
CHAPTER 26 

A METHOD OF NUMERICAL ANALYSIS OF WAVE PROPAGATION 

  APPLICATION TO WAVE DIFFRACTION AND REFRACTION   

by 

Yoshiyuki ITO* and Katsutoshi TANIMOTO* 

ABSTRACT 

A method is presented to obtain numerically wave patterns in the re- 
gion of arbitrary shape. The principle is to solve the linearized wave 
equations under given boundary conditions from a certain initial state. 

In this paper, two principal applications of our method of numerical 
analysis are presented in the fundamental fashion. 

The first application of our method is related to wave diffraction. 
The distribution of wave height along a semi-infinite breakwater and a 
detached breakwater is calculated and compared with that obtained from 
the conventional analytic solutions to confirm the validity of our numer- 
ical method. Three examples of application are presented to the wave 
height distribution along breakwaters of arbitrary shape and of arbitrary 
reflecting power and to wave force upon a large isolated vertical struc- 
ture. 

The second application is to wave refraction. In particular, this 
method of numerical analysis is applicable to the analysis of wave propa- 
gation in the region of ray intersections which are indicated by the con- 
ventional geo-optic wave refraction theory. An example of application to 
a submerged shoal with concentric circular contours where a cusped caustics 
is formed is presented and the calculated wave height distribution around 
the shoal is compared with that obtained from hydraulic model experiments. 

Our method of numerical analysis might be applied to the calculation 
of wave height distribution in the region of more realistic bottom topo- 
graphy and it is possible to include vertical boundaries of arbitrary 
shape. 

1. INTRODUCTION 

When we examine the calmness in a harbour with respect to the shelter- 
ing effect of breakwaters, only the consideration of wave diffraction is 
not sufficient, but the effect of reflected waves from other boundaries 
and water depth variation in the harbour should be taken into account. 
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In most cases, a realistic wave height distribution in a harbour is 
obtained by the performance of hydraulic model tests.  If we could treat 
theoretically together with all factors of disturbance in a harbour as 
diffraction, reflection, and refraction of waves, it will be of great help 
for the examination of an appropriate arrangement of breakwaters. 

From such a standpoint, recent studies in France are noticeable by 
Biesel and Ranson(l), Gaillard(2), a'nd Barailler and Gaillard(3).  In 
these papers, examples of calculation of wave height distribution in an 
arbitrary shape harbour of constant or variable water depth are presented. 
Most recently, Berkhoff(4) has discussed the computation of combined 
refraction-diffraction. All of these methods of calculation are to solve 
basic wave equations as a boundary value problem. 

On the other hand, the authors have studied to obtain the height and 
flow distribution of long waves in an arbitrary shape harbour from the 
standpoint of the effect of breakwaters against tsunamis, since the 
Chilian Earthquake Tsunami in 1960(5-8).  In this method, a train of 
tsunamis is supposed to propagate into a calm region and the solution 
both in transient state and in stationary state can be obtained by calcu- 
lating step by step the basic hydrodynamic equations for long waves under 
the given boundary conditions from a certain initial state. 

In this paper, this method of numerical analysis have developed so as 
to be applicable to waves in any region from deep water to shallow water. 
For short waves, since it is an aim, in general, to obtain the solution 
in stationary state, the calculation in transient state can be regarded 
as a process to reach the end, whereas in case of tsunamis the transient 
state is significant as an actual phenomenon. 

The basic equations in our numerical analysis method are the linearized 
wave equations including unknown functions at the water surface only such 
as the water surface elevation and the components of particle velocity, 
which are derived on the basis of a small amplitude assumption in a con- 
stant water depth from the Eulerian equations of motion and of continuity. 

The wave height distribution around an arbitrary alignment of break- 
waters can be obtained by the application of our method of numerical anal- 
ysis and it is not difficult to include other vertical walls behind the 
breakwaters.  For a simple alignment of breakwater, the effect of reflect- 
ing power can be included in the diffraction diagram by our modified 
calculation method which is named the "Wave generator method".  This modi- 

fied method is based on the principle that the effect of breakwater is 
equivalent to a hypothetical wave generator which makes the corresponding 
reflecting waves at the front face and waves cancelling the incident waves 
at the rear face of the breakwater. 

Since it is not irrational to loose the condition of constant water 
depth to variable water depth, as far as the variation of water depth is 
gentle.  In particular, an interesting application of our method is the 
analysis of wave propagation in the vicinity of caustics where ray inter- 
sections occure.  It has been pointed out that the conventional geo-optic 
wave refraction theory fails to predict the wave height at and near 
caustics. Pierson(9) has discussed the existence of caustics and suggested 
some theoretical approaches for the solution of the caustic problem. Our 
basic wave equations are equivalent to what Pierson has suggested as the 
general basic equation of wave refraction. 
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For a smooth caustic, Chao(10) has developed the uniform asymptotic 
solution, and Chao and Pierson(ll) have compared the calculated wave 
heights with those obtained by hydraulic model tests for a straight 
caustic. Most recently, Whalin(12) has pointed out that the effect of 
diffraction in wave refraction is vividly significant in the vicinity of 
a cusped caustics from his results of model experiments, and Biesel(13) 
has discussed the general calculation method of wave refraction including 
the effect of diffraction as a boundary value problem. 

In this paper, several examples of application of our numerical anal- 
ysis method are presented in the fandamental fashion to demonstrate its 
applicability to various problems of wave propagation. Being associated 
to wave diffraction, calculations of wave height distribution along a 
breakwater and of wave force upon a large isolated vertical structure 
are shown. As to wave refraction, an example of application to the wave 
height distribution around a submerged shoal with consentric circular 
contours where the conventional geo-optic refraction theory indicates 
the formation of a cusped caustics and the calculated wave heights are 
compared with those obtained by hydraulic model experiments. 

2. BASIC EQUATIONS 

2.1 Equations of motion and of continuity and boundary conditions 

Propagation of small amplitude waves in the region of constant water 
depth of ideal fluid is treated in this analysis and irrotational motion 
is assumed. 

The Eulerian equations of motion and of continuity and boundary 
conditions at the water surface and the bottom for a linearized wave 
are as follows; 

(2.1) 

3x  3y  3z 

p = 0,  at z = n (2.3) 

w = j£,     at z = n (2.4) 

w = 0, at z = - h (2.5) 

where u,v,w are components of water particle velocity, p is pressure, 
n is water surface elevation, and h is water depth. 

2.2 Derivation of basic wave equations at water surface 
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Equations (2.1) ^ (2.5) are transformed into the wave equations 
including only unknown functions at the water surface, which can be solved 
by a numerical method.  For convenience sake of transformation, the motion 
is considered in the field of a velocity potential. 

The velocity potential in a constant water depth can be expressed in 
the following form, after considering the bottom boundary condition of 
Eq.(2.5), 

i|i(x,y,t) cosh k(h+z) (2.6) 

where k is a constant. Equation (2.6) is different a little from the 
ordinary one, since a term on time t is not separated off. 

Using this velocity potential, the components of water particle veloc- 
ity can be written as follows; 

cosh k(h+z)   ,   „. u "  , . ,   u„(x,y,t) 
cosh kh 

cosh k(h+z) 
cosh kh 

inh k(h+z 
sinh kh 

v0(x,y,t) 

sinh k(h+z)   ,   .. 
w =  . . \ . •  w0(x,y,t) 

(2.7) 

where u„,v„,w0 are the components of unknown water particle velocity at 
the water surface. 

Now, consider the pressure p. 

By integrating equations of motion into which the velocity potential 
of Eq.(2.6) is substituted, we get 

- cosh k(h+z) 7TZ" +  + gz = 0 
oz       p 

Considering the free surface condition of Eq.(2.3), following well known 
relation of the pressure p is obtained, 

cosh k(h+z) 
P = Pg cosh kh 

ri(x,y,t) - pgz (2.8) 

Since w0 in the Eq.(2.7) is given by the kinematic boundary condition 
at the water surface of Eq.(2.4), the unknown functions u,v,w and p in 
the original basic equations have been represented by a constant k and 
the unknown functions u0 >v<,, and n at the water surface.  By substituting 
these relations into the first and the second equation of Eq.(2.1) and 
into Eq.(2.2), following modified equations of motion and of continuity 
are derived, 

3u„ 
3t 

3v, 
3t T7    = " 8 

at 

dn 

3x 

la 
3y 

T tanh kh ( — + — 
k 3x    3y 

(2.9) 
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Thses are the basic wave equations at the water surface in our analysis. 

From the third equation of Eq.(2.1), the following relation is obtained 
for a constant value k, 

3nz 

It2 
kg tanh kh-n 

When n has a period T ( = 2ir la  ) , this relation is equivalent to 

02= kg tanh kh (2.10) 

This is the well-known relationship between the wave period and the wave 
length in the conventional small amplitude wave theory, if the k is 
interpreted as the wave number 2ir/L. 

An arbitrary profile wave can be considered as a composite wave of such 
components of which each satishfies the relation of Eq.(2.10) respectively. 

2.3 Non-dimensional basic wave equations 

It is advantageous to perform calculation in a non-dimensional system, 
because of the generality of results. To obtain the non-dimensional wave 
equations, we introduce the non-dimensional variables defined by, 

cT 

y* 
X = -J- 
L  cT (2.11) 

ag/c 

= v° 
ag/c 

_ n 

(2.12) 

where a is the amplitude of incident waves. 

Substituting these relations into Eq.(2.10), the following non-dimen- 
sional wave equations are obtained, 

3uA            3nA 

3t* 
=
  "  3^* 

3v
*            

3f
1* 

3t
* " " 3y* 

31*            3uA 
3v 

3t* "  "   3** " " 3y 

(2.13) 
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3. METHOD OF NUMERICAL CALCULATION 

Fig.-3.1 Propagation pattern 
of geometrical waves 

3.1 Computing region 

Let us consider a simple example where incident waves are progressing 
normally to a semi-infinite breakwater and suppose we intend to obtain 
only the distribution of wave height along the breakwater. 

We may consider the propagation of waves around the breakwater,in the 
sense of geometries, to resolve into incident waves, reflected waves, and 
diffracted waves as shown in Fig.-3.1. 

Since we are going to calculate 
only the wave height along the 
breakwater, it is sufficient if 
computing points of water elevation 
are included in an effective comput- 
ing region.  To continue calcula- 
tions for the pur incident waves, 
however, wider region than the effec- 
tive region must be considered as a 
computing region.  In our calculation, 
a rectangular computing region is 
adopted as shown in Fig.-3.2, of 
which the circumference boundary is 
a wall reflecting the incoming waves 
perfectly. This boundary is an 
imaginary boundary, because it is only 
for the performance of calculation. 

The required region for computing 
depends on the alignment of breakwater, 
the direction of incident waves, and 
the length of breakwater for which 
effective calculation should be made. 
In this example, since there exists 
no obstruction up to the front of 
breakwater, initial conditions can 
be given as a state when the front of 
incident wave trains have reached the 
breakwater. 

Suppose we are going to calculate 
effectively over two wave length from 
the tip of the breakwater. Then, it 
is sufficient if the calculation is 
continued over four periods from the 
initial state, and the rectangular 
imaginary boundary can be put as shown 
in Fig.-3.2.  In this figure, the 
propagation pattern of diffracted 
waves from the tip of breakwater 
(real line) and its reflection pattern 
from the imaginary boundary (dotted 
line) are shown. Patterns of incident waves and reflected waves from the 
breakwater can be drawn in a similar way and these reflected waves by the 
imaginary boundary reach around the breakwater after four periods calcu- 
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lations. At the offshore imaginary boundary, the particle velocity of 
incident waves must be given at least two periods long to supply incident 
waves of four periods long to the breakwater. 

This technique of calculation is equivalent to the practical method 
in hydraulic model experiments on waves as the measurements are finished 
before the time when re-reflected waves at the wave generator reach the 
model site of structures to keep the same condition of incident waves 
during the tests. 

3.2 Difference equations 

The non-dimensional basic differential equations are converted into 
following difference equations for the arrangement of computing points 
as shown in Fig.-3.3. 

,. ,,.t + At/2   ..  t 
n Cx, J J     = n(i,j) 

At/2 

A- {uCi+l.j)11 - uCi.j)1} 
Ax 
At 

Ay 
fv(i,j+Dt - vti,])'} 

,. ., t + At   ,.    .. t 

_«/„/« ^t + At/2_ 
Ax {n(i,j) n(i-l.j) 

..t + At/2 

v(i,j)     = v(i,J) 
,t + At 

At 
Ay (n(i,i)

t + At/2-n(i,i-l)t + At/2} 

(3.1) 

where the substript A which means the non-dimensional quantity is droped 
to avoid unwieldly notation. 

3.3 Initial and Boundary conditions 

(1) Initial conditions 

In this calculation, a sinusoidal 
wave train propagating in the negative 
direction of x axis is considered as 
the incident waves. The time when 
the front of the incident wave train 
reaches the front of breakwater (i = i0) 
is counted zero, then the following 
initial conditions are given from the 
conventional small amplitude wave theory. 

Initial calm region (i <i0) 

n(i,J)-At/2=o 

u(i,j)° = 0 

v(i,j)° = 0 

Initial wave region (i ii0) 

J-l   J 

I +2 

J*l   J+2 

4- 

-t^Hf 
— •*. o —N»- • -4* o —•*• 

-Ay- 

T 
•AX 

1 

Fig.-3.3 Arrangement of 
computing points 

(3.2) 
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/. .•.- At/2  . .     ,,     .   .    Ax  At ,, 
n(i,j)     = sin [2ir{(i-x0)Ax + — - — }] 

u(i,j) = - sin {2ir.(i-io)Ax} 

v(i,j)° = 0 

(3.3) 

(2) Boundary conditions 

There are two types of boundaries in the computing plane; the one is 
the imaginary boundary and the other is the internal boundary correspon- 
ding to the breakwater. At the offshore imaginary boundary, the 
velocity of incident waves is given and at the other three sides the 
velocity component is given zero. 

Offshore boundary condition* 

..  .NnAt u(i»j)   - - sin n6 

where, 

(3.4) 

cos 6 = 1- (—) (1 - cos <()) 

4 = 2TTAX 
(3.5) 

Internal boundary condition 

V  = 0 
n's 

(3.6) 

where s is the circumference of the internal boundary and V is the 
normal velocity component to it. 

Equation (3.6) is the condition for the boundary of perfect reflection. 
The condition of boundary with arbitrary reflecting power will be trated 
in 4.3. 

3.4 Stability condition of numerical calculation 

A following relation between the space interval x, y and the time 
interval t must be satishfied to perform stable calculations. 

At - 
VA
-  Ay; 
I 

'Ax 

(3.7) 

All the calculation in present paper are conducted by using following 
intervals, 

_1 
15 

Ax = 

At = 

Ay = As 

_1 
24 

* This is the velocity obtained as a solution of difference equations 
of which the initial conditions are given by Eq.(3.3) in the initial 
wave region. Details can be reffered to the reference paper (5). 
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4. WAVE HEIGHT DISTRIBUTION ALONG A BREAKWATER 

4.1 Comparison with analytical solutions 

The diffraction pattern around a semi-infinite breakwater has been 
solved as the Sommerfeld solution and also around a deatached breakwater 
has been obtained by solving the Mathieu equation.  It has been already 
confirmed that these analytical solutions agree well with hydraulic model 
experimental results.  The applicability of our numerical method to wave 
diffraction, therefore, can be verified by comparing the computed wave 
heights with those obtained from the conventional analytic solutions for 
a semi-infinite breakwater or a detached breakwater. 

For this purpose, the following three calculations are conducted, 
1) a semi-infinite breakwater, normal incident wave direction (8 = 90°) 
2) a detached breakwater, normal incident wave direction (6 = 90°) 
3) a semi-infinite breakwater, oblique incident wave direction (8 = 45°) 

(1) Wave height distribution along a semi-infinite breakwater (8 = 90°) 

The distribution of wave height calculated by our numerical analysis 
method is compared with that obtained from the conventional analytic 
solution in Fig.-4.1. The wave heights in the numerical analysis are 
calculated at the computing points apart from the faces of the breakwater 
by As/2 ( = L/30, in this case ), because of the finite difference. 
Analytical solutions both at the face of the breakwater and at the 
computing points of water elevation are shown. 

computing  points  of   water   elevation 

along   breakwater1 

incoming  waves   computed    result 

analytical    solution 

( at computing  points ) 

analytical    solution 

along  breakwater face ) 

y—" 
H,/U 

/ 
"*^ ~*aati_- 

i 
y 

Hi/H 

Fig.-4.1 Wave height distribution along 
a semi-infinite breakwater 

The undular distribution of wave height along the front face is well 
realized in the calculated result as predicted by the analytical solution. 
The wave height distribution along the rear face of breakwater by both 
methods extremely agree with each other. 

(2) Wave height distribution along a detached breakwater (8 = 90°) 

The wave height distribution along a detached breakwater of which the 
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length is 2L is calculated for the incident waves approaching normally 

to it. 

Fig,-4.2 shows the comparison of results obtained by the numerical 
analysis and by the conventional solution. A little difference around 
the tip of breakwater may be due to the difference of calculating points. 

L/15 

!/5<Err 
computing    points of  water   elevation 

along   breawater 

incoming   waves 
computed    result 

analytical   solution 
(along   bceckwater face) 

Fig.-A.2 Wave height distribution along 
a breakwater with the length of 2L 

(3) Wave height distribution along a semi-infinite breakwater (0 ~  45°) 

We take the direction of incident waves on one axis of the grid system 
and make the oblique breakwater bear a close resemblance to a staircase 
shape. The results are shown in Fig.-4.3 where the staircase breakwater 

.4&. 

incoming   waves 

'oW"-0,0,"/ 

computing   points of water eievatic 
along   breakwater 

computed result 

analytical   solution 
(along breakwater face) 

H,/H 

—-^ -zS^-===~^ 

/^ 
i=i^-_ hVH 

|     

Fig.-k.3 Wave height distribution along 
a semi-infinite breakwater due to 
obliquely incoming waves 
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is drawn as a straight line.  Some difference is noticed between the 
calculated result and the analytical solution.  This degree of differ- 
ence, however, could be reduced by using finer space intervals. 

4.2 Wave height distribution along a breakwater of arbitrary shape 

As an example of application to a breakwater of arbitrary shape, the 
distribution of wave height along a semi-infinite breakwater with a 
short wing is calculated. 

Fig.-4.4 shows the calculated result for the case the length of the 
short wing is 0.4L and the direction of incident waves is normal to the 
main part of the breakwater.  It is noticed apparently that the non- 
uniformity of wave height is increased due to the existence of the short 
wing. 

computing points  of  water eievation 

along  breakwater 

incoming waves 

with short wing 

straight 

\    H./H \ 
,-/""—- ,_\ ^T ~~\ 

^\"" •'" y -~-^__-^ *' */ 

;^-\ H,/H         J 

•• 

Fig.-4.4 Wave height distribution along 
a semi-infinite breakwater with a 
short wing 

4.3 Wave height distribution along a breakwater of arbitrary reflecting 
power 

There exists a number of breakwaters which are not of perfect reflec- 
tion, for examples, rubble mound breakwaters and vertical walls protected 
by artificial blocks.  For these breakwaters, the authors have devised a 
special calculation way named the Wave generator method. 

Let us explain the principle of the wave generator method for a straight 
breakwater of perfect reflection.  In this case, the velocity potential 
can be expressed as a sum of the velocity potential of incident waves (tf>.) 
and that of scattered waves by the breakwater (40 » 

4 = ti>. + S), (4.1) 

Furthermore, since the scattered waves can be considered as a sum of 
es generated at the front face (<(> 

breakwater (<(>), <j>, is expressed as, 
waves generated at the front face ($ ) and at the rear face of the 

(4.2) 
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We can interprete obviously that waves generated at the front face are 
waves corresponding to reflected waves by the breakwater and waves 
generated at the rear face are waves cancelling the incident waves.  Such 
waves must be generated at the both faces of the breakwater so as to 
satishfy the following conditions; 

u?l 

—I = - —I 3n 's   3n 's 

(4.3) 

(4.4) 

where s designates the circumference of the breakwater and n designates 
the normal direction to it. 

Since the breakwater is replaced by a special wave generator, the 
authors have named this calculation way the Wave generator method.  In 
this method, the calculation is performed by following procedure; 
1) Calculation of incident waves in the absence of breakwater 
2) Calculation of waves generated by the hypothetical wave generator at 

the boundary of the breakwater, by using the calculated velocity 
component of incident waves in 1) 

3) Summation of simultaneous results of incident waves and generated 
waves 

The wave height distribution along a semi-infinite breakwater which 
was calculated by this wave generator method has been confirmed to agree 
perfectly with that obtained by the ordinary calculation method of our 
numerical analysis. 

In case that the arbitrary reflection coefficient r(s) distributes 
along the face of a breakwater, the following equation is used for Eq. 
(4.3), 

3 + f H, 
-A=-r(s)i^s <4-5> 

It should be noted that this wave generator method is directly applied 
only to the case in which velocities of all the incoming waves with 
normal component to the boundary can be obtained. As to the case of the 
semi-infinite breakwater, both waves generated at the front face and waves 
generated at the rear face are propagating along the breakwater when they 
reach the other face and they have no normal velocity component to it. 
Therefore, it is enough that only incident waves are considered as incom- 
ing waves to the breakwater. 

However, if there are two separate breakwaters, and waves generated at 
one of the breakwaters reach the other with normal velocity component to 
it, it is necessary to repeat the calculation procedure at any computing 
time step. 

Fig.-4.5 shows the wave height distribution along a semi-infinite 
breakwater of perfect reflection, of no reflection along the breakwater, 
and of no reflection only at the heading part. Two remarks are pointed 
out from these results: 1) The wave height in the vicinity of no 
reflection part is approximately equal to that of the incident wave at the 
front face. 2) Little effect of the reflecting power is brought on the 
wave height along the rear face. 
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computing  points of water elevation 
olong  breakwater 

incoming  waves 

perfect   reflection 

no   reflection 
along   breakwater 

no  reflection  along 

head of  breakwater 

Fig.-4.5 Effect of reflecting power on 
wave height distribution 

4.4 Application to wave force upon a large isolated vertical structure 

An interesting application of our method of numerical analysis is the 
calculation of wave force upon a large isolated vertical structure of 
arbitrary shape. 

Components of wave force upon a structure can be obtained from the 
following relation, when the water surface elevation along the structure 
is calculated by the numerical analysis, 

F = i6/°pdz-l(s)ds = -^ tanh kh tfn l(s)ds 

F = j6/Ppdz-m(s)ds = —f- tanh kh jfjn m(s)ds 
y   -Ir k s 

(4.6) 

where s is the circumference of the structure and (l,m) is the directional 
cosine of the inward normal line. 

As an example of application, wave force upon a rectangular body which 
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Fig.-4.6 Arrangement of a rectanglar vertical body 
and calculated wave force 
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is a simplified treatment for a moored ship is calculated. Fig.-4.6 
shows the arrangement of the moored ship and calculated wave forces 
with and without a vertical quay wall of infinite length. 

5. APPLICATION TO THE REGION OF VARIABLE WATER DEPTH 

5.1 Correction factor of shoaling 

For the propagation of waves in the region of variable water depth 
h(x,y), we assume that the wave frequency a  is constant and the local 
wave number k is given by Eq.(2.10).  Then, our wave equations include 
the variation of wave height due to shoaling caused by the variation of 
water depth as well as due to refraction caused by the variation of wave 
phase velocity. 

The variation of wave height due to shoaling, however, is not the 
function of the group velocity but of the phase velocity in our wave 
equations. 

As a simple example of water depth variation, let us consider the 
region where the water depth changes in step-shape at x = 0 from h^ to 
h as shown in Fig.-5.1. 

Po 

Z 

Oo- 
Ao 

->X 

z=-hs 

I z°-h, 

Fig.-5.1 Change of water depth 
in step-shape 

The velocity potential for this situation is expressed in the following 
form, 

,,  ikx „ -ikx.  iot cosh k(z+hr) 
+1- (A0e  + Q0e   ) e     cosh khl 

cosh k (z+hj) 
»   -k x iot  - 

+ E.A e m  e    r—:—r— 
m=l m cosh k hi 

m    J- 

.       _ ik'x iot cosh k'(z+hp) 
*2= Poe   e     cosh k'h2 

. .  . ^ cosh k (z+h?) 
» _ k'x lot     n   z 

+ i," e n e    —:—r-TT—— 

n=l n cosh k h2 

x = 0 

x = 0 

(5.1) 
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And, 

o2= kg tanh kh fs 2} 

= - k g tanh k h 
m      m 

Unknown coefficients in Eq.(5,l) can be determined from the following 
boundary conditions at x = 0, 

<j>l = <t>2  .(continuity of pressure) 

3*   3* (5,3) 

—*-*- = -~-  .(continuity of horizontal particle velocity) 

As obvious from Eq.(5.1), the strict solution includes an infinite 
series and the term of group velocity c appears through mathematical 
development for the determination of unSnown coefficients. Waves corre- 
sponding to the Infinite series, however, are not progressive waves and 
does not contribute the energy transport over one period.  Consequently, 
the following relation of energy conservation can be obtained, 

p2c A + q
2= 1 (5.4) 

where, 
g* 

1-r"-1   , (transmission coefficient) 
lAol 

(reflection coefficient) 

c j. = c  / c 
g*   g2  Si 

The c i   and c  are the group velocities respectively in the region of 
water depth hi and h2, and the group velocity is given by, 

c = nc = — (1 + . . „.,) c (5.5) 
g      2     smh 2kh 

The basic wave equations of our method of numerical analysis include 
only waves corresponding to the first term of the strict solution Eq.(5.1) 
and does not include waves corresponding to the infinite series. 

Now we consider the analytic solution of our wave equations for the 
situation as shown in Fig.-5.1.  Starting from the finite difference 
equations, the following coefficients of transmission and reflection are 
obtained, 

P = 

q = 

(5.6) 

1 + c. 

where, 
= c2/ c: 

From these relations, we get 

n2 = -* • -i - 1 (5.7) 

Comaring Eq.(5.7) with the strict solution of Eq.(5.4), it is noticed 
that the group velocity in Eq.(5.4) is replaced by the phase velocity 
in Eq.(5.7). 
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If reflection can be neglected, the transmission coefficient is written 
as, 

-1/2 

-1/2 

, from Eq.(5.4) 

, from Eq.(5.7) 

(5.8) 

(5.9) 

This relation is kept for a sloping bottom, if reflection is neglected, 
and the coefficient of Eq.(5.8) is equivalent to the conventional shoaling 
factor. To keep this conventional relation of shoaling factor, therefore, 
the shoaling factor in our analysis should be multiplied with the following 
correction factor of shoaling, 

l/2 
f = 
s 

-1/2 
- {(1 + 

2k1h1 

sinh 2kihj •)/U + 
2kh 

sinh 2kh )} (5.10) 

When the deep water is taken as a reference region, this value of correction 
factor varies from 1 in deep water to 0.707 in the region of long waves. 

In the application of our method of numerical analysis to a submerged 
shoal with concentric circular contours which is treated in the next section, 
final results of wave height are multiplied with this correction factor 
of shoaling. 

5.2 Wave height distribution in the vicinity of ray intersections 

Since the conventional wave refraction theory is based on the geometrical 
optic approximation, it fails to predict wave height at and near caustics 
where ray intersections occur. It has been already pointed out that the 
effect of diffraction in wave refraction should be included in the analysis 
of waves in the vicinity of ray convergence.  Our method of numerical 
analysis is applicable to the region where caustics are formed. 

As an example , our method is applied to wave propagation on a submerged 
shoal with concentric circular contours where the conventional refraction 
theory indicates the formation of a cusped caustics as shown in Fig.-5.2. 

Figure 5.3 shows the arrangement of the shoal in the numerical calcultion. 
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Fig.-5.3 Arrangement of a shoal 
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Hydraulic model experiments for same situation are conducted to confirm 
the validity of our method. The water depth and the wave length in the 
model are as follows, 

h.= 15 cm, h = 5 cm, L = 40 cm. 

All tests are conducted for non-breaking waves. 

Both results of the numerical calculation and the hydraulic model tests 
are presented in Fig.-5.4,5.5, and 5.6.  In Fig.-5.4, the wave height 
which is not corrected for the shoaling factor is also shown.  It is noticed 
that experimental results agree better with the corrected value than that 
of non-correction.  Maximum wave height in the calculated results is 2.1 H. 
near the rear end of the shoal. 

6. SUMMARY AND CONCLUSIONS 

A method has been presented to obtain numerically wave patterns in 
any region of arbitrary shape from deep water to shallow water.  The 
principle is to solve the linearized wave equations under the given 
boundary conditions from a certain initial state, which are derived from 
the Eulerian equations of motion and of continuity and include only 
unknown functions at the water surface. 

By applying our method of numerical analysis, it is possible to 
investigate various problems of wave propagation in the region of arbitrary 
shape and of variable water depth.  In this paper, we have presented 
several examples of application of our method to wave diffraction and 
to wave refraction in the fundamental fashion. 

The applicability of our method to wave diffraction has been confirmed 
by the comparison of the distribution of wave height along a semi-infinite 
breakwater and a detached breakwater by our numerical method with that 
obtained from the conventional analytic solutions.  As an example of appli- 
cation to a breakwater of arbitrary shape, the distribution of wave height 
along a semi-infinite breakwater with a short wing is calculated.  The 
result shows that the non-uniformity of wave height along the breakwater 
is apparently increased due to the existence of the short wing. 

For a breakwater of arbitrary reflecting power, a modified method which 
is named the "Wave generator method" is devised. Two examples of appli- 
cation of this modified method to  semi-infinite breakwaters bf no reflec- 
tion and of no reflection only at the heading part are shown. The effect 
of reflecting power on the wave height distribution along the rear side 
of the breakwater is a little. 

In addition, an interesting application of our method with respect to 
wave diffraction is the calculation of wave force upon a large isolated 
vertical structure of arbitrary shape.  As an example of application, 
wave forces upon a rectangular body which is regared as a moored ship 
are calculated with and without a vertical quay wall behind the body. 

As to the application to the region of variable water depth, the 
correction factor of shoaling has been introduced, since the shoaling 
factor for our basic wave equations is a function of the phase velocity 
instead of the group velocity in the conventional relation. This value 
of correction factor varies from 1 in deep water to 0.707 in the region 
of long waves, when the deep water is taken as a reference region. 
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Fig.-5.2 Formation of a cusped caustics 
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Fig.-5.4 Comparison of calculated wave height and experimental 
results (1) 
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Fig.-5.6 Comparison of calculated wave height 
and experimental results (3) 
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Our method of numerical analysis is applicable to the analysis of wave 
propagation in the region of ray convergence. An example of application 
is shown to a submerged shoal with concentric circular contours where the 
conventional geo-optic wave refraction theory indicates the formation of 
a cusped caustics. Hydraulic model experiments are conducted to verify 
the validity of our method for a cuastic problem. Calculated wave heights 
agree very well with those obtained from the model tests. The maximum 
wave height is 2.1 H. at the rear end of the shoal where the geo-optic 
refraction theory gives the infinite wave height. 

Our method of numerical analysis might be applied to the calculation 
of wave patterns in the region of more realistic bottom topography and 
it is possible to include vertical boundaries of arbitrary shape. 
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