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SUMMARY 

Consideration is given to the flow conditions in the vicinity of a bluff body 
immersed in a ducted airs t ream. By equating the pressure loss expressed in 
te rms of drag coefficient and physical blockage to the pressure loss occurring 
in the flow expansion downstreana of the plane of maximum aerodjmamic blockage, 
a relationship between geometric and. aerodynamic blockage is obtained of the 
form 

B 

(1 - B )" 
a 

(1 - B )= 

where B is the geometric blockage, B is the aerodynamic blockage and ^ 
6 

is a function of the drag coefficient. It is argued that for any given body shape 4> 

is constant, and supporting experimental evidence is presented which shows, in 
0. 5 

addition, that for circular cones with apex pointing upstream, <f> = 0.44 (sin 6 ) ' , 
being the included angle of the cone. 2 
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LIST OF SYMBOLS 

d maxinaum d i a m e t e r o r width of rec i rcu la t ion zone 

A maximum c r o s s - s e c t i o n a l a r e a of rec i rcu la t ion zone 

A c r o s s - s e c t i o n a l a r e a of closed duct 

a max imum c r o s s - s e c t i o n a l a r e a of bluff body 

t gas densi ty 

V gas veloci ty 

D dynamic head, 0. 5 * V' 

p s ta t ic p r e s s u r e 

A p s ta t ic p r e s s u r e change 

C_^ d r a g coefficient for z e ro blockage 

Cj j cor responding base d r ag coefficient 
B 

B maximum geomet r ic blockage 

B maximum aerodynamic blockage 

n index of d in s tabi l i ty co r re la t ion 

Tj diff diffusion efficiency 

^ Cj^ (1 - 77 diff) " ' 

6 included angle of cone 

SUFFICES 

1 denotes conditions ups t r eam of bluff body 

2 denotes conditions in plane of maximum physical blockage 

. 3 denotes conditions in plane of max imum aerodynamic blockage 

4 denotes conditions downs t ream of the rec i rcu la t ion zone 
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1. Introduction 

Flow around a bluff body immersed in an airstream is characterized by the 
formation of a closed "bubble'" behind the body as illustrated in the fdiotograph of 
Fig. 1. Within the bubble is a region of circulatory flow, whose boundary may be 
defined as the locus of all points at which the flow subdivides into air which sub-
sequently participates in the circulatory flow and air which proceeds normally 
downstream. Usually the maximum width of the recirculation zone exceeds that 
of the body by an amount which depends on the shape of the body and the level of 
turbulence in the airs t ream. In the case of an airstream confined to a duct it is 
also governed by the geometric blockage, i . e . by the ratio of the cross-sectional 
area of the body to the flow area of the duct. This is because with flow in a duct 
the rigid walls impede the free movement of air over the body and, in consequence, 
the axial velocity in its vicinity is higher than it would be if the body were located 
in an unlimited stream. The effect of this high axial velocity is firstly, to increase 
the aerodynamic drag of the body above the value corresponding to the upstream 
dynamic head and, secondly, to reduce the width of the recirculation zone. Thus 
with flow in a duct one has to define two values of blockage: (a) the physical or 
geometric blockage, which is the ratio of the maximum cross-sectional area of 
the body to the flow area of the duct, and (b) the aerodynamic blockage, which is 
the ratio of the maximum cross-sectional area of the recirculation zone to the 
duct area. It is assumed that in both cases the cross-sectional area is measured 
in a plane which is normal to the axial flow direction. 

At the present time relatively little is known of the relationship between 
physical and aerodynamic blockage, although such knowledge would have useful 
practical applications. One example arises in the design of reheat or afterburner 
systems for turbojet engines. A reheat system normally comprises a number of 
bluff body flame stabilizers which are located in the engine tail-pipe. Fuel is 
injected into the turbine efflux at some plane upstream, and a flame is anchored 
on the stabilizers from which it can spread to other regions of the tail-pipe. Now 
the effectiveness of a baffle as a flame stabilizer is known to be improved by an • 
increase in baffle size and reduced by an increase in gas velocity. This dependence 
may be expressed as a stability criterion of the form 

flame stability = f ( d" j 

where d = maximum diameter or width of recirculation zone 

and V = local gas velocity 

n = constant. Values of n ranging from 0.5 to 1.0 are 
reported in the literature 

Fig. 2 shows the results of calculations on the variation of d with blockage for 
V 

values of n of 0 .5, 0.75 and 1.0. All three curves exhibit an increase in stability 
with increase in blockage until a maximum value is reached. Beyond this any possible 
increase in stability due to an increase in recirculation zone width is more than offset 
by the corresponding increase in local gas velocity. Thus for any given stabilizer 
configuration there is an optimum value of blockage for maximum stability. 
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F i g . 2 shows that for values of n of 0. 5, 0. 75 and 1. 0 the optimum values of 
aerodynamic blockage a r e 0 .200, 0.273 and 0.333 respec t ive ly . However , even 
if the des igner knows the appropr ia te value of n, he is s t i l l faced with the 
difficulty of t ry ing to es t imate the s t ab i l i ze r s ize required to c rea te the optimum 
value of aerodynamic blockage. The object of the present investigation is to 
a s s i s t the des igner in this problem by providing means whereby, for any given 
bluff body shape , a quanti tat ive re la t ionship between physical and aerodynamic 
blockage may readi ly be found. 

2 . Theory 

The following s imple theory employs the normal gas dynamic re la t ionships 
of incompress ib le flow. E r r o r s due to compress ib i l i ty effects a r e considered 
negligibly sma l l for the veloci t ies encountered in conventional reheat s y s t e m s 
which norma l ly do not exceed Mach 0 . 4 . 

The notational d iagram of F i g . 3 r e p r e s e n t s a symmet r i ca l bluff body 

located on the axis of a s t ra ight walled duct of uniform c r o s s - s e c t i o n a l a r e a , A. 

Attention is focussed on the following flow reg imes -

(1) ups t r eam of the bluff body 

(2) in the plane of max imum geomet r ica l blockage 

(3) in the plane of maximum aerodynamic blockage 

(4) downst ream of the rec i rcu la t ion zone. 

The p r e s s u r e los s between planes (1) and (4) may be derived in t e r m s of 

the d r a g coefficient and geomet r ic blockage in the following manner . 

F r o m momentum considera t ions we have -

p , A - p ^ A = Cj j . a. D^ (1) 

where C = d r ag coefficient based on ze ro blockage 

a = maximum c r o s s sect ional a r e a of bluff body 

and D = i * V 

o r , A p ^ _^ . A = Cj^. a. D^ (2) 

Now, D = D W A V 

D, / 1 _ N ' (3) 

g 

where B = & = geomet r ic blockage 
g • A 
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Substitution of (3) into (2) gives 

B 
6 p = D . C^. 

^ 1 - 4 1 D 
^ 

(1 - B )̂  

(4) 

Equation (4) expresses the overall pressure loss in terms of the upstream dynamic 
head, the drag coefficient and the geometric blockage. However, one can also 
write another expression for A P based on considerations of the flow losses 

which occur between these two planes. Between (1) and (3) the flow is contracting, 
and the only source of pressure loss is that arising from friction along the surface 
of the bluff body and the duct walls. This loss is relatively small and may 
reasonably be neglected. There i s , however, a reduction in static pressure 
between planes (1) and (3) due to the increase in air velocity, which is given by 
Bernoulli's equation as 

Ap D 

X^J •' 
where A3 = maximum cross-sectional area of recirculation zone 

or, A p D 

where B 

1 - 1 
(1 - B )" 

' = aerodynamic blockage 

(5) 

(8) 

Downstream of (3) the flow area increases, the velocity decreases and the static 
pressure r ises by an amount which depends on the efficiency at which this 
diffusion process occurs. If diffusion efficiency is defined in the normal way, 
we have, 

' P 
• ^ 4 - 3 

= V diff D 
(1 - B )» 

a 

where TJ diff = diffusion efficiency 

or, since V = V and hence D = D. 1 

A p = Jj diff D 
'̂  4 - 3 1 (1 - B^)' 

(7) 

Now the overall loss in static pressure between (1) and (4) is equal to the fall 
in static pressure between (1) and (3) minus the gain in pressure resulting from 
diffusion between (3) and (4) 

We have, p̂  - p^ = (p^ - p^) - (p^ - p^) 

Thus Ap is obta: 

equations (6) and (7). 

Thus Ap is obtained as the difference between the right hand sides of 
1 - 4 
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1. e . A p 
1 - . 4 

= D (1 -17 diff ) - 1 
(1 - B )* 

a 

(8) 

We now have two equations, (4) and (8), for the pressure loss between 
planes (1) and (4). One, equation (4), is based on the drag coefficient and the 
geometric blockage, B . The other, equation (8), relates pressure loss to 

diffusion efficiency and the aerodynamic blockage, B . Equating the two gives 

D. 
B 

(1 - B/ 
D, (1 - n diff) 

(1 - B )» 
a 

or , - 1 
(1 B )* 

a 

B 

(1 - T) diff) 
(9) 

(1 B )' 
g 

3. Comparison with experiment 

The validity of equation (9) was tested against experimental data obtained 
by Setarrudin^ who measured recirculation zone dimensions behind three sets 
of circular cones of 30 , 45 and 60 included angle. Each set comprised five 
oones differing in size to give geometric blockages of 0.11, 0.20, 0.31, 0.45 and 
0. 61. The cones were mounted in turn along the axis of a circular perspex pipe 
with their apex pointing upstream. Data on the size of the recirculation zone 
were obtained by water flow visualization techniques, as illustrated in fig. 1, and 
by a probe method based on the local injection of air bubbles into the water flow 
at various points downstream of the cone. By gradually increasing the radial 
protrusion of the probe the boundary of the recirculation zone was defined as the 
point at which the air bubbles were no longer swept downstream but were 
entrained into the circulatory flow. Both methods gave almost identical results 
on the effect of blockage on recirculation zone diameter but with slight differences 
in absolute values. The present analysis employs the results obtained by the 
probe method. These are reproduced in fig. 4 and listed in table 1. 

Setarrudin's data for the 60 cone are shown in fig. 5 as a plot of 

B 

(1 - B )« 
a 

against Ji- The result is a straight line 
(1 - B^) ' 

through the origin, indicating a constant value for the parameter 

o r <j> 

Tjdiff 

It also implies that the diffusion efficiency remains constant for any given value 
of C and independent of the blockage. This result is perhaps not too surprising, 

since although any increase in blockage will increase the area ratio of the diffusing 
passage and thereby tend to reduce the efficiency, this effect will be counteracted 
by an increase in efficiency resulting from the corresponding increase in the 
length of the recirculation zone and hence in the flow length available for diffusion. 
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o o 
Fig. 6 is similar to fig. 5 but also includes Setarrudin's data on 45 and 30 

cones. From the slopes of the lines drawn through the experimental points the 
following results are obtained: -

for the 60 cone, 

o 
for the 45 cone, 

o 
for the 30 cone, 

<!> 

i 

•f» 

= 3 

= 2 

= 2 

12 

72 

24 

These results may, incidently, be used to deduce the variation of drag 
coefficient with cone angle. Fig. 7 shows a plot of log ^against log. sin 6 

2 
6 being the cone angle. The plotted points lie close to a straight line of slope 
0.5, indicating a relationship of the form 

5 C „ . ( s . „ ^ ) »• (10) 

Experimental data obtained by direct measurement on the effect of cone 
angle on drag coefficient are sparse . For a circular disc, corresponding to a 
cone angle of 180 , Hoerner* quotes a value of C of 1. 2. Incorporating this 

value into equation (10) and substituting into equation (9) yields the following 
relationships :-

For circular cones with apex pointing upstream 

CJJ = 1.2 / ' s i n J _ ^ " ' ^ (11) 

and 
(1 - B )* 

a 

4.4 ( s i n J _ ) ° ' ^ ^g (12) 

,1 - B^,-

where 6 = cone angle 

Equation (12) was used to calculate values of B for all the experimental 

values of 6 and B employed by Setarrudin. These 'theoretical' values of B 

were then plotted against the corresponding experimental values as shown in 
fig. 8. In this figure the straight line drawn through the origin at 45 to the 
main axes corresponds to perfect agreement between theory and experiment. The 
fact that almost all the points fall on or close to this line strongly supports 
equation (12), which may, therefore, be used with confidence for predicting the 
aerodynamic blockage created by circular cones. 

4. Application to other bluff body shapes 

For a bluff body located in a ducted airstream the total drag is composed 
of the following: -



(a) forebody drag coefficient 

(b) skin friction drag on body surface 

(c) additional skin friction drag on duct wall due to flow acceleration in 
vicinity of body. 

(d) base drag coefficient 

Of these the component having the most direct influence on the geometry of 
the recirculation zone is the base drag coefficient, Cipp.. For cones and short 

forebody shapes this is the major component of drag and no great e r ro r is incurred 
if C is used instead of CQ— is calculating (p . With long forebody shapes, however, 

skin friction cannot be neglected and hence ^ must be calculated on the basis of 
C Q D only. Moreover, since the diffusion efficiency is determined by the shape of the 

diffusion passage formed between the recirculation zone and the duct walls, it is to be 
expected that rjdiff is also closely related to the base drag coefficient, although 
with long forebody shapes the boundary layer thickness might also be significant. 

The values of 0 from fig. 6 for 60 , 45 and 30 cones, when used in con-
junction with Hoerner 's result of 1.2 for a circular disc (180 cone), yield a 
value of T7 diff of 0. 73. For other three-dimensional bodies it is suggested, 
therefore, that <j, be calculated using the appropriate value of C-Q-Q and a diffusion 

efficiency of 0. 73. 

i . e . for three-dimensional bodies 

- 1 
(1 - B )» 

a 

= 3 . 7 . C D B 
(13) 

(1 - B )* 
S 

For two-dimensional bodies, in the absence of experimental data from 
which to deduce the relevant level of diffusion efficiency, recourse must be made 
to the general equation -

1 - 1 
(1 - B^)^ 

<t> • 
B 

(1 - B / 

(14) 

If, for any given forebody shape, the relationship between aerodynamic and 
geometric blockage is known at one value of blockage, this is sufficient to determine 
(f) and the above equation may then be used to derive this relationship at any other 
level of blockage. 

5. Previous work 

Since the present study was completed Maskell' has presented a theory of 
blockage constraint on the flow past a bluff body in a closed wind turmel. The 
theory leads to the following 'correction formula' 
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A i 
q 

. . c , . ^ (15) 

where A q i s the effective i n c r e a s e in dynamic p r e s s u r e due to cons t ra in t , 
and e i s a blockage factor dependent on the naagnitude of the b a s e - p r e s s u r e 
coefficient. S is the re fe rence a r e a of the model and C the tunnel c r o s s -
sect ional a r e a . The factor e i s shown to be c lose to 2. 5 for aspect r a t ios in the 
range 1 to 10. 

Although at f i rs t sight the above equation may s e e m unre la ted to the p resen t 
work, by convert ing velocity r a t io s into a r e a ra t ios and changing the notation, it 
may be rewr i t t en as 

(1 BY 
a 

C ^ . B 
D g 

(16) 

a s compared with equation (9) which is 

C 
D 

(1 B )* 
a 

(1 - rj diff) 

B 
ë—. 

(1 -B r 
g 

Apar t from differences in der ivat ion the main p rac t i ca l difference between 

these two expres s ions i s the absence of the t e r m (1 - B )* in equation (16). This 
g 

has a negligible effect at the ve ry low values of blockage considered by Maskel l , 
but would lead to apprec iab le e r r o r at high levels of blockage un le s s , of c o u r s e , 
for each value of blockage the appropr ia te measu red o r ' c o r r e c t e d ' value of C 

D 
were in se r t ed into the equation. 

6. Conclusions 

(1) F o r two-dimensional and th ree -d imens iona l bluff-bodies located in a closed 

duct the re la t ionship between geomet r i c and aerodynamic blockage is given by 

the formula 

B 

(1 Ba>^ 
(1 - B )̂  

g 

where B = geomet r i c blockage 

B = aerodynamic blockage 

</) = constant for any given body shape 

= C D g / l - "d i f f 

(2) F o r c i r c u l a r cones with apex pointing u p s t r e a m , 

^ = 4 .4 ( sin _6_ J ' and hence 



(1 - B )=" 
a 

4.4 {""i-) 
\ 0 .5 

(1 - B )̂  
g 

(3) F o r o ther t h r ee -d imens iona l shapes the following formula is recommended 

B 
1 

(1 - B^)^ 

= 3 . 7 
' D B • A, 

(1 - B )» 
g 

(4) Analys is of the exper imenta l evidence sugges ts that the d rag coefficient of 

c i r c u l a r cones ' i s propor t ional to the squa re root of the s ine of the half angle. 

I. e . C ^ = C ^ o f s in 6 ) 

D Di8o° V -r J 

0.5 

^ D i 8 0 ° 
= drag coefficient of c i r c u l a r d isc 
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TABLE 1 

Geomet r i c 

Blockage 

B 
g 

0.110 

0.200 

0.310 

0.450 

0.610 

60 cone 

0.155 

0.281 

0.429 

0.580 

0.726 

Aerodynamic 

Blockage, B 

45 cone 

0.144 

0.261 

0.402 

0.550 

0.696 

30 cone 

0.136 

0.246 

0.380 

0.529 

0.675 
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FIG. 1. PHOTOGRAPH ILLUSTRATING FLOW RECIRCULATION 
ZONE DOWNSTREAM OF A CIRCULAR ZONE 
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FIG. 2. GRAPHS ILLUSTRATING DEPENDENCE OP FLAME 
STABILITY ON AERODYNAMIC BLOCKAGE 



PK}. 3 . NOTATIONAL DIAGRAM DENOTING MAIN FLOW REGIME& 
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BLOCKAGE RATIO , 85,0111 

FIG. 4. E X P E R I M E N T A L DATA ON THE RELATIONSHIP 
B E T W E E N GEOMETRIC AND AERODYNAMIC BLOCKAGE 
FOR CONES (SETARUDDIN. R E F . 1). 



PK3. 6. DETERMINATION OF • FOR CONES. 
FIG. 5. EXPERIMENTAL SUPPCHIT FOR CONSTANCY OP * 

IN EQUATION (9). 
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FB3. 7. RELATIONSHIP BETWEEN • AND CONE ANGLE. 
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FIG. 8. COMPARISON B E T W E E N MEASURED VALUES OF 
AERODYNAMIC BLOCKAGE AND VALUES PREDICTED 
FROM EQUATION (12). 


