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A METHOD OF LINES FOR A NONLINEAR ABSTRACT
FUNCTIONAL EVOLUTION EQUATION

BY
A. G. KARTSATOS AND M. E. PARROTT

Abstract. Let A- be a real Banach space with X* uniformly convex. A method of
lines is introduced and developed for the abstract functional problem

(E) u'(t) + A(t)u(t) = G(t,u,),   «o = 0,       re [O.r].
The operators A(t): D c X -» X are m-accretive and G(t, £) is a global

Lipschitzian-like function in its two variables. Further conditions are given for the
convergence of the method to a strong solution of (E). Recent results for perturbed
abstract ordinary equations are substantially improved. The method applies also to
large classes of functional parabolic problems as well as problems of integral
perturbations. The method is straightforward because it avoids the introduction of
the operators À(t) and the corresponding use of nonlinear evolution operator theory.

1. Introduction—Preliminaries. Let A- be a real Banach space with norm || • ||. Let
PC be the space of piecewise continuous functions xp: [-r,0] -» X, for a fixed r > 0.
For xp g PC we let

Wpc=    sup    ||*(i)||.
jSl-r.O]

In this paper we consider the abstract nonlinear functional problem

(FDE) u'(t)+A{t)u(t) = G{t,u,),    u0 = <¡>,       t g [0, T],

where u: [-r, T] -» X, A(t): D c X - X, t g [0, F], D independent of t, G: [0, F] X
PC -* X, and <¡>: [-r, 0] -* X is Lipschitzian with £(0) G D. The symbol u, denotes
the function u,(0) = u(t + 6), 0 g [-r,0]. We also need the following conditions:

(A.l) X*, the dual of X, is uniformly convex.
(A.2) There exists a nondecreasing function L, : [0, oo) -» [0, oo) such that

\\A(t)x - A(s)x\\ < |f - s\Lx(\\x\\){\ + \\A(s)x\\)

for every s, t G [0, T] and every x G D.
(A.3) For each t G [0, T], A(t) is w-accretive (see definition below).
(A.4) There exists a constant ß > 0 such that, for <i>, xp g PC, t g [0, F],

||G(f,*)-G(f,*)||<jB||*-V'||pc.
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74 A. G. KARTSATOS AND M. E. PARROTT

(A.5) There exists L2: [0, oo) -* [0, oo) nondecreasing and such that

\\G(t,4>) - G{s,4>)\\^ L2(U\\K)\t - s\
for every i, / e [0, T], <i> g PC.

Let (x,f) denote the value of the functional /g X* at x g X. Define the
"duality map" on X as follows:

Jx= {x* g X*; (x,x*) = \\x\\2 =||jc*||2}.

The set Jx is nonempty for each x g X by the Hahn-Banach theorem. If X* is
uniformly convex, then J is single valued and uniformly continuous on bounded
subsets of X. An operator B: D(B) c X -* X is called "accretive" if for every x,
y G D(B) there exists/ g J(x - y) such that (Bx - By, f) > 0.

An accretive operator B is called "w-accretive" if R(I + XB) = X for some
(equivalently, for all) real X > 0. If B is m-accretive, it can be shown that, for any
X > 0, the operator (B + A/)"1 exists and, for every u, v G X, satisfies

\\{B + XI)~lu-(B + \I)'lv\\ < (1/A)||k - p||.

For these and other properties of accretive operators we refer the reader to Kato
[12]. By a "strong solution" of (FDE) we mean a continuous function u: [-r, T] -* X
which is absolutely continuous on [0, T] and satisfies (FDE) (strongly) almost
everywhere there.

Crandall and Pazy [3] established the existence of solutions of an abstract
evolution equation in a general Banach space. The equation they considered was of
the form

(AE) u'(t) + A(t)u(t) 3 0,    u(s) = x,       s < t < F,

where A(t) is a nonlinear (possibly multivalued) operator satisfying an w-accretive-
ness-type condition and a time dependence condition implied by (A.2). Moreover,
they assumed that D(A(t)) is independent of /. The existence results in [3] are
based on the existence and the properties of abstract evolution operators generated
by such operators A(t).

In [18] Webb showed that the autonomous version of (FDE) can be studied in the
framework of nonlinear semigroup theory (A(t) = A in (AE)) by defining an
operator Âl: D(Â) c C -» C ( = the space of continuous functions/: [-r,0] -» A") as
follows:

i<p = -<p'
with

£>(i)= {<i>G C;<f>'G C,<f>(0) g D(A), #-(0)+A<l>(0) = G(<f>)}.

In [5 and 6] Dyson and Villella Bressan extended Webb's approach to the nonauton-
omous equation (FDE) under conditions similar to (A.2)-(A.5) and for X* uni-
formly convex.

One advantage in considering (FDE) as the abstract "homogeneous" equation
u'(t) + Â(t)u(t) = 0,       w(0) = 4>,
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is that the approximation theory of Crandall and Pazy for (AE) (see also [7,8,13])
can now be applied to (FDE). In [15] Parrott indicates exactly how this can be
accomplished.

In [10] the authors established the fact that the unique solution of (FDE) (in
spaces with X* uniformly convex) can actually be obtained in a straightforward
manner without the introduction of the operator Â(t) above and without the use of
nonlinear evolution operator theory. In fact, it was shown in [10] that this solution
u(t) is the uniform limit of solutions u„(t) of approximate equations involving the
Yosida approximants of A(t ).

We should also mention here that the problem

(F) it'(r)-/('.«,).   "r0 = <í>.       t>h'

(or its autonomous counterpart) has been solved by use of evolution operator theory
in [19] among others. The corresponding integral equation has been considered in
[9]. In the case X = R", the numerical approximation of (F) has been accomplished
by a variety of methods (see, for example, [4] and the references therein). Linear
semigroup theory for the approximation of linear hereditary systems has been
utilized by Banks and Burns [1], Banks and Kappel [2], Thompson [17] and some of
the references therein.

It is our purpose in this paper to introduce and develop a "method of lines"
approximation scheme for solutions of (FDE). The method of lines approximating
parabolic problems goes back to Rothe [16]. This method was used by Necas [14] to
study the problem

u'(t) + Au(t) = Q(t),   u(0) = u0,       /g[0, F],

with X a Hubert space. The results of Necas were extended by Kartsatos and Zigler
in [11], where the method of lines was used in order to establish the existence and
uniqueness of the solution of the perturbed evolution equation

(PE) u'(t) + A(t)u(t)-G(t,u(t)),   w(0) = wo,       ?g[0,F],
in a Banach space X with X* uniformly convex. Since (FDE) includes (PE) as a
special case, our results constitute a substantial improvement of certain results of
[11].

The approximation scheme developed here has the advantage of being straightfor-
ward in the sense that we need not resort to the operators A(t) nor further restrict
the space of initial functions <>.

We should also mention that it is impossible to apply evolution operator theory to
our problem without defining the rather impractical operators Â( t ) and solving the
corresponding initial value problem.

2. The approximation method. As noted in §1, the existence of a unique strong
solution u(t) of (FDE) under assumptions (A.1)-(A.5) has previously been estab-
lished. We will construct u(t) as the uniform limit of "lines" which are the solutions
of approximate discrete equations for (FDE). In what follows, we assume that
conditions (A.1)-(A.5) hold.

We consider a partition {tnj} of the interval [0, F], where t, = jh = jT/n,
j = 0,1.n (t„0 = 0, ?„„ = F). We assume that n is sufficiently large so that
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76 A. G. KARTSATOS AND M. E. PARROTT

bh < 1, where b is the constant of condition (A.4). We set

-   m=/*('),      <e[-r,0],
"oK)     U(0),      /G[0,F].

We also define the space

Bx = {u:[-r, T] -» X; «(f) = <¡>(t) for f g [-r,0]
and u(i) is constant on (0, F]}.

It is easy to check that Bx is a complete metric space with respect to the distance
function induced by the norm

(2.1) Mr-    sup    ||«(f)||.
tSl-r.T)

We define a mapping Ux on 5, such that

>(0,      re[-r,0],
(£/,«)(/)«

(^('-o) +(l/A)/)_1(^o/A + G(f„0,M((|0)),       f G (0, F],

where zn0 = <i>(0). The mapping Ux: Bx -» i?! is a strict contraction on i?,. In fact,
for u, v g Zfj,

|t/,« - l/lD||T < A|G(in0, «,J - G{tn0, v,J\\ ^ hß\\ulno - vj PC

*hß    sup   |«liio(tf)-i;liio(i)|| = A/8       sup       ||«(f)-«;(f)||
»e[-r.O] re[,„0-r.,„0]

<AB    sup   ||«(f)-ü(f)|| = A/8||M-i»||7-.
rel-r.n

We denote by z„x the unique fixed point of Ux on Bx. We also let

(2.2) znX = (A(tnQ) +(l/h)iyl(zn0/h + G(tn0, znX j).

Proceeding in a similar manner we introduce the spaces 2f-,y = 1,2,...,«, by

By - {«: [-/-, F] - *; «(f) = <¡>(t) for í g [-r,0],

«(/) is constant on each interval (0, tnX\, (tnX, tn2],... ,(/„ }_x, F] J.

Each space Bj is a complete metric space with the same distance function as Bv
Moreover, the strict contractions U/. Bj -» Bj are defined by

U(r),      /e[-r,0],

'n2>

fe(0,fnl],

(2.3)   (i/y«)(r)=    :
'n./-l'       ' S V/n,>-2',n,7-lj '

(¿('„.,-i) +(l/A)/)"1(z„,,._1/A + G('../-i.«»..,-.)).

»e(Vy-i.7l-
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The unique fixed point of Uj on B} is denoted by znJ and we let

(2.4)   znj = {A{tn<]_x) +{\/h)l)'\znJ_x/h + G(tn,j_x,znjitiJ),

j = 1,.,.,/f.
From (2.4) we see that for each/ = 1,2,... ,n the point znj satisfies

(2-5) A(tn j_x)znj+(z„j- zn j_x)/h = <?(i,iy_i, z„j^ J.

Lemma 2.1. The sequence {znj} is uniformly bounded.

Proof. We first establish the fact that, without loss of generality, we may assume
that 0 g D and A(t)0 = 0 for t g [0, F]. In fact, if 0 € D, we fix x0(E D and define
Ax(t)by Ax(t)x = A(t)(x + x0) - A(t)x0 for every x g D - x0 = /),. ThenO g Dx
and Ax(t)0 = 0. Clearly, Ax(t) is m-accretive since A(t) is w-accretive. Also, if we
define the constant function x0 G PC by x0(6) = x0 for 6 g [-r,0], then we can
write (FDE) as

«'(0+^(0»(0-«'(0 + ̂ (íK«(') + *o)-^(0*o
= G(t, u, + x0) - A(t)x0 = Gj(f, u,).

We show that Ax(t) satisfies a time-dependence condition of the form (A.2). Let
t, s G [0, F] and x g Dx be given. Then we have

Ax(t)x - Ax(s)x = A(t)(x + x0) - A(t)x0

-[A(s)(x + x0)-A(s)x0],

which implies

\\Ax(t)x - Ax(s)x\\^\\A(t)(x + x0) - A(s)(x + x0)\\

+ \\A(t)x0-A(s)x0\\

*i\t - s\Lx(\\x + x0\\){l +\\A(s)(x + x0)\\)

+ \t - s\Lx(\\x0\\)(l +\\A(s)x0\\)

K\t- *|L3(||x||)(2 + \\A(s){x + x0)\\ + \\A(s)x0\\),

where L3(||x||) = max{ L,(||*|| + ||x0||), Lx(\\x0\\)}. Since

\\A(s)(x + x0)\\ = \\A(s)(x + x0) - A(s)x0 + A(s)x0\\

^\\Ax(s)x\\ + \\A(s)x0\\,

we obtain

Mi(*)* - M*)4 <!' - *MM)(2 + K(* )*|| + 2\\A(s)x0\\).
Since (A.2) implies that ||i4(s)x0|| is bounded on [0, T], the above inequality implies
that

\\Ax(t)x - Ax(s)x\\^ K0\t - s\L3(\\x\\)(\ +Mi(*)*l)
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78 A. G. KARTSATOS AND M  E. PARROTT

for some A0 > 0, which is condition (A.2) with A0L3 replacing L, and Ax replacing
A. The function Gx(t,<¡>) = G(t,<¡> + x0) - A(t)x0is Lipschitz continuous in <f> g PC
since G has this property. Also, for <i> g PC, s, t g [0, F], we have

||G,(i,<f>) - Gx(s, <p)\\ = \\G(t, <p + x0)-A(t)x0 - G(s,$ + xQ) + A(s)x0\\

<|f - s\L2(\\<¡> + x0\\K) +\t - s\Lx{\\x0\\){\ +\\A(s)xQ\\)

G L4(\\4>\\K)\t - s\,
where L4(«) = max{L2(u + \\xQ\\), KxLx(\\x0\\)}, for a suitable constant A, > 0.
Now, using the Lipschitz continuity of (A(tnj_x) + (\/h)I)~x and assuming that
A(t)0 = 0, we obtain from (2.3) and (2.4), for t e (t„ y_l5 T] ,

lM0|-MJ<kJ-il + *|<?(i.J-i.^J|-
If we denote by Ö the zero function in PC and let K2 be a bound for ||G(/,Ö)|| on
[0, T], we obtain

Pnj(')\\ <\Kj-l\\ + *H'n.,-l> î^.,) - G('«,y-l'Ö)| + *|G(f..y_1,5

<lk.7-,|| + A/3||z I|pc + ^2--* " J'».J- 1 M

Now,

'"A,,-,llpc = SUp        ¡¿„yif^-l    +«)|
0(E[-r.O]

sup
'£',  ¡-l-»-.!n.y-l     '■'«.;   il

M')l|<  sup ¡M')
re[-r.r]

Hence,

\\znj{t)\\^    sup    ¡r^.^ífíll+A/S    sup    \\znj(t)\\+hK2
;e[-r.7~] ie[-r.r]

If t G [-r, »„.y.,], thcn||z„y(f)|| = H^.y-xif)!! < H^.y-xllr- Thus, for all t g [-r, F],

iiyir<pn.,-iiir+^iiyir+AA2,

which yields

(l-Ä^IM^Ky-ilr + Ä^,      ; = 1,2,....«.
Applying the above inequality once more, we get

V-»».Ar«?# + £b +hK,

-nOllT
n-1

\h)"~l +a=o

hK1

(1-ßhY
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Thus

IKollr
* (I-/SA)'^ + E

A = l

«A,

.      11*11PC -;+ £

¡PC +

(l-ßh)k

hK2

(1-/3M"
TK,

(1-ßT/n)"     (1-ßT/n)"'

Since limn_xl/(l - ßT/n)" = e^r, we conclude there exists «0 and Ai > 0 such
that for « > «0 we have

(2.6) KW<PJT<M,      j = 0,1,...,«.
Lemma 2.2. The sequence {(znj - z„¡-i)/h) is uniformly bounded.

Proof. Assume that «0 and Af are as in the proof of Lemma 2.1. Assume further
that (ß + Lx(M))h < 1 for« > «0. From equation (2.5) we have, for/ = 1,

¿U„o)zm + (zm - z„o)/h - G(t„0, znl   ).

It follows that

(A(0)znl - A(0)zn0, J(znX - z„0))+\\znX - zj'/h

- (G(0, z„1o), /(*„, - z„0)) - (A(0)znO, J(z„x - z„0)),

which, using the accretiveness of A(0), gives

Iki - *„oilV« < (C(0, ïrt.) - G(0,0), /(*„, -*„„))
+ (G(0,Ö), J(znX - zn0)) - (A(0)znO, J(z,lX - zn0))

< ¿fauM'i _ 2»<>ll + ̂ Hz'" - z«oll +11^(0) z„0|| |zBl - z„0||
« [/3Wpc + A2 +||/1(0)^(0)||] ||z,„ - z„J,

where A2 is the upper bound of ||G(f,Ö)|| from the proof of Lemma 2.1. Conse-
quently, we obtain

(2-7) ||znl-z„0||/«<A3.

where A3 = /3||<f>||pc + A2 + ||/1(0)<¿>(0)||. From (2.5) with/ = 2,3.« we find

(A{tn.j-l)Znj - A(t^j-2)znJ_x, J(Z„J - Z„ j_x)) +\\ZHJ ~ ZnJ_x\\'/h

■(^'"J-l'1«/,^.,)' Jl**j-*m.J-l))~(A{ti.J-2)**J-l* J(**j-*n.j-l)).-
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80 A G KARTSATOS AND M E. PARROTT

Hence, by the accretiveness of A(tn -_2) and condition (A.2),

Ik, - *»J-llV* « (c(/».y-i, *»;,„,_,)> A^y - *.J-l)]

-(^(^.y-zJ^.y-i.AZny-^.y-i))
-(^('».y-lKy - A(t„J-2)Znj' J(Znj ~ Zn.,-\))

-{A{tn.j-l)Znj - A(tn.j-l)Zn.j-l, J(Znj ~ Zn.j-lJ)

^(G(trl.]-,,z„J,iij_i),Az„J-Zn.j-l))

~ (A(tn.j-l)Zn.j-^ J(Znj ~ Zn.j-l))

+Kj-i-tn.j-2\Li(\K\\)
■(l +\\A(tnJ_x)znj\\)\\znj- znj_x\\.

Since

G(t„j-i, z„Kj_) - G(í..y-i, Í.y.^.J - <?(r..y-2. ^y,„, J + G('«^-2' '«A*,- J'

and, for all 0 g [-r,0],

*„,,      ,(«) " ^(í.t,)-2 + «) = ^.;-l('»,;-2 + ») = ^.y-l,      ,(«).■"n.j-I 'n.j-2

we have the appraisals

Iky - V,-lllV« < |G(i..y-i, *„,,„_,) - C?(f„,y_2, *„,,„, J|lky - Vy-lH
+ (G(Vy-2' zn.]-\,n^,) ~ A ( '„.y- 2 )*„.y- 1 - A*By " *„.y-l))

+ |'„,y-l - 'n.y-2l^i(lkyll)(l +NVy-i)*ny||)lky - 2„.y-ill
^\\G(tnj_x,znjini¡) - G(t^j_x,znjinj_2)\

+ \\G(tn,J_x,znj:nj2)-G(tn^2,znjinj2)\

+ llZn,y-l  * Zn.j-2\\\\Znj- Zn.j-l\\/h

+ «L,(M)(l + \\znj - zn_j_x\/h + ¡G(tn,j_x, znjini J] \\zni - z„.,„,11),

from which it follows that

(2.8)       |ky - zn^x\\/h < ß\\znj,nj t - hj^Jic + M^ky-i - <„,,-2|

+ L1(A/)||zn7 - zniy_,|| + hLx(M)K4+\\znj_x - z„,y_2||/A,

F«.y-Vy-il

Fny - Vy-ll

where

1 + 4rW PC + A2 < A4.
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A METHOD OF LINES FOR A FUNCTIONAL EQUATION 81

In order to find a suitable upper bound for

-A,,,   , " 2"J,.j   Jk -      SUP     llMVy-l  + 8) - Znj{tn.j-2 + «)
■'   ' ■'   - ie[-r,0]

we distinguish three cases.
Case 1. f„,y_2 > r-
We have ?„j_x > r and, for all 6 g [-r,0],

|Ky('n.y-l + »)-U'.J-2 + Ol-M'-J-l  + #)" *-J-l('.J-2 + ^
«  max |kBfc - ^„.*_il -

1« k*ij

Case 2. t„ ,_, < r.n.J-
We also have r„ y_2 < r. (a) For 6 G [-/•, -fn J_1], we have f„y_, + 0 g [/„,_, -

r,0] and t„ y_2 + 0 G [f„y_2 - r, 0]. Denoting by L0 the Lipschitz constant of <>, we
obtain, for such 6,

\K(tn.J-l  + #) ~ Z^j_x(tnJ_2 + ff)|-|*(fB,y_,  + 0) - ♦(/„j.j + ö)||

<Loky-l  - '*..,-2! = ¿0«-
(b)For0 g (-f„,y_2,0] , we have

'n.y-l+Öe('n,y-l-'n,y-2,'n,y-l]      *""     t„j_ 2 + 0 G  (O, t„j_2] ■

For such 0,

iM'n.y-l   + °) - Zn.j-A'n.j~2 +  *)| <  ,^    Ik*  ~ Zn.k~ll

(c)For*6(-í1IJ_l,-í1IJ_2] ,

'n.j-i + ÖG (0,A]    and   f„ ,_2 + 0 g (-«,0].

For such 0,

K('n,y-l + Ö)-^.y-l('n,y-2 + «)|

<¡M'«.y-i + •) ~ ̂ (0)1+11^(0) - ï..y.,(0)|
+ |ky-l(O)-Z-n,,-1(/n.,_2 + 0)|

<\\znl  - Zno\\ + \\t>(0) - 4>(<n.j-2 + 6)\\

<lki -2„oII+l0«.
Case3.fay_, > r, tHj_2^r.
(a) For 0 G [-/•,-/„,_,],

/„,,_, + ^ge [o, Ä]   and   rB,y_2 + *e[-A,0].

For such 0, we have (as in Case 2(c) above)

|M'«.y-l + 6) ~ *.J-l('nJ-2 + *)|| « Ikl - *JI + L0h-
(b)For0G(-/nj_2,O],

'n.y-1 + * e (Vy-l - Vy-2. <n.y-l]     and     '«j-2 + *6(°.'.J-2]-
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For such 0,

||MVy-l + *)-*n.y-l('n.y-2 + 0)||=    max   \\znk ~ zn.k-ll
l<A«y

From the above three cases we see that for all/ = 2,3,...,« and all 0 g [-r, 0] we
have

llM'n.y-l  + °) - Znj(tn.j-2 + *)| <    max   \\z„k - Z„*_,|| + LQ«.
l*;A«y

Therefore,

SUP     lMVy-1  + °) - Znj{'n.j-2 + ö)|| < ,maX   Ik* ~ ^„. A - ill + L0h ■
0e[-r.O| K*<J

From (2.8) we now obtain

max \\znk - znk_x\\/h « /?  max ||zn/t - znk_x\\ + /3L0«
l«*«y lss£«y

+ L2(M)h + Lx(M) max |k* " *„.*-ill
l*ík*íj

+ hLx(M)K4+     max    \\z„k - znk_x\\/h,
1<*<y-1

which yields

(1/A-jS-L^Ai)) max ||z„A - Vt_J
1 « k í y

<(L2(M) + /3L0 + L1(M)A4)« +     max    k* " *-.*-ill/*-
l«*<y-1

Let/7 = 1 - (ß + Lx(M))h. Then /? g (0,1) by our assumption. If K5 denotes the
number L2(M) + /3L0 + L,(A/)A4, then

T  max ||z„* - z„A_1|| < «A5 + -r    max    \\z„k - znk_x\\

hK,        1
< «A, -I-a + —r    max     z„t - z

/? /7« l«A«y-2
-nA        ¿n.k-l\

""'    1 1
<"*5  L   -n + -—[7\\Znl  -Znol

s = 0 ^ />        «

Using (2.7) we obtain
1 "11 "11
T  max ||z„t - z„>A_J < hK5 £ — + -„rlki ~ 2noll < hK5 E 3 + T*-*3-
" l«*«y 5=\ P        P n s=i P        P

Since
"1 "1

,=1 />     ,-1/»"

and

i      (ß + Lx(M))T

lim [1 -(/3 + Lx(M))T/n\-" = e<*+*-.<"»r
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(2.10)    z"(0 =

this implies there exist nx > «0 and N > 0 such that, for « > «,,

(2.9) Ik, - Vy-ill/"^   for every/= 1,2,...,n.
We now define the functions

>(/),       iG[-r,0],

,zn.j-l +(i-'«.y-l)(2ny-zn.y-l)/"' 'e  [Vy-l'^y]"

It is easy to see that the sequence {z"(t)}, t G [-r, T], is uniformly Lipschitz with
Lipschitz constant Nx = max{A, L0}. Let
(2.11) x»(f) - I„B(f),       /G[-r,F],

where znn(f) is obtained from (2.3). Explicitly, we have

>(f),    rej-r.O],
Z»l. íG(0,ínl],

*M =  (M'n.n-l) +(Vh)iyl(zn„_x/h + G^.,.,, Z„„Vo     )),

te (/„.„_!,rj.

The operators/I"(0 and G"(f ) are defined by
¿"(0) - ¿(0)#(0),
¿"(0 - A{tn,j.x)z„j   forfny_, <i«/By,

G"(f) = G^y-!, zn7,_   J   forfBiy_, < t *s tn].

It is easy to check that the function z"(t) is strongly differentiable on [0, F] except
at a finite number of points at which the strong left derivative (d~/dt)z"(t) exists.
Thus, from (2.5) and (2.10) we obtain

(2.12) (d-/dt)z"(t)+A"(t) = G"(t),       te{tHj_x,tnj\.

We will show that x"(t) - z"(t) -» 0 as « -» oo uniformly on [-r, T]. In what
follows, " -» " ("-***) denotes strong (weak) convergence. For í g (0, F] , CG
('n y-i' '«y]   f°r some/ = 1,2,...,». From the definition of z"(t) we have

¡X»(f) - r"(0M*.> - Vy-1  "(' -  '„.y-lK^y " *„,/-l)/*|

-\\h-{t-tn^x)\{znj-z^j_x)/h\

<2A||(zny-zn,7_1)/«||<2A«.

Since x"(t) = z"(t) = <|>(r) on [-r,0], our assertion follows.

Theorem 2.3. The sequence of functions {x"(t)}, t g [0, F], converges uniformly, as
« -» oo, to a strongly continuous function u(t). Moreover, u(t) g D for every t G [0, F],
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A(t)u(t) is weakly continuous, and the strong derivative u'(t) exists and equals
-A(t)u(t) + G(t, u,) a.e. on [0, T].

Proof. We first show that z"(t) converges uniformly as « -* oo to a (strongly
continuous) function u(t). Then it follows from above that x"(t) also converges
uniformly to u(t). Let (fBy} and ( tmk} be two partitions of [0, F], where

tnj=jT/n,   / = 0,1,...,«,       tmk = kT/m,   k = 0,1.m.

Let (6('„,t-i,W]  n('n,j-n'nj] •  % the Lipschitz continuity of z"(t) and
Lemma 1.3 of Kato [12], we have

(2.13)    (<r/</f)|k"(f)-z«(f)||2
= 2{{d-/dt)zm{t)-{d-/dt)z"{t),J{zm{t)-z»{t)))
< 2{Gm(t) - G"(t)-Am(t) + A"(t),J(zm(t) - zn(t)))

<2|G-(f)-G''(f)||||z"(f)-z''(f)||
-2{Am{t) - An{t),J(zm(t) - z"(t))).

We also have

\\Gm(t)-G"(t)\\ = \G{tm^x,zmki     yG(tnj_x,znji      )||

<|G(/m>-l, Zmk,mJ¡^) - G{tnj.x, Zmk,mk   J])

+ |G(iB.y-1,^,mj(_i)-G(fB.y_1,Zm^_i)|

+ ¡G(tn.J-l, zmk^ti) - G(tnj_x, znjin j||,

|g(í«,.*-i, Zmk,mJt_) - G{t„,j-X, zmk,mk_)\ < ^(I^.^.jljk«,*-!  - f„.y-l|.

G('„.j-1, zmk,       ,) - G(tn       x, Z )\\ < ß\\lmk - Z„j |pc

= ß sup ||zm^(i) -znJ(s)\\*ß   sup   \\zmk(s) - znJ(s)\\,
s«', ,-i-r.ln.y-1      '.'n.y-ll

||G(/B.y-1, *«*,„,,_,) - G(<«.y-1. *«*,,,, J|| < ß\Kk,mk   , - *m*,..,JpC-

Ifí«.y-1  <'m.*-l>then

zmkUm.k-l + *) = Zmm(^.*-1 + *)     and     ^(f,,,,-, + 0) = 2mm(/B.y-, + 0)

for any 0 g [-r,0]. Also, since ;cm(r) - zm(t) -* 0 uniformly on [-r, F], there exists
a sequence of positive numbers tm such that em -» 0 as m -* oo and

Pmki'nx.k-l +0)- ***('n.y-l + 8)\\=\\zmJ'm.k-l + *) " ^mK.y-1 + *)||

^^ll'm.*-!  - 'n.y-l| + em
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by the Lipschitz continuity of zm(t) on [-r, T\. Now, it is easy to prove that the
sequence ?mJt_, - tnj_x converges to zero uniformly in /, k. From this fact it
follows that

\\Zmk,    ,    , Zmk.       ,   PC ^ £mn>

where imn -» 0 as m, « -» oo. Since a similar inequality holds if tmk_l < tn 7_,, we
conclude that there exist sequences e'mn, e'¿,„ such that i'mn — 0 and e'¿,„ -* 0 as
m, « -» oo, and

lc?-(0-<?"(»)!< M^)l'«.*-i-'.j-il
+ 0      SUP     ||2mt(*)-^y(i)||+^emH

ie[-r,r]

<(L2(A/) + /3)E^n + /3    sup   \\zmk(s)-znj(s)\\.
iS[-r.f]

Now, for any 5 g \-r, t], we have

\Kk(s) - Kj(s){ = \Km(s) - Znn(s)\\ = !*«(,) - X"(5)|

«!*-(*)-*•(*)!+K,(*)|,
where e*„(5) -» 0 uniformly on [-r, T] as m, « -» oo. Thus,

sup   |l.*(*)-f,y(*)|<    sup   \\zm(s)-z"(s)\\+e*mn,
se[-r.t] ie[-r.(]

where the constants e* „ -» 0 as m, « -» oo. Applying the above bounds to (2.13), we
arrive at

(2.14)    {d-/dt)\z»{t)-z"(t)t

<2Í£*n + /3   sup   Bx-(i) - *»(,)|| |**(|) - *"(f)||
j«[-r.f]

-2<^»(f)-^(f),y(z"(f)-2-(i))>,

where c** -» 0 as m, « -» oo. Using the uniform continuity of / on bounded
subsets of X, we obtain a sequence of functions elm„(t) with values in X* such that
limm.„-oeEmr.(0 = ° uniformly on [0, F] and

/(z"(f) - Z"(t)) = /(*"(*) - *"(f)) + £'„,„(')■
Thus,

-<^(f)-^(f),y(z"'(0-z"(0))

- -(Mtm,k-i)zmk - A{tHj.l)z„j,J(z"(t) - z'(t)))

= -(^(i.j-i)*«*-^('..y-i)*.y./(*"(0-*"(')))
-(^('■j-i)***-^('»j-iK7.i«(0)
-(^(»-.*-i)*«*-^('.j-i)*«*.^(*"(0-*"(')))

= -(^(/„,J-1)^(/)-^(r/I.J_1)x"(/),y(x'"(0-x"(/)))

-(^('•^-l)*J.*  -^('n.y-l)^y^L(0)

-(¿(^.*-i)*.-*-¿fo.,-i)***.A*"(0-*"(0)).
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which, by the accretivenessof A(t„,7_,), implies
-(Am(t)-A"(t),J(z'"(t)-zn(t)))

<[M('-./-i)*-J+B^(i-,/-i)*JI] IK.(0||
+k«.*-i-'-.7-il^i(lk«J)(i+IM('«.*-i)*-.J)ll*"(')-'"(Oil-

From equation (2.5), we obtain

HVy-l)*J|^+#"+*2<*6-
Similarly, P(/mJt_1)zm/t|| < A6. Furthermore,

H(**.y-l)*-i*| <K,».y-l)Z** -A(tm.k-l)Zmk\\ + \\A(tm.k-l)Zmk\\

<k.y-l - W-lMkJlX1  + M('„.*-l)**J)
+ IM('m.*-l)*mJ

^2FL1(Af)(l + A6) + A6 = A7.

Applying the above inequalities to (2.14), we obtain

(2.15)      {d-/dt)jzm(t)-z"(t)t*tmm + 2ß   sup   ^"(s)-z"(s)f,
sel-r.t]

where the sequence of positive constants imn -> 0 as m, « -* oo. Integrating (2.15),
we obtain

\\z'"(t)-z"(t)\\2^emnT+2ßf sup   ||r"(T)-z-(r]
re[-r.i]

<fc.

where we have used zm(0) = z"(0) -> </>(0). Since for any f, in the interval [0, /],
h e ('».y-i»'»;] n(*m,k-v'mk\ > for some w, «, /, A:, we have

>(tx)-z"(tx)\\\emnT+2ßf]     sup    ||z"'(t)-z"(
^0    Te[-r,j]

t)     ds

<emnT+2ß['     sup    \\zm{r)-z"{r)fds.

We actually get

sup   ||z-"(t) -z"(T)||2<£m„F+ 2/3 (' sup   \\zm(r) - zn(r)
Lrel-r.i]

ds.

An application of Gronwall's inequality above shows that the sequence zm(t) -
z"(t) -» 0 as «i, « -» oo uniformly on [-r, F]. This implies that z"(<) -» u(t)
uniformly on [-r, T], where u(t) is a strongly continuous function. Furthermore,
since each z"(t) is Lipschitz continuous on [-r, F] with Lipschitz constant N on the
interval [0, F], the same fact is true for u(t). In order to show that u(t) g D for all
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f g [0, F] and A"(t)-*A(t)u(t), we first observe that A"(t) = A(tnj_x)znj=
A(tn j_x)xn(t) for every / in the interval (*B,y-i> fny] • For such t 's we have

\\A{tn^x)x"(t)-A(t)x"(t)\\

<tn,j_x-t\Lx(\\x»(t)\\)(\+\A{tn,j_x)x»(t)\)

< Lx{\\x"(t)\\)(l + JCe)!^-! - f| < Afjl^.y., - f| < N2T/n,
which implies that A"(t) - A(t)x"(t) -» 0 uniformly on [0, F] and A(t)x"(t) is
uniformly bounded there. Since x"(t) -» «(f) and ,4(f )*"(0 is uniformly bounded,
Lemma 2.5 of Kato [12] implies that «(0 g D and A(t)x"(t)-A(t)u(t) for every
/ G [0, F]. Now, since

^»(f)-^(f)i<(f)-^(í)Iiy_1)x-(f)-^(f)x-(f) +¿(f)xa(f) -¿(f)«(0.

we have actually shown that A"(t) — A(t)u(t) for each /. The weak continuity of
A(t)u(t) can now be established as in Lemma 4.4 of Kato [12]. In order to show that
u(t) is weakly continuously differentiable on [0, T], we observe first that, for every
/G X*,

(*-(/), /) = <*(0), /> - /' (A"(s), f)ds + /' (<?"(*). />*.
■'o •'o

We also observe that, for any 0 G [-r, 0],

2„y(^.y-l + 9) = *"(V>-1 + *) -" «(* + *)     fOT'n.y-l < * « '■>■
Since

G"(*)-<?(*„>-,. *■>,.,_,)

for such i, we find that G"(s) -» G(j, mJ as « -» oo. Since ||/T(OII < ^6 and
l|G"(OII < ßM + A2, applying Lebesgue's bounded convergence theorem, we obtain

(u(t),f) = (^(0),f)- f[(A(s)u(s),f)-(G(s,us),f)\ds.

Since the integrand above is continuous in t, we have shown that (u(/),/) is
continuously differentiable on [0, F]. The proof that the strong derivative of u(t)
exists a.e. and equals -A(t)u(t) + G(t, «,) follows as in Kato [12, Lemma 4.6] and
is therefore omitted.

3. Concluding remarks—an example. All of our results are also valid for the
infinite delay version of (FDE). That is, we can let PC be the space of locally
piecewise continuous functions/:(-oo,0] -» A which are bounded. If, in addition,
we replace [-r,0] and [-r,T] by (-oo,0] and (-oo,F] , respectively, then a
straightforward modification of the proof of the above theorem yields the analogous
result.

We mentioned in the introduction that since the perturbed evolution equation
(PE) is a special case of (FDE), we can use our method to approximate the solutions
of (PE). This is a substantial improvement of the analogous result of Kartsatos and
Zigler [11] in the following sense: our scheme converges without assuming that A(0),
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hence A(t), maps bounded subsets of D into bounded subsets of X. However, it is
important to mention here the fact that, in the case of (PE), we should consider
instead the method developed in [11] which starts with the equation

znj = M('„y) +(\/h)l)-\z„.j_x/h + G(f„y, znj)).
In this case we need not introduce the functions znj, and the method converges

again without the boundedness of A(0) and with G: [0, F] x A-> A a global
Lipschitzian-like function.

In a forthcoming paper the authors are planning to study the existence of
solutions of (FDE) for perturbations G which are "local Lipschitzians" in their
second variable. It is hoped that an analogous method of lines can be developed for
such problems.

Even in the case X = R", our result appears to offer a new method for the
solutions of (FDE). Unfortunately, the results of Cryer and Tavernini [4, Theorem
4.1] do not apply to (FDE) because the mapping F(t, u, v) = -A(t)u + G(t, v) is
not defined on X x X with respect to (u, v). Thus, it is impossible to construct
approximating sequences of functions as in [4].

As an example we cite the functional "heat" equation discussed in [10]:

(3.1) u,- a(t)k(ux)uxx=f(t,u(x,t - r)),

for r > 0, t g [0, F], x g (0,1), with boundary conditions

u(x,6) = <t>(x,e), -r < 0 < 0,
i/(0, t) = aw'(0, t), 0 < / < F,
w(l,0 = ~ßu'(\,t),      0< / < F.

Here we let A = Lp[0,1], for somep g (1, oo), and Ä(t): D c X -» Abe such that

(Ä(t)u)(x)--a(t)k(ux(t,x))uxx(t,x)

and
D= {wg L'[0,1];mg C2[0,l],w(0) = au'(Q),   u(\) = -ßu'(\)}.

For \p g PC, we define G(t, xp) = f(t, xp(~r)). Further conditions on a, k, f and the
constants a, ß can be given (cf. [10]) so that conditions (A.1)-(A.5) are satisfied for
the closure A(t) of Ä(t) in L^O, 1]. Thus, the method of lines developed above can
be applied to the abstract version (FDE) of (3.1).
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