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A Method of Integration over Matrix Variables

M. L. Mehta
Commissariat & I’Energie Atomigue, Division de la Physique, Service de Physique Théorique, CEN
Saclay, F-91190 Gif-sur-Yvette, France

Abstract. The integral over two n x n hermitan matrices
Z(g,c)= {dAdB exp{ —tr [AZ +B?>—2¢AB+ g(A4 + B“)]} is evaluated in
n

the limit of large n. For this purpose use is made of the theory of diffusion
equation and that of orthogonal polynomials with a non-local weight. The
above integral arises in the study of the planar approximation to quantum
field theory.

1. Introduction

In their study of planar diagrams some authors [1, 3] have discussed integrals
of the form

— i) _ ] i j
Z= deM‘ exp{ ZV(M‘ )+ Z.CU tr M )M‘”} (1.1)
i i i<j
V(M) = tr M2 +%tr M* (1.2)

where MV, MD, ... are hermitian matrices of order n x n. The integral is taken
over all independent real parameters entering the matrix elements,

faM= | 11dM, T] d(ReM,)d(mM,). (1.3)

© i=1 1=Zi<j=n
The case of one matrix is the simplest. There are no cross terms containing
C,,- The integral reduces to that over the eigenvalues [4],

Z(g)szexp{—ter —%trM“}

=Const.jexp{— i (xf+%xf>}|A(X)|”ﬁdxi, (1.4)

i=1
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where
4X)= ] (;—x) (1.5)
1<i<j=n
and f=2. It is now known [1, 2] that
V4 1
0 20 Eg) B )+ 00, (16
with
Eyg)=—3Ina®+ @ — 1O —a?, (1.7)
El(g)=ﬁln(2—a2), (1.8)

a’=a*(g) = — —1+~/1+6ﬂ LB=2. (1.9)

In stead of hermitian matrices one could have taken matrices which are real
symmetric or which are quaternion self-dual. The corresponding integrals reduce
again to Eq. (1.4) where the parameter f§ is 1 for real symmetric matrices and it is
4 for quaternion self dual matrices. These integrals can again be evaluated in the
large n limit, and give the same E (g) except that § is now 1 or 4. The correction
term E,(g) may be different. The details of this calculation being of no interest
are omitted.

The next difficult case of two matrices was discussed by Itzykson and Zuber
[3]. They reduced the integral to that over the eigenvalues. However, the expres-
sions given by them are too complicated. Below we will reinvestigate this case

Z(g,c)= jdAdBexp{ —tr(4%+B?) — tr(A4 + BH+2ctr AB} (1.10)

where A and B are n X n hermitian matrices. We will show that

LnZe9_pg —x){lnﬂx)

70,0 ) }dx—I—O(n”z) (1.11)

cx
A1)
where f(x) is given by an algebraic equation of the fifth degree

f(x){(l - 6%]‘(>c)>_2 - c2}+ 1292 3x) — 2ex =0, (1.12)

and the root to be taken equals L.¢x(1 — ¢*)~* when g =0.

2. The Method of Diffusion Equation
Consider the partial differential equation

o¢ 1 0%¢
a2kl @1)
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where the constants D, may be unequal for different directions. The unique
solution satisfying the initial condition &(X ;0) = n(X) is known to be [5]
€X50) = [KWX, Ysm(Y)dY, 22)

T

K(X,Y;t)=]](@2nD;)~ 12 exp{ =Y (x;,— yl.)z/(ZDit)}. (2.3)
Now let A be an n X n hermitian matrix with elements Ay The A, are real, while

the real and imaginary parts of 4,; for i <j are denoted by Re 4;; and Im 4;;
respectively. Similarly for the matrix B. Then

&A1) = [K(4, B;n(B)dB, (2.4)

) 1
K(4, B;t) = Q2nt)™" /zexp{ - 2—ttr(A - B)Z}

. 1
= (2nmt) "2 exp{ — 5 [ Y(4;— B, +2Y (Re A, — ReB,)?

i i<j
+2 Z‘(Im A,;—Im Bij)z]}, (2.5)
i<j
fdB= | ...{ [14B; ﬂ d(Re B,)d(Im B, ), (2.6)
- 1 I<j
satisfies the equation
0
avf =1vie, 2.7
o 1 o? 0?
Vi=Y -+ 2.
ATl Ej{a(Re 47 " am A7 } 28)
and the initial condition
&(4;0) =n(4). 2.9)

As A and B are hermitian, we can choose unitary matrices U, and U, such
that

A=U'XU,, B=U;YU,, (2.10)

where X = [x,6, Jand Y = [y,6, ] are diagonal matrices. The x, are the eigenvalues
of A and the y, are those of B. Changing the variables from matrix elements to
the n eigenvalues and n(n — 1) angle parameters on which U, and U depend,
we have [4]

dB = AXY)dYdQ,, dY = []dy,. (2.11)
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so that

A1) =X, Q30

\ 1
= n0)""2| exp{ — g (X - Ut YU)2}17(Y, QYAXY)YdQ,, (2.12)

where
U=U EU: (2.13)

Observe that if n(B) is independent of 2, then &(4;7) is also independent
of Q, as can be seen by a change of variables from 2, to Q (depending on U),

1
&(X ;t) = const. t ™" exp{ ~ 5 tr(X-U" YU)Z}n(Y)AZ(Y)deQ. (2.14)
Seperating® the Laplacian into parts depending on X and on U,
i 0 0
V2= S A(X) =+ V2 .
4= ) 2o, A X5 Ve, @13)

one sees that &(X ;1) satisfies the (diffusion) equation

% = %ZTEY) ;QA (X)og, o,= ;x-i, (2.16)
and has the initial value
$(X;0) = n(X) 2.17)
Set
F(X 30 = A(XEX 50) (2.18)
Then
YOIF =Y {482¢ + 2(0,4)(0,6) + £02 4}
- “(X){z%f) ;ai(Az(X)ai@} @)
Thus F(X ;t) satisfies the (diffusion) equation
0 1 0°F
and has the initial value
F(X;50) = 4(X)E(X ;0) = 4(X)n(X). 2.21)

1 The Jacobian of the transformation from matrix elements to the eigenvalues and angle variables
for a hermitian matrix is 4%(X)f(@2,), where f is independent of the x, [4]. Therefore the Laplacian
is given by Eq. (2.15) ([5], end of Chap. 1)
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Therefore F(X ;t) is given by [5]

M=

1
5 2 i~ ) }A( Y)n(Y)dY. (2.22)

14

F(X ;t) = const. t_”/zfexp{ -

Il

1

choose

n(B)=exp{—V B)+ctrB2}—exp{—V(YH—cZin}, (2.23)

1
where V(M) depends only on the eigenvalues of M. Setting ¢ = % in Egs. (2.4)-(2.6),
(2.18) and (2.22) one gets

A(X)fdBexp{ — V(B)+ctr B> —ctr(4 — B}*}

n{n—1)/2
= (%> =1 IdY exp{ —V(Y)+ cZyi2 — cZ(xi _ yi)z}A(Y). (2.24)

The constant is obtained by choosing V(B) = ¢ tr B? and performing the gaussian
integrals on both sides. Therefore

{exp{—V(4)— V(B)+ 2c tr AB}dAdB
= const. {dXdQ ,4%(X) exp{ —V(X)+¢ fo}
fdBexp{ —V(B)+ctr B — ctr(4 — B)*}
= const. [dXdY A(X)A(Y) exp{ —V(X)~V(Y)+2c) x, y,}. (2.25)
This is essentially the result of Itzykson—Zubar [3] expressed in a simpler
form. The constant can be fixed by considering V(4) = tr A2 =) x2. The gaussian

integral on the left hand side is then straight forward, while that on the right
hand side is given in the appendix. As a result the unknown constant is

n -1
= 1(2¢) ~ (1/2nin = U(H”) . (2.26)

1

3. Orthogonal Polynomials Revisited

To get the asymptotic behavior of Z(g, ¢}/ Z(0, ¢).
where

Z(g,c)=| exp{ —tr(42 4+ B?) — % tr(4* + BH) + 2ctr AB}dAdB

= const. jexp{ — Z(xi2 +y) — %Z(xf + ¥+ 2c2xiyi}
AX)AY) [Tdx.dy,. (3.1)

we will use orthogonal polynomials with a non-local weight.
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Writting A(X) = [](x, — x ;) as the Vandermonde determinant, one sees that

i<j

AX)=det[x]" "] =det[P,_ ,(x)],;= 12, m 3.2)
where
. izl
Px)=x"+ ) ax*, (3.3)
0

is an arbitrary polynomial of degree j with the coefficient of x/ equal to 1. Similarly,
A(Y)=det[Qj—l(yi)]i,j:1,2,.,,,,1, (34)

where Q (x) is another set of similar polynomials.

Since

w(x, y) = exp{ —(x*+y*) — %(x4 + M+ 2cxy} (3.5)

is symmetric in x and y, we will choose P(x) = Q/(x) and such that
{ | wix, y)P(x)P dxdy =ho,; (3.6)

where the Kronecker symbol 4, i is 1 or 0 according as i = j or i # j. Such a choice
is possible. In fact

My My, < My,
P (x) = const. det| m,, my Smy; (3.7
M0 Mg—1y1 - M qy
1 X cox
where
m;= [ Iwlx, yxiyldxdy, (3.8)

are the moments of w(x, y). In particular, since y/ can be expressed as a linear
combination of P,(y) with k < j, one has

| | wix, y)P{x)y'dxdy =0, for i > j. (3.9)

With such a choice of P(x) we expand the two Vandermonde determinants,

multiply and use the orthogonal property (3.6) to integrate various products.

The only terms which contribute have equal indices of the polynomials in x and
in y, they contribute the same quantity, and they are n! in number. Thus

n—1

Z(g,c)=const.n! [] (g, c), (3.10)
0

and we need to know the asymptotic behaviour of the product of 4;. For this
purpose, we proceed as with the usual orthogonal polynomials.
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Asw(—x, — y) =w(x, y), m; ;=0fori+j odd, and P (x) has a definite parity,
P(—x)=(—1)P(x) (3.11)
Let
xP(x) =P, (x)+ R.P,_,(x)+ S,P,_,(x), (3.12)
where R, and S, are certain coefficients. Iterating thrice we get
X*Px) =Py 3(x) + R+ Ry + Ry )P (x)
+ {R' R (+R+R, )+(E+8,,+S,.,) }Pi—-l(x to (3.13)

Thus expressing x*P (x) as linear combinations of p {x),j i+ k, and using equa-
tion (3, 6) we get

feel

I 5P 1(X)Pi(y)<x ~cy+2 % x3 >W(x, y)dxdy

—

29
=hi{l+7(Ri1+Ri+Ri+1)}_CRihi—1' (3.14)
Also integrating on x by parts, the left hand side of the above equation is
2 dP,
3 I} Pe s p e, ey =0, (.15
because of equation (3.9). From the last two equations we get
29
hyl+—(R,_, +R,+R;,,)r=cRh, .. (3.16)
n
Similarly by integrating
29 ,
PXx)P,_ (0| x—cy+ P w(x, y) (3.17)
and
29 5
P, )Py x—cy+ o x> Jw(x, y) (3.18)

in two different ways, we get the relations
i 2 2
chy=h;_, { —%+ Ri[] +’nq(Ri~1 +R;+ Ri+1):| +7g(si +8iit Si+2)}’ (3.19)
and
9, _
2% h,=cSh,_,. (3.20)
n

4. Asymptotic Evaluation of Z(g, )
Let us write f, = &,/h,_,, so that Eqgs. (3.16), (3.19) and (3.20) can be rewritten as
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2 -1
ﬁchi{l—l—;g(Ri_l—kRijLRiH)} ; (4.1)

i 2
cfi=— §+Ri{1 +7g(Ri—1 +Ri+Ri+1)}

2
+‘nq(si+si+1 +5,25), (4.2)
and
2
S;="0 fficifias 3)

For large i and n, the f;, R, and S, can be replaced by continuous functions.
Thus

fi~nf(X), fii1~nf(xj:8)’
R,~nR(x), R, ,~nR(x=te),

1

S;~nS(x), 8,1, ~n’S(xte), (44
i 1

X = i’ &= —. (4.5)
n n

Making these substitutions, we get to the leading order,

f(x)=cR(x){1 + 6gR(x)} ", (4.6)
of (x)= — g + R(X)(1 + 6gR(x) + 69S(x), @.7)
eS(x) = 247 2(%). 4.8)

Eliminating R(x) and S(x) from the last three equations, one gets

f(x){(l —6%f(x))~2 —c2}+ 12g%f3(x) = Lex. (4.9)

When g = 0, the value of f(x) will be denoted by f,(x). From (4.6) and (4.7)
fox) =%ex(l =3t (4.10)

Now from Eq. (3.10) we have

Zig.c) S hfg,c)
- = In-- 4,11
70,0 & " Ao e @il
n—1 n
Y Inh=nlnh,+ Y (n—i)lnf, @.12)
i=0 i=1

;12 : (n —i)In ffg, c) = (})(1 —x) In(nf(x))dx + O(n~2). (4.13)

i=1
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Therefore

1. Zig,e) 1. hyg.c) f(x) s

;?I Z(O’C)——ﬁlnhz(o,c)Jrg(l—x)lnmderO(n ). (4.14)
But

ho(g,C)Zj ] dXdyeXP[*{x2+y2—2cxy+%(x4+y4)}]

__T 394 o 2
_ﬁ/l—c2{1 2n(1 CZ) 2+0(7’l )} @1
Hence b0
o\d-€) _ -1
In (0. =0n"1). (4.16)

Egs. (4.14), (4.16), (4.9) and (4.10) together give the result announced in the intro-
duction, Egs. (1.11) and (1.12).

5. Some Remarks

5.1. Formula (2.25) looks trivial, but it is not. To be honest, we have no shorter
way to derive it.

Itzykson and Zuber [3] derive a formula equivalent to (2.25) in a different
way as well. They introduce the decomposition of unity into characters of irreduci-
ble representations of the unitary group. Using the orthogonality of these charac-
ters they can perform the angular integrations. The final result is a series containing
eigenvalues of 4 and B, characters of irreducible representations of the unitary
group, their dimensions and the number of times an irreducible representation
occurs in various Kronecker powers of the initial matrix. This method can be
adapted to deal with real symmetric or quaternion self-dual matrices; one has
only to replace the unitary group by the orthogonal or the symplectic group.
The formulas however, do not seem to be simple.

5.2. The same method adapted to evaluate the integral over a chain of matrices
j i-1 j
jexp{ ~ S VM) 2y cl.M‘i’M(i+1)} [Tam®
i=1 i=1 1
in the limit of large n will be considered elsewhere [7]

5.3. An expansion in powers of g gives

Jx) =1—6gx(1 —c?) 2+ 3g%x%(1 — c*)~*c* + 8c* + 15)+ 0(g®) (5.1)
Solx)
so that .
~E () =[( —x)lnj%dx

=gl =) 2+ 2921 =) 7Hc* + 82 +9)+0(g°)  (5.2)
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5.4. Denoting by { > the average with respect to any positive measure, one has

the inequality [16].

ey ze™
Taking
{...)={dAdBexp{—tr(4* + B> — 2cAB)} ..., (5.3)
or
b
(o> = [dXAY AX)AY) exp{ Y xF4yi— 2cxl.yl.)}... (5.4)
1
and
F= tr(A4 +BY) = — —Z(x +y7), (5.5
we get the inequality (see the appendix)
299 _ exp{ w2 Eylg)— E, (9) + 000 )}
Z(0,¢) !
= exp{ —g(1 — ) 2(n% +)) (56)
Thus one sees that in agreement with Eq. (5.2),
Ey(g)= +g(1 — )72 +0(g%),
E (9)= +39(1 — c*)™ 2+ 0(g?). (5.7)
In general, let D be the p x p matrix [§,;, — C;; ] and D, the same matrix with

its k" row and k* column removed. Observe that
J eXp{
i

(2

I M'“

1gi<jzp

(-2
) > a, exp(— b, tr A}),

NS ]

with
a,=(detD,) "2, ab, "% =(det D)""/2.

A power series expansion in g gives

Z(g)zjexp{ Ztr<A2+ A4>+2 Y CijtrAiAj}dAl...

i=1 1Zi<jsp

dA

rA2+2 Y CijtrAiAj}dAl .dd,_dA,, | ...dA

p

—Z(O){l—; Y. [dA, tr A¥exp(— b, tr A2)/[dA, exp(— b, tr A2) + }

k=1

:Z(O){l—%(2nz+l f 24 0(g?) }
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So that

Z(g) 1 ,
Z((g)) > exp{ — Zg(Zn + l)kz 1)”}.

5.5. An obvious upper bound for Z(g)/Z(0) is 1. Another of the form k, g** can be
obtained by Schwartz’s inequality.

5.6. Note that if (M) has a term in tr M®(tr M®, ... ), then xP,(x) in Eq. (3.12) will
alsohavea P, (x)(P,_,(x),...) present.

5.7. Let us represent the integral in Eq. (1.1) by a graph; the matrices M® are
noted as points and the points i and j are joined by a line if C;; # 0. If this graph
contains no cycles, the angle variables can be integrated by using Eq. (2.24). The
remaining integrations over the eigenvalues, even in the limit of large n, are not
simple.

5.8. Examples. For a cyclic graph with p points,
14 P p
Z(g) = “_[dAiexp{ - Y V(4)+2c Y tr AiAiH},
1 i=1 i=1
A,., =A,,with VV asin Eq. (1.2).

)4 A\ —1
(DY), = Z<1—2ccos%ﬂj> <tk0thp6> :

¥

. 9in, 2 po\ 2
Z(g) 2 Z(O) expy = (2n* + p{ thOth= ,
where 2¢ chf = 1.
For a p x ¢ square lattice graph with periodic boundary conditions,

Z(g)= f H H dAijeXp'{_ Z Z [V(Aij)-2c tr AIJA(H‘ Dj

i=1j=1 i=1j=1
—2C,tr A A, 1)]}’

Apery=Ays VA =Tr A+ 5142,

(p+1)j

Ai(q+ n=4;,

g 2mi 2mj )—1
DY), =— 1 —2C, cos— — 2C, cos —
O s pqi;j§1< ! p 2 q
1 2n
~ 5 [ (1-2C, cos0—2C, cos §)"* dbdg
0

l‘ﬂ
=EH(1 —2C, cos 0> —4 C2}~ 1240
0]

for p and g very large. Hence
/2

Eg;_e p[ <2n2+1)pq{1—4<c1—cz)2}*1{ [ (1 —o?sin®6)” ”ZdGH
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with o> = 16C,C,{1 —4(C, — C,)*} ™.
For a star graph with m branches

Zig)=| dA[m]dBi exp{ —V(4) - i V(B + 2 triAB,},
1 1 1

% _ (1 _ mCZ)(l/Z)nZ(zc—m)(l/z)n(n— 1)n—(1/2)n<ﬁjg>* E

1

Jexp{ — V(X)+mc? X2} {det[F,_, (x,)]/AX)}" 4*(X)dX

= exp[ - %(2112 + D1 —=me*) {1 +m(l +c? — mcz)Z}}

where

Fix)= n“”fexp{ ——x - %y“}y"dy

Appendix

Evaluation of the constant in Eq. (2.25).
We will need the

Lemma. Let F(X)=F(x,,...,x,) be a symmetric function of x,, ..., x, and A(X) =

[T ,—x ;). Then for arbitrary numbers 7, ; one has
1=i<jsn

JAXAXOFX) ] (x, — x;+ 4;)) = JdX AA(X)F(X).

i<j

Proof. Expand the product | | (x, — X;+ 4;;) in powers of x, ..., x, and note that
i<j
fxix2 . x2AX)F(X)dX =0

if any two of the o; are equal; this is so because if o, = «;, then integrand is anti-
symmetric in the variables x; and x i Therefore the monomial in x, ..., x, which
will give a non-zero contribution to the integral must have all «; distinct, and its
degree is at least

0+142+...+n—1=3nn-1).
This is also the degree of | [(x; —x;) = A(X). Hence terms containing any 4,

drop out on integration. Enldjof proof.
To calculate the constant in Eq. (2.25) we may choose

V(A)=tr A% = Z xiz_
i=1
Then

jexp{ - En:(xiz +yF - 2cxl.yi)}A(X)A(Y)dXdY



Integration over Matrices 339
= [ex { i((l—c xZ +(y, — ex, )Z}A(X)A(Y)dXdY
1
= fex { i((l—c )X; +y2)}A(X)A(Y+cX)dXdY

C(1/2)n(n~1)j‘exp{_ (1 _ CZ)ZX?}AZ(X)dX_[e_iindY
1

by the lemma. The integration over the y, is elementary. For that over x; change
variables to
xp=(1— "2,

so that
IeXp{ —(1- cz)fo}AZ(X)dX = (1 — )~ W2 o~ X5 A2(X)dX.
1

The last integral can be evaluated? by introducing Hermite polynomials
which are orthogonal for the gaussian weight. The final result is

fexp{ — Z(x? 4+ y} — 2cx,y,) } A(X)AY)dXdY

n—1
= C(1/2)n(n-1)7-c(1/2)n(1 _ 62)“(1/2)'!2,1! n (7’C1/22_ii!)
0

n
- TC”(%C)“/Z)”("_I)(I _ CZ)—(l/Z)nZ Hl'
1

For Eq. (5.6) we need to evaluate

ji(xf' +7) exp{ - i(x? +yi- 2xiyi)}A(X)A(Y)dXdY,
1 1
= 2§ix?exp{ - i((l —cH)xi+ yf)}A(X)A(cX)dXdY
1 1

— 2nc(1/2)n(n71)(1 _ cz)—(l/z)(n2+4)7.cn/2j‘exp< Zx > 4A2 dX

as above. Once more introducing Hermite polynomials, the last integral is seen
to be?

yexp< zx > 4 A2(X)dX

L{x* H? (x)e ~dx

sone e s

2 [4], Chap. 6
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Finally, from the three term recurrence relation and orthogonality one gets
[x*H2(x)e™ " dx = 2(2i* + 2i + 1) [ H2(x)e ™ *"dx.

Putting everything together one sees that

ji(x? + yf)exp{ - i(xi2 +y} - 2cxiyi)} AX)AY)dXdY

=1 —-¢c*)"2m>+1in)fexp { - i(xi2 +yi— 2xiyi)}A(X)A(Y)dXdY,

implying Eq. (5.6)

Acknowledgements. 1 am thankful to my colleagues, to C. Itzykson who got me interested in
this problem, to J. B. Zuber who explained me with great patience their article and to M. Gaudin,
J. des Cloizeaux, A. Gervois, G. Mahoux and J.M. Normand with whom I had many helpful discussions.

References

1. Brezin, E., Itzykson, C., Parisi, G., Zuber, J. B. : Commun. Math. Phys. 59, 35-51 (1978)

2. Bessis, D. : A new method in the combinatoric of the topological expansion, Commun. Math. Phys.
69, 147-163 (1979)

3. Ttzykson, C., Zuber, J. B.: The planar approximation (II), J. Math. Phys. 21, 411-421 (1980)

4. Mehta, M. L. : Random matrices. Chap. 3. New York : Academic Press 1967

S. Morse, P.M.: Feshbach, H.: Methods of mathematical physics. Chap.2.4. New York: McGraw-
Hill 1953

6. Hardy, G. H., Littlewood, J. E., Polya, G. : Inequalities. p. 138. Cambridge: University Press 1964

7. Chadha S., Mahoux G., Mehta M. L.: A Method of integration over Matrix variables. I1. J. Phys.
A (in press)

8. Bessis D., Itzykson C., Zuber J. B., Adv. Appl. Math. 1, 109-157 (1980)

Communicated by E. Brézin

Received October 1, 1979





