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A METHOD OF IMPROVING POWER 
SYSTEM TRANSIENT STABILITY 

USING CONTROLLABLE PARAMETERS 

I. INTRODUCTION 

Introduction 

To meet the growing demand for economical power, distant 

regions are interconnected electrically. A good example is the 

Pacific Northwest -Southwest Intertie (15, unnumbered preface). 

These lines will tie together electric systems -- 

public and private -- all the way from Vancouver, 

B. C., and Seattle to Los Angeles and Phoenix, in- 

cluding the biggest hydro system in America (the 

Bonneville Power Administration system), the biggest 

municipal system (Los Angeles Department of Water and 
Power), and one of the biggest private systems (the 

private utilities of California). 

As a power system grows, the difficulty of withstanding 

unexpected disturbances without disintegration increases. 

Immediately following a disturbance, mechanical oscillation 

occurs in each generator relative to a reference axis rotating 

at nominal shaft speed. The rapid extinction of this oscilla- 

tion, which is called damping, improves the system's ability 

to remain intact. 

Transient stability is a condition which exists if a dis- 

turbance does not cause power system disintegration. The addi- 

tion of damping will improve transient stability to include an 

enlarged class of system disturbances. 
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It is desirable that the mechanical oscillation of every 

generator be given a nearly equal rate of damping since system 

separation can occur if a single machine (generator) remains 

undamped. Uniform power system damping is that condition which 

exists if equal damping is given to every machine oscillation. 

Several techniques which introduce damping at local points in 

the power system are cited in the Literature Review. A method 

of coordinating these techniques is necessary to provide uniform 

system damping. 

A method is presented in this thesis governing the control 

of basic power system parameters to improve transient stability 

with nearly uniform damping. The method can be employed to 

coordinate local damping techniques. 

Statement of the Problem 

Power System Model 

Power systems are basically composed of a set of generating 

plants, a distribution network and a combination of industrial, 

commercial and residential loads. An example of a partial power 

system is given in Figure 1. In this diagram, a single line 

represents a full three phase transmission tie. E.LA. is the 

effective phase -to- neutral voltage and phasor angle of the ith 

machine. 
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A positive sequence network model is used in this thesis as 

given in Figure 2. The positive sequence network representation 

is satisfactory when balanced loading appears on all three elec- 

trical phases. Under unbalanced conditions, the zero and nega- 

tive sequence networks must also be employed. Power system 

disturbances can occur in balanced or unbalanced form. The 

positive sequence form can be used for damping purposes when the 

disturbed transmission line is removed quickly by circuit breaker 

action. 

The "dynamic swing equation" which describes oscillation of 

the ith generator for a system composed of N generators is 

where 

Md = W. - P. - C.d. i i i i i i 

d. 
= the angular rotor displacement from a synchronously 

1 rotating reference axis, 

M. = the generator inertia constant, 

W. = the mechanical input power to the ith machine minus 

1 all generator and prime mover losses, 

Ci = the internal generator damping coefficient 

and the electrical power output Pi is given by 

N 

Pi 
i. 

= E.2G. + 1:E.E.Y. B. 
j . j 

j.1 
where 

N 

G. = yjCos eij, 
j=1 

Yij L Tij = -U Leij for 

(1 ) 

(2) 

4 

i 

1 1 1 j 

i 

(3) 

j, (4) 
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and 

W. Cos (T. - 
'j lj 

+ A.) 
J 

Jij 
L 
ei. 

= a network admittance resulting from 
J delta -star simplification. 

The terms W., E. and G. can be independently controlled to 

introduce power system damping. This thesis provides the de- 

velopment of explicit equations for the control of W. , E. and 

Gi to give nearly uniform power system damping. This work pro- 

vides the basis for the coordinated application of local damping 

techniques. 

Controllable Parameters 

Local damping techniques, which are cited at the end of this 

chapter, can be shown to control W., 
i 
G, E. 

i j 
and Y L T . 

i j i i 
Each power system generator has a system for controlling the 

mechanical input power which is Wi plus all mechanical and 

electrical machine losses. Since these losses are on the order 

of one per cent, damping action which controls the mechanical 

input power also controls W.. Each generator also has an 

excitation system which is normally used to regulate the terminal 

voltage Ei . A supplementary signal may be introduced to control 

E. to give power system damping. 

Dynamic braking is a damping technique which involves the 

temporary application of special dissipative loads called braking 

Y.. L T.. O , 

11 11 

A. 
1 

= (5) 

= (6) 

(7) 
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resistors and the limited removal of consumer loads for short 

periods which is called load shedding. Dynamic braking is 

principally reflected in the model presented as step changes in 

G.. 
i 

Damping may be obtained by the switching of series capaci- 

tors in transmission lines which is reflected in the model as 

step changes in Yid L T... No equation is developed for the 

control of Yid L Ti., however, since step changes in this 

parameter do not uniquely define switching operations in the 

real system. 

The Fundamental Error Quantity 

To obtain uniform damping it is desirable to employ the 

angular acceleration of each generator (d) as a controlling 

error quantity. By this choice,equal emphasis is given to 

machines of large or small generating capacity. The "dynamic 

swing equation" may be written as 

i 

W. . - p 
. = 

M. 
i 

i 

Since internal generator damping is light, the right side of 

equation (8) represents a good approximation of Ó, and is 

defined as the fundamental error quantity Ei . 

Thus 

Ei 
M. 

i 

(8) 

(9) 

i 

d 
Ci 

i 
+ 

A W. - P 
= i i 



When the magnitude of Ei is large, it closely approximates Si, 

and forcing Ei toward zero also results in forcing toward 

zero. As the magnitude of Ei becomes small, equation (8) may 

be approximated by 

Ci ól = o (lo) 
M. 

i 

which has a stable solution for bi of 

*Si = k. exp ( -C.t/M.) i 
and for it of 

ó = - Ci exp ( - C 
i 
t/M 

i 
) 

i 
M. 
i 

where Ci /Mi must be positive. 

(12) 

Thus for large and small magnitudes of Ei , control action which 

forces E, to zero also forces the system to a stable equilibrium 
i 

condition. 

The Fundamental Error Function 

The fundamental error function is defined as 

N 

1 
= 2E 

2 
i 

i=1 

This positive definite function is employed to determine regula- 

(13) 

tion of controllable parameters which gives uniform power system 

damping. The time derivative of equation (13) is 

6 

8 



N 
. . . 

= E Ei (Wi - Pi ) 1 

j=1 M. 
i 

9 

If all components of are continuously negative, 0 asymptoti- 

cally approaches zero which implies that E. approaches zero 

also. Explicit equations are derived in Chapter II which cause 

as many terms of to be negative as possible. 

Measurement of the Fundamental Error Quantity 

To apply the damping control equations which have been de- 

veloped, E. must be measured at each generator in the power 

system. Currently rotor angular acceleration, b , is estimated 
i 

by using the approximate time derivative of generator frequency 

as given in Figure 3 (5, 11). These devices are used on a 

limited scale for damping low frequency tie -line oscillations. 

The response of this instrumentation system is limited by the 

slow frequency transducers. 

Blythe has presented a method for estimating Ei as given 

in Figure 4 (2). 

Under transient conditions, P. oscillates about W.. By 

employing the filter, G (s), the highest oscillation frequencies 

are attenuated, thus giving an approximation of W.. The esti- 
i 

mated E, is the difference between the approximate W. and P.. 

Although Blythe used a first order filter of time constant 

high order forms may also be used. To measure P., a high speed 

power transducer must be used. Although a high speed power 

(14) 

;$ 

/p , 
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transducer is considered to have lower accuracy than the slow 

responding thermocouple model, no difficulty is expected since 

only the relative magnitude of E. is necessary. 

Statement of Results 

Explicit equations governing the control of W., G. and E. 

are now given. The expression for W. control is 

where 

and 

W. _ - YM. (y i E. 

Y= a positive system coefficient 

for di Ei I /dt < 0 

O for dIEi I /dt i 0 

The general expression for G. control is 

Where 

Mi Ei 
2 

E. 
i 

) = a positive system coefficient. 

For discretely operated controllers this becomes 

(31) 

(30) 

(34) 

i = 
1 

. 



where 

and 

6 
NOin iUu ( t-Ti ) 

1 E 2 

E.> 0 

-1 E.<O i 
and AG.E 2/M. < IEiI 

i i i 

O AGiEi /Mi> IEiI 

U (t 
o 

-T.) = a unit impulse occurring at t = T. 
i i 

AG. = the magnitude of the change in G.. 

The term Ti is defined as the time at which IEiI reaches a 

maxima. 

The general expression for Ei control is 

where 

and 

= p Soi Ei 

E Ri + Li 

13 

(43) 

(44) 

(52) 

}L = a positive system coefficient, 

£ Ri 
E.Y. 

(BiJ + BJi EJ ) , (46) 

J=1 
Mi El 

B.. Cos (T.. - A. + A.) (6) 
ij ij i J 

Li 
4 2 EiGi 

M. 
i 

(45) 

i 

JL. 
1 

1 

1 

J 

- _ 

{ 
Ilillll 

r 

= 

1 



The form may be reduced to 

E _ i p SGi Ei 

ELi 

14 

(53) 

at generators having a relatively large driving point conduct- 

ance, Gi . An expression controlling Y. 
lj ij 

L T is not presented 

since its interpretation in the actual network is not unique. 

Discussion of Results 

The equations presented may be used explicitly to govern 

the application of local damping devices. It is not necessary 

that the parameter responses exactly follow the given equations 

although sign agreement should be maintained. 

All control equations are based around the fundamental 

error quantity Ei. A practical method of estimating this 

quantity is given on page 9. 

The equation for control of Wi is the simplest of those 

given. Furthermore, this parameter is the most desirable to 

employ for system damping since it does not directly introduce 

voltage fluctuation (as does Ei control) and it does not re- 

quire temporary dropping of any customer loads (as can G. 

control). Unfortunately, this is the most difficult parameter 

to control in practice because of the slow response of the 

generator and turbine systems. 

Some success has been achieved by Schleif, Martin and 

Angell for low frequency oscillations (11). Fruitful ideas 

1 
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leading to rapid control of W. are highly desirable. 

The equation for control of G. may be directly employed in 

the application of dynamic braking. This provides the solution 

to the three primary difficulties: 

1. Relative brake resistor sizes are given for each 

generating plant by equation (35). 

2. The time of application is given for each switching 

operation in terms of a locally measurable parameter. 

3. A decision function is provided by equation (42) to 

determine when braking operations must be terminated. 

It is most desirable if braking resistors are applied at the 

generator sites. If load shedding is employed, it must be 

determined which loads within the system selectively influence 

the driving point conductances. 

With the introduction of improved exciter systems, the 

control of E. has become a reasonable method of introducing 

damping. Two equations are given for the control of E, of 

which one requires the knowledge of many system parameters, and 

the other, only local parameters. From the three -generator 

example of Chapter III, it was found that the local equation gave 

results almost as satisfactory as the total system equation. 

By examination of equations (45) and (46) it appears that 

generators with large driving point conductance values are most 

amenable to the local voltage control equation. 
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The derived equations give instruction for the control of 

Wi, Gi and Ei to obtain nearly uniform power system damping. 

Further extension of this method is intended by the author. 

Recommendation for Further Study 

The following topics are recommended for further study: 

1. The extent of applicability of the local voltage 

control equation should be determined. 

2. Further work should be conducted on circuits for 

rapid measurement of the fundamental error quantity, 

E.. 
i 

3. The most desirable range of system coefficients LIN 

and u should be determined. 

4. Procedures should be prepared for determining how 

shed loads influence G.. 
i 

5. The damping method should be simulated on a large 

power system model. 

Literature Review 

The subject of power system transient stability is very 

active in the literature. Methods have been proposed for de- 

termining the boundary region of system stability using the 

direct method of Liapunov. Other emphasis has been on locally 

controlled damping techniques. 
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By the direct method of Liapunov, a positive definite 

(always positive) function V is defined in terms of system state 

variables. The time derivative V may be explicitly determined 

by using the system differential equations. Asymptotic sta- 

bility of the system response is guaranteed over the region for 

which V is always negative. 

Tf a good Liapunov function is chosen, the negative region 

of V closely corresponds to the true region of system stability. 

Liapunov functions have been derived for several degrees of re- 

finement (3, 6, 17). A useful resulting concept is the deter- 

mination of the maximum time within which a disturbance must be 

cleared to maintain stability (3). 

The local damping techniques presented are intended for 

"on- line" operation. Much work has been done by Schleif of 

the U. S. Bureau of Reclamation on damping by prime mover con- 

trol. This work was prompted by serious oscillations in 

Northwest -Southwest tie lines through Utah and Colorado. Fre- 

quent line tripping occurred as a result of drifting tie -line 

load and periodic swings at six cycles per minute (5). The 

work by Schleif has resulted in prime mover control at Grand 

Coulee and McNary dams based on the time derivative of local 

frequency (11, 12). Satisfactory damping of low frequency 

tie -line oscillations was obtained. 

The introduction of damping by generator terminal voltage 

control has received interest because of the low modification 
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cost. The generator voltage may be controlled by changing the 

current of the field winding located on the rotating generator 

shaft. The exciter system which provides the field winding 

current must be driven to high voltage magnitudes to give a 

rapid change in generator terminal voltage. Techniques of 

bang -bang (discrete output) exciter control have been developed 

by O. J. M. Smith and G. A. Jones (7, 13). Smith uses local 

shaft angle, shaft velocity, field current and power flow as 

inputs to decision making controllers which command exciter 

voltage to be maximum positive, maximum negative, or normal. 

Much work has also been done by Blythe on generator 

voltage control of the Peace River Transmission System in 

Canada. Preliminary digital simulation studies were conducted 

using frequency deviation from nominal 60 cycles per second as 

a control signal (4). Blythe and Shier have also given a 

comparison of damping possible with rotating and static 

(thyrister) excitation systems. The static exciter gives a 

significant improvement in the ability to control terminal 

voltage for this purpose (2, 16). 

A damping technique which has received much discussion pro 

and con is dynamic braking (10). Although the application of 

discrete braking resistors is considered by some to be a drastic 

measure, others maintain that this is necessary for the severe 

oscillations which may occur in interconnected systems. It has 

been suggested that damping resistors may be applied for one to 
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one and one -half seconds following a disturbance (4). The 

feasibility of employing braking resistors is being considered 

by Bonneville Power Administration. 

The switching of series capacitors is being employed in 

the Pacific Northwest -Southwest Intertie (15). The insertion 

of series capacitors in transmission lines increases line 

admittance which may be used to improve transient stability 

(8, 10). One plan of application is to insert series capacitors 

immediately following a disturbance and leaving them in until 

system conditions return to normal operation. Another method 

is to insert series capacitors when the electrical phase angle 

between transmission line terminals is increasing and removal 

of capacitors when the angle is decreasing (10). 

Nomenclature 

English Symbols 

A. = the phase angle of the phase -to- neutral voltage for the 

ith generator, in radians. 

B. 
j 

= a variable defined by equation (6). 

C. = the internal damping coefficient for the ith generator, 

in per -unit power second /radian. 

E. = the magnitude of the phase -to- neutral voltage of the ith 

generator, in per -unit voltage. 

.* 
E. = the value used for E. in the Runge Kutta numerical inte- 

i i 
gration subroutine, in units of per -unit voltage /second. 

1 

1 

1 
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£Li = the local voltage control variable defined by equation 

(45). 

£Ri = the remote voltage control variable defined by equation 

(46). 

E = the exciter voltage of the ith generator, in per -unit 
xi 

voltage. 

G(s) = a transfer function. 

G. = the driving point conductance of the ith generator de- 

fined by equation (3), in per -unit admittance. 

AG. = the magnitude of the change in G. resulting from 

dynamic braking. 

GNi = the nominal value of G. when dynamic braking is not 

applied, in per -unit admittance. 

Ifi = the d.c. field current of the ith generator, in per -unit 

current. 

K. = a generator model constant. 

k. = a constant of integration. 

Lfi = the inductance of the field winding of the ith generator. 

M. = the inertia constant for the ith generator, in per -unit 

power second2 /radian. 

N = the number of generators in the power system. 

Pi = the electrical power output of the ith generator given 

by equation (2), in per -unit power. 

Q. = a Runge Kutta vector defined by equation (61). 

R. = a Runge Kutta vector defined by equation (62). 

i 

i 

i 

i 

i 

1 

i 
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Rfi = the field winding resistance of the ith generator, in 

per -unit resistance. 

Si 
= a Runge Kutta vector defined by equation (63). 

T. = the time at which a dynamic braking switching operation 

occurs, in seconds. 

T. = the phasor angle of the transfer admittance defined by 
ij 

equation (4), in radians. 

Vi = a Runge Kutta vector defined by equation (64). 

W. = the mechanical input power to the ith generator minus 

all generator and prime mover losses, in per -unit power. 

Xi a Runge Kutta vector defined by equations (57) and (60). 

Y. = a transfer admittance magnitude defined by equation (4), 
ij 

in per -unit admittance. 

an admittance magnitude resulting from delta -star net- 

work reduction, in per -unit admittance. 

a variable defined in equation (28). 

Greek Symbols 

i 

Y 

a coefficient used in the development of the Wi control 

equation. 

a coefficient used in the development of the 
Ki 

control 

equation. 

-1. = the system coefficent for control of W., in seconds 

i 

i 

= 

yij 
= 

3 = 

cl. = 

= 



ai 

Ei 

Ei 
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= the angular displacement of the rotor of the ith genera- 

tor from a synchronously rotating reference axis, in 

radians. 

= the fundamental error quantity defined by equation (9), 

in units of radians /second2. 

= the value of Ei immediately following a dynamic braking 

switching operation. 

A Ei = the change in Ei resulting from a dynamic braking 

switching operation. 

9. = a phasor admittance angle resulting from delta -star 
ij 

network reduction. 

= the system coefficient for control of Gi , in seconds -1. 

= the system coefficient for E. control, in seconds -1. 

= the time constant of the first order filter, G(s), in 

seconds. 

?' = the delay time between a disturbance and the application 

of dynamic braking, in seconds. 

0 = the fundamental error function defined by equation (13), 

in radians2 /second4. 

E = a component of Th defined by equation (22). 

0G = a component of ¢ defined by equation (21). 

fów = a component of jó defined by equation (20). 

YB 
= a component of defined by equation (23). 

(/ii = the decision function defined by equation (30). 

11. = a decision function defined by equation (44). 
i 

T 

11 
1 

Ap 

Q 
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H. DERIVATION OF DAMPING EQUATIONS 

Expansion of g 

The basic power system model and damping criteria are pre- 

sented in Chapter I. Details of the derivation of parameter 

control equations are given in this chapter. 

The fundamental error quantity is defined as 

A 
ei = (w. - Pi)/Mi 

and may be expanded by equation (2) to 

N 

Ei = (Wi 
- E. G. 

2 
- E E.E.Y. 

i=1 

The time derivation of E is i 
2 

. W. 2E.G.E. E.G. 
E . = i - 1 1 1 - i i - 

M. M. M. 
i i i 

N 
N 

(EiYijBijEj EjYijBijEi) 

M. M. i i j=1 

N 

- 1: EiEj d(Yijij) /dt. 
M. 
i 

i=1 

(15) 

(16) 

(17) 

1 

+ 



The time derivative of the fundamental error function is 

N 

;J= E EiÉi 
i=1 

which may be expanded by equation (17) to give 

where 

and 

. . . . 
= W + G + E 

N 

E iwi 
W 

M. 

i=1 

N 

0 r E2.G. -i i 
i i=1 

24 

(18) 

(19) 

(20) 

(21) 

N N 

E E 6i 2EiGi 
+ sYij (Bi + B.i E1 )Ei) (22) 

M. M. Ei 
i=1 1 j=1 i 

N N 

OYB - E ei E E.E. d(Yi Bi )/dt . 

M. 
i=1 j=1 1 

(23) 

The basic plan is to control the parameters W., G. and E. to 

force ;$ to be as negative as possible. 

. 

Qí 

G 
- 

- 



25 

W. 
Control Equation 

It can be shown by equation (20) that ßíW is always negative 

if W. is defined as i 

W. = - of. i Ei (24) 

where d. is a positive coefficient. Control action is applied 

equally to all generators having equal E if oCi is defined as 

(25) 

where Y is a positive coefficient. The resulting equations for 

0W and Wi are 

and 

N 

ó E 
2 

i=1 

w. = -Y M. E i 

(26) 

(27) 

It may be shown by substitution of equation (27) into equation 

(1) that this action acts continuously to reduce angular accel- 

eration of ó at each generator. Strictly from the standpoint 
i 

of damping oscillation this action is desirable, but in terms of 

transient stability, a further modification is necessary. 

This modification is a result of consideration of power 

system equilibrium points. El -Abiad and Nagappan have derived 

. 

C. °= YM. 
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equations for estimating stable and unstable equilibrium points 

(3). The relative rotor angle of a stable equilibrium condition 

between the ith and jth machine is approximately 

where 

(bi - ój) = Sin -1 ( 

M.W. - M.E. 
2 
G. + M.E. 

2 
G. 

1 1 1 J J 

(M, + M.) E.E.Y. ,Sin(T. .) 
1 J 1 J 13 1J 

and the unstable condition is given by 

= (ai - a) 1r - Sin -1 (3) . 

By examining the principal angles of Sin 
-1 

(i), it may be 

shown that for a stable system equilibrium point,the angles 

(28) 

(29) 

(di .- ,S.) should lie within + 90 degrees. An unstable equilib- 

rium condition exists if any (a, - b,) lies between 90 and 270 
1 J 

degrees. Figure 5 illustrates the set of principal equilibrium 

points for the three -generator system considered in Chapter III. 

It is desirable that damping action does not drive the 

relative system angles toward the region of unstable equilib- 

rium points since stability may be lost. For this reason, the 

retarding angular acceleration should not be diminished when 

d 1 E iI is positive. 

dt 

The derivation of the W. control equation is complete with 
1 

the addition of 

M.W. - 
3.= j 1 1 J i 
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i A = 
1 

0 

for 

for 

dt.l /dt 

d E.) /dt 

< 

> 

O 

O 

thereby giving 

= M. 

Gi Control Equation 

28 

(30) 

(31 ) 

It can be shown by equation (21) that 
0G 

is always negative 

if G. is defined as i 
. p 

Ei (32) 

where /3 is a positive coefficient. Control action is applied 

equally to all generators having equal E , if 
i 

is defined as 

A M. ) 
/3i = 

E2 
i 

(33) 

where ) is a positive system coefficient. 

In equation (33), E can be approximated by its nominal 
i 

value since deviations from the nominal value are generally 

small. 

The technique of dynamic braking appearing in the literature 

involves step changes in G. rather than continuous control as 

given by 

i - 

( 

i 

, 

Gi 
= /3 i 



G. = i . 

x E 
E 
i 
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(34) 

To provide for discrete changes in Gi ,a unit impulse term 

Uo(t -Ti) is employed which occurs when the argument t -Ti is 

zero. If only one size braking resistor is available at each 

generation site, the magnitude should be determined by 

AG = Miñ 

E2 
i 

(35) 

where the nominal terminal voltage is used for E.. With a fixed 

magnitude discrete braking operation,the resulting change in 

0G is given by 

AOG = U_I(t-Ti) 
(36) 

where U_1(t -T.) is the unit step occurring at t= T.. 

It can be seen from equation (21) that a maximum decrease in 

0G is sustained if the switching occurs when IEiA is at a maxi- 

mum value. Studies have indicated that it is desirable to apply 

dynamic braking immediately following a disturbance (4). This is 

compatible with the maximum IE..I criterion since IE.I always 

reaches a maxima immediately following a disturbance. 

Since a switched or discretely controlled operation is 

employed, it is necessary to develop a criterion to distinguish 

when dynamic braking should be applied and when it should be 

i 

-N 
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discontinued following an application. If a switching opera 

tion will result in a reversal of the sign of E , following a 

fault, no switching action is taken. Furthermore, dynamic 

braking is discontinued following a sustained application if 

further switching will result in a reversal of the sign of E .. 

To determine the switching criterion, equation (2) is 

substituted into equation (9) giving 

N 

= 1 (W. - E 2G - 
E.E.Y. jBij) 

M. i 1 i 1 

1 j=1 

(37) 

The term iG. is added to G. if a braking resistor is applied, 
1 1 

and is substracted from G. if load shedding occurs. Immediately 

following a switching operation, equation (37) becomes 

N 

E'. = 1 (W. - E 2 (G. + AG) - E.E.Y. B. ) 
1 ly 1 1 1 1 j lj ij 

1 j=1 

(38) 

where Ei is the resulting fundamental error quantity. The 

change in Ei, 1E., is 

AEi - Ei - Ei 
- E . 2AG 

= + 1 1 . 

M. 
1 

(39) 

The braking resistor is applied when E. reaches a maximum 

positive value providing a sign reversal of E will not occur. 

Thus if the inequality 

1 

i 

Ei 

y 



I 
Eil - 

E 2aGi 

M. 
i 
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(40) 

is satisfied, a braking resistor may be applied. Load shedding 

may be applied when E. reaches a maximum negative value if a 

sign reversal of Ei does not result. Thus, if the inequality 

2 EAGi 
- IE.I + < 

M 

(41) 

is satisfied, load shedding may be applied. By inspection it is 

seen that equation (40) and equation (41) are the same inequality 

and may be written as 

L E I 
> Ei AGi 

M. 

(42) 

and is called the dynamic braking switching criterion. 

When the conditions of this inequality are not satisfied at 

the switching time T., dynamic braking must not be continued or 

initiated. With the inclusion of the switching criterion, G. 

may be written as 

G. ) = Mi niUo(t- T 
i 

. 

E2 
i 

where 

(43) 

O 

i 

0 

r 



1 Ei > O and A G 2/Mi < 

O AGiE2/Mi> IEiI 

-1 Ei < O and AGiE2/Mi< IElI 

32 

(44) 

and Ti is equal to the time at which dlE 
iI 
/dt reaches a maxima. 

Figure 6 illustrates the application of dynamic braking at 

one generator for a hypothetical case. Braking resistors and 

load shedding are specified by equal conductance magnitudes. 

If a disturbance occurs on a transmission line, the line is 

opened by circuit breaker action and generally followed by an 

attempted reclosure. If the disturbance is of a temporary 

nature, such as a lightning stroke, the reclosure is successful 

and dynamic braking unnecessary. To allow for this possibility 

a delay time V may be introduced at the outset of a disturb- 

ance. If E. remains large enough to warrant switching follow- 

ing the delay, normal switching is begun. This case is illus- 

trated in Figure 7. If fast circuit breaker action is employed 

this delay is not detrimental because the E. function changes 

slowly at the outset due to generator rotor inertia. 

E. 
Control Equation 

Equation (22) for 0E contains two terms which may be 

defined as 

i 
I Ei I 

1 
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and 

4 2E.G. 
£Li 

M. 
i 

N 

£Ri 0 E.Y.. (Bij + Bji Ej/ Ei). 
M. 

Thus the equation for ÿ6E may be written as 

N 

Ei( ELi + 

j=1 

0E is always negative if Ei is defined as 

35 

(45) 

(46) 

(47) 

(48) 

where 11 is a positive system coefficient. Control applied to 

E. by equation (48) is called total voltage control. 

It can be seen that as Ei goes to zero, 
Ri 

becomes 

infinite. This, however, does not present a problem since 

lim 11 E:Li 
E i/( +£Ri)} = O. 

Ei "V. o 

(49) 

The use of nominal voltages for Ei and E. can lead to a serious 

error in the computation of equation (48) since at any instant 

the denominator can involve the combination of positive and 

negative numbers. 

- 

j=1 
i 

çjE _E eRi)E.. 

i 

E 

_i _La 
Ji J 

Ei 

CLi + £Ri 

J 



36 

To employ E Ri, remote system parameters must be tele- 

metered to each generation site. It is desirable, however, if 

this complication can be avoided. 

If the inequality 

I LiI > 
( 
ERi 

is valid when 
ELi 

and ERi are of opposite sign, then the 

simplified form 

II. i E u E 

G Li 

(50) 

(51) 

also gives a continuously negative 0E. The control of E. by 

equation (51) is called local voltage control. In the expansion 

of equation (51), E. can be approximated by its nominal value 

since deviations from the nominal are generally small and the 

denominator involves only one term. Further investigation of 

the extent of applicability of equation (51) is warranted. It 

may be shown by substitution of equation (48) into equation (1) 

that E. control acts continuously to reduce the angular accel- 
i 

eration of d 
i 

. On the basis of the same argument presented for 

W. control, the function 
i 

Yi 
1 or 0 

i 

1 for d I /dt < 

0 for Eil 

(30) 

i 

0 

0 
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is used in the total system voltage control equation to give 

E = p S6i Ei 

and in the local voltage control equation, giving 

Ei = piEi 
Li 

A comparison of the two forms is given by example in 

Chapter III. 

d(Y13 
1j) 

/dt 
Control Equation 

(52) 

(53) 

The expression d(Y. B. ) /dt may be further expanded as 
ij ij 

d(YijBij)/dt = YijCos(Tij-Ai+Aj) 

-Y. ,(T, -A.+A.)Sin(T. -A.+A.). 
1J lj i J 13 1 J 

( 54 ) 

The terms Y, and T, reflect changes in the network configura- 
lj 1j 

tion such as switched series capacitors. A very serious diffi- 

culty arises from attempting to employ these parameters for 

damping control. Any specified values for Y. and T. cannot be 
1j 1j 

related uniquely to the real physical network (9, p. 87). For 

this reason, a control equation for d(Y. B. ) /dt is not pre - 
1j lj 

sented. 

+ 
Ri Li 

. 

j 
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Conceptually, however, the d(Y. 
ij 

B ) /dt term occupies an 
ij 

interesting role. If a network disturbance occurs such as an 

opened transmission line, the initial displacement in 0 is a 

result of an impulse in d(Y. B. 
J l 

) /dt. The terms A. and A. are 
'.j i J 

dependent variables which constitute the dynamic response of 0 

which must be damped to a steady -state condition. 
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III. THE DAMPING METHOD APPLIED 
TO A THREE- GENERATOR MODEL 

Model System 

The three generator system of Figure 8 is used to demon- 

strate the damping method. This system is chosen since it dis- 

plays interactions similar to those of large systems for which 

the method is intended. System constants are expressed in the 

per -unit system for which 

1 per -unit power = 10 MVA, 

1 per -unit voltage = 12 KV 

and 

1 per -unit admittance = 0.0694 mhos. 

The numerical values used for the parameters of Figure 8 are: 

W. = 2.127 per -unit for i = 1 to 3, 

E. = 1.100 per -unit for i = 1 to 3, 

M. = 0.100 per -unit for i = 1 to 3, 

11 L ell = 
0.718 L -15.8° per -unit, 

J 22 L e22 = 1.930 L -13.2° per -unit, 

1/4133 L e33 = 3.100 L -17.5° per -unit, 

V12 L e12 = 1.219 L -101.2° per -unit, 

yl3 813 = 1.192 L -108.1° per -unit 

and 

V23 L 4323 = 1.183 L -115.3° per -unit. 

1 

1 

L 



Figure 8. Positive Sequence Diagram of the Three -Generator Model System. 
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The resulting driving point conductance and transfer admittance 

values as determined by equations (3) and (4) are: 

G1 = 0.0866 per -unit, 

G2 = 1.149 per -unit, 

G3 = 2.085 per -unit, 

and 

Y12 L T12 = 
1.219 L 78.78° per -unit, 

Y13 L T13 = 1.191 L 71.91° per -unit 

Y L T = 1.130 L 64.74° per -unit. 

An ideal generator model is used for this example having a 

voltage source of magnitude and angle E. L A., where the rotor 

angle, d 
i i 

, corresponds identically with A. Although this 

represents a significant simplification of the real generator, 

the dynamic characteristics of the damping method are demon- 

strated. The magnitude of the source voltage is directly 

related to the rotor field current by 

where 

and 

E. 
Kiffi 

Ki = a positive generator constant 

Ifi = the d.c. field current. 

(55) 
- 
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The generator field is driven by a static exciter having the 

differential equation 

where 

and 

Exi Lfilfi+Rfilfi 

E = the exciter output voltage, 
xi 

Lfi = the field winding inductance 

Rfi = the field winding resistance. 

(56) 

The field winding time constant, Lfi/Rfi, is chosen to be six 

seconds which is representative of that found in large genera- 

tors. 

Simulation Program 

A FORTRAN program was developed to simulate a power system 

of N generators including the generator model described on 

page 41. The flow chart is found as follows: 

Main Program Appendix A 

Voltage Damping Subroutine Appendix B 

Dynamic Braking Subroutine Appendix C 

Numerical Integration Subroutine Appendix D 

The fourth order Runge Kutta method is used to obtain a numeri- 

cal solution to the differential equation 



for 

r 

Xli 

X2i 

X3 
i 

the ith 

Xli 

X2i 

X 
3i 

E * 
i 

generator where 

= E., 

= g. = Air 

= = 
i 1 

= the required 

integration 

s 
E. 
i 

X3 
i 

fi(Xlk'X2k) 

E. to be held i 
period At 

constant over the 

43 

(57) 

and 

fi(Xlk1 X2k) 
= 1 W.-X1iGi 

M. 
i 

c 
j=1 

XliXljYijCos(Tij-X2i+X2j) 

The Runge Kutta recursion formula is 

where 

X. (m+l )= , (m)+ 1 15.+1 R +1 S + 1 V. 

6 i - 
3 

i 3 i 
6 

X. 
i 

: 

X2i 

- 

X 
3i 

(58) 

(59) 

(6o) 

- 

1 1 

= 

i 

Ai, 



Q. 

R. 
i 

Qli 

Q2i 

Q3 i 

R1 
i 

R2i 

R 
3 i- 

. 

* 
E. i 
X3 

fi(Xlk,X2k) 

. * 
E. 
i 

X3i+Q3i/2 

fi(Xlk+Q1k1 X2k+Q2k) 
2 2 

At , 

At 

V. 

and 

s31. 

V1 i 

V2i 

V 
3± 

* 

E. i 
X3i+R3i/2 

fi(Xlk+R1k,X2k+R2k) 

2 2 

X +S 
3i 3i 

fi(Xlk+S1k,X2k+S2k) 

44 

(61 ) 

, (62) 

At , (63) 

At (64) 

m = the number of the last computed period. 

For all cases given, a step size, At, of 0.01 seconds is used. 

The accuracy of these solutions have been verified by using a 

step size of 0.005 seconds. 

S1 

S2i 

. * 

i 
E. 

= 

= 
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Reference Case 

A disturbance may be introduced in the system by off- 

setting the initial relative angles dl- d3 
and 42- from 

the steady -state equilibrium point for this system illustrated 

in Figure 5. The undamped dynamic response with initial 

relative angles of zero degrees is given in Figure 9. Damped 

cases are to be given for this disturbance to demonstrate and 

compare the damping methods. 

Voltage Control Damping Cases 

The damping equation for total voltage control is 

É. = i Ei (52) i 
eLi + E Ri 

and for local voltage control is 

E. _ i Ei 
eLi 

(53) 

The required exciter output voltage, E 
xi 

, may be found in terms 

of E. by substitution of equation (55) into equation (56) to 

give 

( L R 
xi - l f i Ei+Ei } f i 

Rfi Rfi 

/1 

K. 

(65) 

d3 

R 
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Figure 9. The Undamped Three -Generator Reference Case 
with Time Intervals Marked in Seconds on the Trajectory. 
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If the magnitude of the required exciter output voltage exceeds 

five times its nominal value, a limit is imposed. The flow 

chart for the voltage control subroutine is given in Appendix B. 

A of ten is used for this system on both local and total 

voltage control cases. It has been determined from other cases 

not included in this thesis that damping increases as .11 is made 

large although a limit is reached due to exciter saturation. 

The dynamic response with total voltage control is given in 

Figure 10 and the response with local voltage control is given 

in Figure 11. It is noticed that these cases are quite similar 

although somewhat better damping is obtained for total voltage 

control. 

For the purpose of comparison, the norm is defined as the 

linear angular distance between the undamped steady -state 

equilibrium point of Figure 9, and the maximum excursion of the 

first overshoot. In both cases the norm is reduced by 59 per 

cent from the undamped case. 

The voltage response of each generator for both forms of 

control is illustrated in Figure 12. The greatest difference 

between the response with total and local voltage control occurs 

at generator number two which has the least oscillation of all 

three generators. 

System responses not included in this thesis were also made 

for initial relative angles of: 

u 
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Figure 10. Total Voltage Control Applied to the Three - 
Generator Reference Case with Time Intervals Marked in 
Seconds on the Trajectory. 
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Figure 12. The Voltage Response of Each Generator with 
Local and Total Voltage Control Applied to the Three - 
Generator Reference Case. 
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á2 s3 

40° 0° 

40° 40° 

80° 20° 

Results of damping for these cases are comparative to the 

damping for the case given. 

Dynamic Braking Case 

Control is directly exercised on each driving point con- 

ductance in the three -generator model. For the application of 

load resistors, AG. is added to G., and for load shedding AG. 

is subtracted from Gi. The required size of AGi is given as 

AG, = ñM,/E 2 (35) 

Since the nominal value of E. and M, are identical for all 

generators, AGi must also be identical. The coefficient 

is chosen such that the application of OG. causes a step change 

in Pi equal to ten per cent of the nominal W.. 

Thus 

and 

T = 0.1 W,/M. = 2.127 

AG. = 0.179 for i = 1,2,3. 

ól 
ó3 

i 
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Although it is noticed that G. -AG. results in a negative con- 

ductance, this is permitted since the main concern is to verify 

the damping method. Dynamic braking is applied in accordance 

with equation (43) for which a flow chart is given in Appendix 

C. 

The dynamic response for initial relative angles of zero 

degrees is given in Figure 13. Curves illustrating the re- 

sponse of Ei are given in Figure 14. The 35 per cent reduction 

in norm from the undamped case is not as good as voltage control 

although the oscillation settles to zero more rapidly. In 

Figure 14 it is seen that dynamic braking did not occur at 

generator number two since the switching criterion given by 

equation (42) is not satisfied for that machine. 

System responses not included in this thesis were also 

made for initial relative angles of: 

S1 S3 b2 - d3 

40° 0° 

40° 40° 

80° 20° 

Results of damping for these cases are comparative to that 

obtained for the case given. 
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Time In Seconds 

Time in Seconds 

Gen. 3 

Figure 14. Response of E. with Dynamic Braking Applied 
to the Three -Generator Reference Case. For Interpretation 
of Discontinuities see Figure 6. 

(N= 2.127 per -unit) 
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Prime Mover Control 

A case is not given for the control of W, to introduce 
i 

damping by 

YM. i0i Ei (31) 

since present governor and turbine systems cannot follow the 

equation for most oscillation frequencies. This equation has 

been developed, however, in anticipation of improvements in the 

prime mover response. 

. 

W. _ 
i 

- 
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A P P E N D I C E S 



Appendix A. The Main Program Flow Chart for Power System 
Simulation. 

( START) 

READ BASIC SYSTEM DATA 
N number of genera generators 
Yj transfer odnntttonce* 
Ç. transfer admittance } tonca ongles 
Gi Jrtv'n3 point conductances 
Ef generator voltages 
Wi generator powers 
Mi inertia constants 

59 

(al 

READ CASE. DETAILS 
A+ inte'rotion step sise. 
Tm.x maximum solution time. 
di in' {ial generator angles 
A sly braking coefficient 
,u voltage control coeÇftctnt 
Lri generator 

11Çitld 

iniuc #once. 
RF9 9enera4.r TteIJ resistance.. 
E,ix maximum txci+er vol +age. 

and a damping type code.. 

1 

4-o. 
I ii ( -For -all 1) 
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Call Dynamic. Brakin9 Subroui ine. 
( Appendix C ) 

Call Vo I4-as e Cntrol SLbrocaint 
( Appendix 8.) 

Call Ntonerical Initejr4}ion Saisroa4inG 
( Appendix D) 

61 



GO 

PRINT OUT PUT DATA 
gencr4{or angles 
ganerql-er voltageS 
exciAer- voltage s 

iir+e dertv44-eve 
4-u4av»en41 error quaniAy 

54 

GO 
a 

61 

b 

h 
Ei 
Ext 
ti oF Ei 
Ei 

c 
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Appendix B. The Subroutine Flow Chart for Damping by Generator 
Voltage Control. 

START 

' Ei.- M1(Wi-EiGi- EiEjßi) 

E. G 

, ,.. eR;t- M; EjYl; (ßij+ t3jiEj /Ei ) 
h 

vit e 

s 

N 

E 
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CA.* erti 
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Éif-uEi 
(Li 

Exi4- ( LfiEi/Rfi+ Ei ) / E1 

Exit- Exalt 

J 
G4 

I 

42 
a 

42 
b 

44 
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43 

Eir ( ExiEi-Ei)RSi/Lii 

(RETURN ) 

1. 

62 
e 



Appendix C. The Subroutine Flow Chart for A Application of 

Dynamic Braking. 
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Gi-Gi*°i 

(RETURN ) 
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Appendix D. The Subroutine Flow Chart for Fourth Order Runge 

Kutta Numerical Integration. 

START 
4T 

O. 

Corn pY {s. Ai equation ( 6 ) 

Compute Ri 6y aqua {ian ( 62) 
1 

Corn puke. Si 6r equation ( G3) 
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