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Abstract

According to Ullman's Structure-from-Motion Theorem [U79], three orthogonal

projections of four points in a rigid non-planar configuration uniquely determine their

structure, and the relative orientations of the three views, up to a reflection in the image

plane. It is here shown that a corresponding result holds for the more general

"para-perspective" case, and leads to a rapidly convergent algorithm for the fully

perspective case. Unless the four points are nearly coplanar, or the images closely

similar, the output of this algorithm is not unduly sensitive to errors in the image

coordinates.

1 The orthogonal case

We adopt one of the points PQ as origin and denote the 3D coordinates of the others by

(Xn , Yn , Zn), (Xn ' ,Yn ' ,Zn ') and (Xn",Yn",Zn") in the three projection frames,

(Xn, Yn), (Xn' Yn') and (Xn",Yn") being the (relative) image coordinates and Z ^

Z n ' and Zn" the (relative) depth coordinates. Then there will exist rigid rotation

matrices U = [uy] and V = [vy] such that

X
n ' =

 u
l l

x
n

 + u
12

Y
n

 + u
13

Z
n'

 x
n " =

 v
l l

x
n

 + v
1 2

Y
n

+ v
13

Z
n' (1\1")

Yn ' = «21
x
n

 +
 "22Yn + u 2 3 Z n , Yn" = v 2 1 X n + v 2 2 Y n + v^Z , , , (2\2")

Z
n = "31

X
n

 + u
32

Y
n

 +
 U33

Z
n.

 z
n " =

 v
31

X
n

 + v
32

Y
n

 +

The problem is to find U and V and the depth coordinates from the three sets of image

coordinates. As each rotation involves 3 unknown parameters, and there are 9 depth

coordinates, we have 18 equations for only 15 unknowns, and may expect to

encounter 3 consistency conditions, useful for checking purposes.

Elimination of Zj, between (I1) and (2') gives the three equations

x
n " 3 2 - Y n u 3 l +

 x
n ' u 2 3 - Y n ' u 1 3 = 0, (n = 1, 2, 3), (4)

BMVC 1991 doi:10.5244/C.5.12



87

from which one can obtain the ratios of the "border elements" U32 : U31 : U23 : U13.

(The computation fails if either (i) the four points are coplanar, in which case equations

(4) are no longer independent, or (ii) the Z and Z
1
 axes coincide, in which case U33 =

± 1 and all four border elements vanish.) For U to be a rigid rotation of the first frame

into the second, its border elements must satisfy

U 1 3 2 + U 23 2 (
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This is one of the three consistency conditions mentioned above, and can be checked

as soon as the ratios U32 : U31 : U23 : n^ have been obtained from (4).

Introducing the normalized quaternion

Q = ip + jq + kr + s, p
2
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related to U by the equation
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we see that the ratios U32 :113^ : U23 : UJ3 determine the ratio of p to q and the ratio

of r to s, but not the ratio of p to r. It follows that if Q is written in the parametric

form

Q = (i sin A + j cos A) sin C + (k sin B + cos B) cos C, (7)

then the two images (Xn, Yn) and (Xn',Yn') yield the values of the two parameters

A and B, but not the "vergence" parameter C (equal to half of the angle between the Z

and Z' axes). To compute C we need all three images, and the A and B parameters of

the rotations connecting them, which we now denote by Uj (= U), U2 (= V~*) and

U 3 (=VU~
1
) , satisfying

(see figure at top of next page):
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Armed with these parameters we substitute them in the parallel equation

QjQ2 = Q3-l , (8)

where

Ql =(i sin Aj+jcos A{) sin Cj + (k sinBj+cos Bj) cos Cj,

Q2 = (i sin A2+ j cos A2) sin C2 + (k sin B2+ cos B2) cos C2

and Q3~^ = (-• sin A3-j cos A3) sin C3 + (-k sin B3+cos B3) cos C3. (9)

Using the rules of quaternion multiplication (i^ = y- = kr = - 1 , ij = k = -ji, etc.) we

equate coefficients of i, j , k and unity on the two sides of (8), to obtain four equations

(not given here), which we may call I, J, K and L. Elimination of sin C3 from I and J

gives the ratio of tan Cj to tan Cj, and elimination of cos C3 from K and L gives the

product of tan Cj and tan C2. Eventually we obtain

tan
2C! = SQSJ/S2S3, tan C2/tan (4 = S^Sj and tan Cytan C^ = SySj, (10)

where

So = sin(Bj+B2 + B3), S! = sin (Bj - A2 + A3),

S2 = s in(B 2-A 3 + A1), S3 = sin (B3 - Aj + A2). (11)

These expressions for C^, C2 and C3 in terms of the A's and B's enable us to

determine Qj , Q2 and Q3, and from them the relative orientations Uj, U2 and U3.

The relative depths Zn then follow from (I1) or (2'), though their absolute signs are

subject to an overall "Necker" ambiguity associated with the arbitrary sign of tan Cj in

equation (10).
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2 The para-perspective case

Whereas in orthogonal projection the image coordinates are obtained by projecting 3D

coordinates directly on to the (X, Y) plane, in perspective and paraperspective

projection the equations for the image coordinates involve the distances T, T ' and T"

of the three viewpoints from the reference point PQ. Without significant loss of

generality we now assume that in each image PQ lies on the optic axis of the camera;

the plane projective image coordinates of the other 3 points are then

xn=Xn / (T + Zn), y^Yn/CT

Xn'-VCT'+Zn
1) y^YnYCr+Z,/) , (12)

xn" = Xn7(T"+Zn"), yn" = Yn7(T"+Zn"),

where, as before, Xn, . . . , Zn" are the 3D coordinates of Pn (relative to PQ) in the

three frames. In the para-perspective or "small object" approximation one neglects the

relative depths Zn in these equations, and assumes that the image coordinates may be

adequately approximated by the "reduced" 3D coordinates (note the reduced font size)

X n=X n /T, Yn=Yn/T, Z,,

Xn' =Xn ' /T', Yn' =Yn ' /T\ Zn' =Zn'/T, (13)

Xn" = X n 7 T \ Yn" =Y n 7T\ V =ZnVT"-

This will be a good approximation so long as the relative depths of the points are small

compared to tbeir distances from the three centres of projection. Substituting from

(13) into (4) we obtain

XnTu32 - YnTu31 + XnT ' u23 - Y nT 'u13 = 0, (n= 1, 2, 3) (14)

and these 3 equations yield the ratios Tu32 : Tu3j : T 'u23 : T 'uj3 . Assuming the

rigidity condition

makes it possible to calculate both T: T' and u32 : u3j : u23 : uj3 , from which the
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values of A and B follow. The gain in generality over the orthogonal case has been

bought at the expense of a consistency check at this stage; but when a similar

computation has been carried out for the other two rotations, U2 and U3, the ratios

T': T", T" : T' and T : T' may be compared, to see whether their product is unity, as

consistency demands. Thereafter, from the A and B parameters of Uj , U 2 and U3 we

can compute their C parameters, and hence the matrices themselves, as explained in the

previous section. The final step is the calculation of the reduced depths. For each pair

of images one obtains these from the relevant rotation U, using equations such as

T'xn ' = T(u1 1xn + u 1 2y n) + u 1 3 Z n (16)

T 'yn' = T(u2 1xn + u 2 2 y n ) + u 2 3 Z n , (17)

which are obtained directly from (I
1
) and (2') by the para-perspective approximation.

Multiplying (16) by u^ 3, (17) by u 2 3 and adding the results we obtain eventually

U
13

x
n'

 +
 W ' )

 + U
33<

u
31

x
n

3 The perspective case

The fact that (18) supplies values for the very quantities that are initially neglected in

the para-perspective approximation raises the hope that one might be able, in

favourable circumstances, to bootstrap one's way from the para-perspective to the

fully perspective case. Having obtained provisional values of the reduced depths Zn,

why not use them for recomputing the Xn and the Yn, and feed the new values back

into the original para-perspective computation?

With this idea in mind one rewrites (I
1
) and (2') in terms of image coordinates,

obtaining

(19)

(T '+ Z n ' ) V = (T + Zn)(u2 1xn + u 2 2y n ) + u 2 3 Z n . (20)

Equations (19) and (20) immediately give the ratios of (T'+Zn ' ) , (T + Z^) and Z^,

and the reduced coordinates may then be recomputed from the relations

Xn= xn(T + Zn)/T, Yn = yn(T + ZJ/T and 2^= Z / T . (21)
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With these new reduced coordinates — one set for each Necker alternative — one can

return to equation (14) and recompute, first the A and B parameters and then the C

parameters of the three rotation matrices. This time, however, the earlier choice of

Necker alternative will affect, not only the absolute signs of the depths coordinates but

their relative magnitudes as well, and also the magnitudes of the ratios T : T' etc. The

product of these three ratios serves as a measure of the consistency of the chosen

alternative with the three sets of image coordinates, and one will naturally prefer that

alternative for which the product is closer to unity. Thereafter one may iterate cyclically

through the various steps described until the process either converges or evidently fails

to do so — because the viewpoints are too close to the object, the images too noisy or

the views too similar.

4 Results

At the time of writing the only results available are those obtained by computer

simulation. Each vector P()Pn (n = 1, 2, 3) was assigned unit length and random

direction, and the images were generated according to equations (12), with specified

values of T, T and T", and varying amounts of gaussian random noise. Typical runs

of the relevant Pop-11 program are displayed on the next 2 pages. The function

"twiddle" sets up a new configuration of 4 points, computes their coordinates in three

randomly oriented frames, prints the triple product of the three unit vectors (a

convenient measure of non-planarity) and the cosines of the angles between the three

optic axes. The function "test", which takes the viewing distances T, T and T" as

parameters, prints the quaternion Q corresponding to U, computes the perspective

images, contaminates them with noise of specified standard deviation "std" and prints,

for "sgn" equal to +1 o r - 1 , the computed value of (T/T')(T'/T")(T"/T) after each

iterative cycle. It terminates as soon as (i) this value differs from unity by less than

0.00001 or (ii) 7 cycles have been completed, or (iii) the expression for tan^Cj is

found to be negative, in which case the word "fail" appears, otherwise the current

value of Q, as computed from the images.

Although in the orthogonal case the depth ambiguity is inescapable, in the

perspective case the above method provides a way of resolving it, since different

choices of "sgn" lead to different final solutions, only one of which satisfies the

consistency condition. Informally speaking, if one adopts the wrong alternative the

structure actually appears to deform as one views it from different angles—an effect

which becomes more pronounced as the viewing distances are decreased.
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: .twiddle;

-0.68415-0.235208-0.190722-0.286721

:;;; No problems with this setup

: test(7,8,9);

-0.784 -0.055 -0.503 0.360

1.03764 0.983777 1.01396 0.992801 1.00379 0.997995 1.00106

-0.783 -0.055 -0.504 0.361

:;;; Probably the correct Necker alternative; try the other:

: -sgn->sgn; test(7,8,9);

-0.784 -0.055 -0.503 0.360

1.03764 1.11562 1.15003 1.18215 1.20755 1.23173 1.25887

0.418 0.024 -0.788 0.450

:;;; Obviously not as good. Come closer:

: -sgn->sgn; test(3,4,5);

-0.784 -0.055 -0.503 0.360

1.09946 0.948895 1.1168 0.861048 1.17276 0.816809 fail

:;;; Hardly surprising. Now for some noise

0.001->std; test(7,8,9);

-0.784 -0.055 -0.503 0.360
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1.03169 0.977811 1.0086 0.987454 0.998203 0.992623 0.99552

-0.784 -0.055 -0.502 0.361

: ;;;Some typical image coordinates:

: xl.sh;

-0.041 0.143 -0.050

:;;; These have been disturbed in the 3rd decimal place,

:;;; without serious effect on the solution; but

;;; the effects are more serious at long distances.

test(70,80,90);

-0.784 -0.055 -0.503 0.360

1.22151 1.21287 1.21344 1.21341 1.21339 1.21338 1.21338

-0.817 0.000 -0.417 0.398

:;;; Another try:

: .twiddle;

-0.078179-0.158668 0.013091 0.334405

:;;; Dangerously close to planar

: test(7,8,9);

-0.543 -0.533 -0.496 0.417

fail
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5 Discussion

It is evident from these sample results that the method is not guaranteed to converge on

to the correct solution for any tetrahedron and any three viewpoints. But insofar as the

orthogonal and paraperspective approximations are useful in the interpretation of image

sequences it may also be useful to have a method of refining the crude estimates of

structure and motion that result when the viewing distances are not very much larger

than the separations between the points under inspection. In this respect the present

work extends that of Tomasi and Kanade [TK91], who show how to decompose an

essentially orthogonal image sequence into one matrix specifying the camera

orientations and another encapsulating the structure of the object. In particular, the

present procedure for determining U and V from three orthogonal projections supplies

a simple and painless way of computing their 3x3 matrix A from three representative

members of the sequence. In this connection it may be relevant to remark that the

linear interdependence of 4 or more orthogonal projections of a rigid body carries over

to the para-perspective approximation—a fact of considerable utility in the analysis of

sequences of images at moderate viewing distances.

The main thrust of this work has been to make it possible to derive structure from

motion without relying too heavily on the delicate "perspective effects" exploited in,

for example [LH81]. To achieve this it is necessary, as Ullman [U79] and others have

realized, to compare the images obtained from at least 3 sufficiently distinct

viewpoints, and 4 is the minimum number of identifiable points to which the method

can be applied. Fortunately, one consistency constraint survives the generalization

from orthogonal to perspective projection, and this enables one to transcend Ullman's

theorem and select the correct Necker alternative in a principled fashion.
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