cases are comparative to the

damping for the case given.

Dynamic Braking Case

Control is directly exercised on each driving point con-
ductance in the three-generator model. For the application of
load resistors, AGi is added to G13 and for load shedding AGi

is subtracted from Gi. The required size of AGi is given as

AG. = WM, /E2, (35)
1 1 1

Since the nominal value of Ei and Mi are identical for all
generators, AGi must also be identical. The coefficient
is chosen such that the application of AGi causes a step change

in Pi equal to ten per cent of the nominal Wi.

Thus

b4
0

0.1 wi/Mi = 2.127

and

AG 0.179 for i = 1,2,3.
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Although it is noticed that Gi—AGi results in a negafive con-
ductance, this is permitted since the main concern is to verify
the damping method. Dynamic braking is applied in accordance
with equation (43) for which a flow chart is given in Appendix
C.

The dynamic response for initial relative angles of =zero
degrees is given in Figure 13, Curves illustrating the re-
sponse of ei are given in Figure 14. The 35 per cent reduction
in norm from the undamped case is not as good as voltage control
although the oscillation settles to zero more rapidly. In
Figure 14 it is seen that dynamic braking did not occur at
generator number two since the switching criterion given by
equation (42) is not satisfied for that machine.

System responses not included in this thesis were also

made for initial relative angles of:

$1- 33 s - 53

4o° o°
4o° 4o°
80° 20°

Results of damping for these cases are comparative to that

obtained for the case given.



54

100
%0r
(" ]
)
. First Overshoot —%,
o
v
A ¢}
£
"
ha %o Final
' v————— Steady - State
v \ Equilibrium Point
1.8
20
o] " N L R
(o] 10 20 30 Yo 50

éz— 53 in Dejree.s

Figure 13. Dynamic Braking Applied to the Three-Generator
Reference Case with Time Intervals in Seconds Marked on
the Trajectory.

(N = 2,127 per-unit)



€, in Per-Unit

Per - Un;t

N

€2

Per-“Un’a{'

€3 n

55
o

Gen. 1

Time n Seconds

l/////’—~\\\\\\\L Gen. 2
o N _—1

2.0

Time in Seconds

/]\ Gen. 3

Figure 14, Response of €i with Dynamic Braking Applied
to the Three-Generator Reference Case. For Interpretation
of Discontinuities see Figure 6.

(N = 2,127 per-unit)
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Prime Mover Control

A case is not given for the control of Wi to introduce

damping by

W= -¥YMyg. e, (31)

since present governor and turbine systems cannot follow the
equation for most oscillation frequencies. This equation has
been developed, however, in anticipation of improvements in the

Prime mover response.
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Appendix A. The Main Program Flow Chart for Power System

Simulation.
START

/ READ BASIC SYSTEM DATA
N number of generators
Yij transfer admittences

T3 trangfer admittance angles

Gi driving point conductances
Ei generator voltoges

Wi generater powers

Mi inertia constants

/ READ CASE DETAILS
At ’u‘*c’ra‘hen step sSize
Tmex ™Maximum solution time

& initial generator angles
N Jgnnm\r. br.\(ins coefficient
A Vol‘l’ﬁs.. control coefficient

Lri qenecater field inductance
Rrei generater field resistance
Exix  Maximum exciter voltage

and a damping type code

+ « o,
]
Gui = G3 (farall )
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Call D\,ncmic Br.kins Subroutine
( Appendix C)

"'““k

control

® |

Call VQH’QJQ Central Subroutine
( Appendix B)

Call Numerical In-tcara'kion Subroutine
( Appendix D)

@



&

PRINT OUTPUT DATA

83 generator angles

Ej generater voltages

Exq exciter veoltages

E; time derivative of Ea

€3 fundamental error quantity

< +0t

©O |

61
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Appendix B, The Subroutine Flow Chart for Damping by Generator

Voltage Control,
( START ) g

€ - ﬁ.i(wi-ezGi- iciziéij)
3=

€Li «2€; Gy
i ii.

N
Enz = ﬁl'izEjYij (Bij+ B31€3/€1)
3=
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Eje MEy éi «— M €4
CarEni W
Yo o
—es) d6si/at < @
Ey ¢« O

[ 3

Exi+e (L Ei/Rp+Ey) /By

Exie Exix

eSS
)
Exi® — Eyix
(/S
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63
& d

Ei+ (EqE;-Es) Rei/Les

N/

N

‘ RETURN ’
62



Appendix C. The Subroutine Flow Chart for Application of
Dynamic Braking.

START

&

r

4

N
€; - —,.',‘i( wy - E2Gi - ) EiE;Bj)

It
3!
O—< g >
b
qa

65
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Gi4 Gui-AG; Gi+ Gy

Y

Gi* Gua+aGy Gie Gni

R
‘RETURN ’




Appendix D.

Kutta Numerical Integration.

( START )
7

Le |

—

I
L

Compute Q4 By e.c'ua‘fion (61)

r

Compute R by equation (62)

[

Compute S5 by equation (G3)

I

Compute _\7‘; by e€quation ()

I

Eie E; + ‘é’Q,',_-r'!éR.i-r"'Ss.i*'!;Vli

}
§i+ Si+ £Qu+§Raut 3SuvgVes

§i« divg Qsi*é‘?a';"' 'éssi*"&Vai

‘ RETURN ’

67

The Subroutine Flow Chart for Fourth Order Runge



