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ABSTRACT

w	
A method of selecting grid size for the finite element analysis of gear

tooth deflection is presented. The method is based on a finite element

study of two cylinders in line contact, where the criterion for establishing

element size was that there be agreement with the classical Hertzian solu-

tion for deflection. Many previous finite element studies of gear tooth

deflection have not included the full effect of the Hertzian deflection.

The present results are applied to calculate deflection for the gear speci-

men used in the NASA spur gear test rig. Comparisons are made between the

present results and the results of two other methods of calculation. The

results have application in design of gear tooth profile modifications to

reduce noise and dynamic loads.

SYMBOLS

b	 width of Hertzian flat, R, (in.)

c,e dimensions of finite elements

d	 diameter

*Member ASME.

**Presently with Garrett Turbine Engine Co., Phoenix, Arizona 85010.
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E	 Young's modulus, N/m2 (psi)

p	 load per unit length, N/m (lb/in.)

r b	base circle radius, m (in.)

s	 distance measured along involute from pitch point, m (in.)

x,y Cartesian coordinates

6	 deflection, m (in.)

e	 roll ang le, deg

V	 Poisson's ratio

P	 radius of curvature, m (in.)

b	 pressure angle, deg

INTRODUCTION

Gear tooth deflections in heavily-loaded, high-speed power transmis-

sions cause noise. When a loaded tooth deflects in the direction of the

load, this displaces the tooth from a proper geometrical position for smooth

gear action. When the next tooth comes into mesh it is effectively ahead of

where it should be. The premature contact of the tooth coming into mesh

causes an impact or dynamic load, which in turn produces noise in the gear

transmission.

If the deflection of the tooth under load can be predicted with good

accuracy, then appropriate geometrical compensations may be designed into

the gear to eliminate noise. Since deflection is a function of load, any

remedy such as a geometrical correction to the tooth would be effective at a

given condition of design load. The traditional design practice has been to

specify a straight line involute correction from the tip of the tooth to the

highest point of single tooth pair contact. The amount of correction is

made equal to the calculated deflection. In 1929 Baud and Peterson [1]1

1 Numbers in square brackets denote references at end of paper.
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approached the gear tooth deformation problem by modeling the gear tooth as

a cantilever beam with variable cross-section. In 1938 Walker [2] related

gear tooth deflections to tooth profile modification to achieve smooth run-

ning gear meshes. His very useful results are still being followed by some

gear designers today.

In more recent times there have been efforts to improve the accuracy of

calculating the deflection of gear teeth by considering all contributing

sources such as bending, shear, and compressional deflections of the gear

teeth as well as deformations due to flexibility of the gear blank and

mounting. These efforts make use of the early work of Weber [3], adding

various improvements. In 1964 Attia [4] contributed the effect of rim

stiffness. In 1980 Cornell [5] presented the accumulation of his research

on the subject. His work is based on classical treatments of tooth deforma-

tion due to the effects of bending, shear, Hertzian deformation, fillet

geometry, and foundation flexibility.

There have been recent studies of gear system dynamics and gear tooth

deformation based on finite element analysis of gear teeth [6 to 8], but the

complete effect of Hertzian deformation does not seem to be included. It

will be shown in a later section that the Hertzian deformation component of

total gear tooth deformation can be as much as 25 percent of the total de-

formation. This means that in any finite element calculation of gear tooth

deformation, the grid spacing in the zone of the tooth to tooth contact must

be chosen carefully. In many finite element studies in the literature cited

this point has been overlooked.

The most recent studies of gear dynamic load prediction have been by

Cornell and Westervelt [9), Wallace and Seireg [6], and Kasuba and Evans

[10]. Wang and Cheng [11] have presented a research study on combined dy-
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namic load, lubrication film thickness, and temperature analysis of spur

gear sets. Mark [12 to 14] has studied gear noise using Fourier analysis of

the steady and random components of the static transmission error. Remmers

[15] has also presented a frequency domain approach to the problem of gear

mesh dynamics and noise.

The objectives of the work presented herein were to (a) derive a method

of selecting finite element grid size so that the full effect of Hertzian

deformations would be included, (b) apply the method to calculate tooth de-

flections for the spur gear specin_: ,v, in the NASA spur gear test rig, and

(c) compare the results with those of Wang and Cheng [11] and Cornell [15].

The method of [13] was used to select the design load.

ANALYSIS

A finite element study of a cylinder was conducted in order to deter-

mine what grid spacing was necessary to get correct answers for the Hertzian

component. The cylinder problem was chosen because the geometry of line

contact is similar to the line contact between two gear teeth. In addition,

the equations for Hertzian deformation of cylinders are well known. These

are summarized in the a ppendix. The essentials of the finite element method

are presented in [6].

The finite element work was done using the MARC program [11] at the

•	 NASA Lewis Research Center. A plane strain 8-node distorted quadrilateral

eleme,it was selected. Due to symmetry, only one half of the cylinder was

modeled as shown in Fig. 1. A fine grid was used in the Hertzian contact

zone. This was to allow the stress field to dampen down according to the

St. Venant principle [18]. The boundary conditions on the half cylinder is

no y-displacement along y - 0 line and at the point (0,0) there must be no

deflection.

n _

f
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The question to be answered was, is the fine mesh region large enough

to allow the strain field to dampen out according to the St. Venant princi-

pal? Or in other words, for the range of mesh size to be used, how far away

from the point load should the fine mesh zone be extended? In order to

answer the question, the fine mesh zone was modeled with three different
1

mesh arrangements. These are shown in Fig. 2. The edge of the zone along

the circumference was consistently divided into 9 divisions, while the

radial direction was divided into 3, 5, and 10 divisions for each case.

Table I gives the displacements at the four nodes A, B, C, and D shown in

Fig. 1. Because there is symmetry about the y—axis, the displacements at

G, F, and E are the same as A, B, and C. Because the displacements at

A, 3, C, and D are not significantly infuenced by the mesh arrangement

within the small mesh zone it is safe to conclude that the small mesh zone

is large enough.

The load distribution on a Hertzian contact is parabolic. In the fi-

nite element model, the load must be applied at discrete points. Two meth-

ods of approximating the parabolic load distribution were used. One method

was to apply the load at several closely spaced points in the contact zone.

A second method was to apply the load at one node only. The latter method

called the concentrated load method is discussed next.

Concentrated Load Approach

The result of the finite element calculations using concentrated loads

are compared with results from the Hertzian deflection formula, Eq. (AI).

The comparison is summarized in Fig. 3. The results show that as the grid

size in comparison to the Hertzian contact width is increased, the percent

error monotonically decreases, passing through zero. The percent error is

taken as
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Percent error - 
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x 100	 (1)

h

where of is the deformation calculated by the finite element methoa,

and 6 h is the deformatioan calculated from the Hertzian formula given in

the appendix. The grid spacing that gives zero percent error depends on the

grid aspect ratio. The aspect ratio (c/e) is defined as the ratio of the

element dimension (in the direction normal to the loaded edge) to the ele-

ment size (which is measured along the loaded edge). As the aspect ratio

decreases, the ratio of element size to contact width must increase to main-

tain a zero percent error. The following equation derived from Fig. 3

relates element size and aspect ratio, giving less than 1 percent Error in

calculated deflection within the interval of definition

( e ) - -0.2 (E)e  + 1. 2, 0.9 < e < 3	 (2)

The results of this preliminary study enables the selection of grid

spacing for the gear tooth finite element model, when a concentrated load is

used to represent the gear tooth contact. By selecting the proper grid size

and aspect ratio the Hertzian contact deformation will be accurately calcu-

lated.

The procedure for selecting a mesh spacing along the loaded edge of a

gear tooth would then be as follows. From Eq. (A5) determine the point of

the involute at which the load acts. From Eqs. (Ab) and (A3) determine the

Hertzian contact width b. Then from Eq. (2) select the element size, e,

given that the aspect ratio, c/e, has been selected beforehand.



1

Distributed Load Approach

A distributed load approach was also investigated for calculation of

the Hertzian deforma`ion of cylinders in contact.

In the finite element approach the distributed load on a surface leads

to the numerical evaluation of a surface integral. By performing the nu-

merical integration, the appropriate concentrated loads to be assigned to

the nodes of the element are determined. This numerical integration is

handled automatically by most computer codes and in particular by the MARC

Code used in this investigation.

The grid spacing was varied and computed finite element deflections

were compared to calculated Hertzian deflections in a way similar to that

shown in Fig. 3. The variation in percent error with ratio of element size

to contact width did not vary monotonically. Also the percent error varia-

tions were beyond an acceptable limit of 10 percent. The results obtained

from the distributed load method did not provide a satisfactory way to

select element size to minimize the error.

RESULTS AND DISCUSSION

Using the analysis of the previous section the finite element method

was used to calculate deflections of the spur gear which is used in the NASA

spur gear test rig. The test rig is described in [191. Table II gives the

dimensions of the test gears. For the calculations the fillet radius was

taken as 0.102 cm (0.04 in.).

The load pattern used in the finite element calculations was selected

on the basis of the method of Mark (13]. The maximum load along the line of

action is the test load of 1615 N (363 lb). The complete load pattern is

shown in Fig. 4. The abscissa is the roll angle as defined by Barter in

[20]. For the true involute profile gear running against an identical gear
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the active zone is 21.0601 degrees, beginning at 10.3239 degrees of roll

angle. The zone of no ;oad at the addendendum and dedendenum of 2.0959

degrees according to Mark 2 is to allow for tootf, tip relief, 20 percent

overloading, and possible tooth spacing errors. The object of using this

load pattern was to obtain the tooth deflections under the loading which

according to [13] leads to optimum reduction of tooth mesh generated noise.

The mesh for the finite element analysis is shown in Fig. 5. The mesh

size was determined using the analysis presented earlier.

Table III and Fig. 6 give the deflections which were calculated for 30

different points along the tooth profile. The trapezoidal shape of the de-

flections plotted in Fig. 6 is reflective of the trapezoidal shape of the

applied loads as shown in Fig. 4. The deflections are larger for loading in

the addendum region due to greater bending of the tooth.

There are other analyses of gear tooth deflection which may be compared

to the results presented in Table III. In [11], Wang and Cheng calculated

deflection for a spur gear with a normal load applied at various points

along the tooth profile. The mesh used by Wang and Cheng for the gear tooth

was more coarse than that used in the present study; the boundary con-

straints and hub size were similar. In [5], Cornell presented a general

analysis of tooth deflection. The result of Wang and Cheng ano Cornell are

compared in the present results in Fig. 7. The present work gives larger

deflections than the other two. A possible explanation of why the result of

Wang and Cheng gives smaller deflections than the present result can be rea-

soned from Fig. 3.

Wang and Cheng used an elb larger than one. Figure 3 shows that this

would result in a deformation less than that predicted by Eq. (Al). The

F-

2Private communication.

G
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authors can not offer any explanation of the difference between Cornell's

result and the present result, since the two methods are quite different.

An advantage of the Cornell method over the finite element method is

that Cornell's method gives the deflection components, which are the deflec-

tion conponet due to Hertzian deformation, beam (shear arr Lending) effects

for the involute portion of the tooth, beam effects fo-, • the undercut length

and for the fillet zone, as well as foundation flexibility. The foundation

flexibility represents the effect of the gear blank in supporting the

tooth. Figure 8 gives the tooth deflection components t'iat were calculated

using Cornell's method. This figure shows that Hertzian deflection is ap-

proximately 25 percent of the total tooth deflection. This emphasizes the

importance of the effect of mesh size in a finite element study of gear

tooth deflections.

SUMMARY OF RESULTS

A method of selecting grid size near the point of load application for

a finite element study of gear tooth deflection was presented. The method

was based on a finite element study of two cylinders in contact wherein the

grid size was varied. The finite element results of the cylinder contact

problem were compared to results from the classical Hertzian formula. From

this a method was established for determining the grid size in a gear con-

tact problem. The method was applied to calculated deflections in the NASA

test gear. The calculated deflections were compared to calculated deflec-

tions by the method of Wang and Cheng who used the finite element method. A

comparison was made using Cornell's method which is not based on the finite

element method. The following results were obtained.
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1. Accurate finite element method calculation of Hertzian deflection

f	 between two cylinde^ s is dependent on (a) the element size in relation to

the Hertzian contact width and (b) the element aspect ratio.

►	 2. For agreement between deflection calculated using the finite element

method and deflection calculated using the Hertzian formula the ratio of

element size to contact width, e/b should be related to grid aspect ratio

{	 c/e by the following equation

b= -0.11. ^e + 1.2, 0.9 < e < 3

3. Calculated gear tooth deflections using the grid selection method

compared favorably with results of other researchers. The present method

gave deflections f:•om 10 to 20 percent greater than the two methods with

which it was compared.
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APPENDIX - SUMMARY OF CONTACT STRESS AND DEFORMATION

FORMULAE FOR GEARS AND CYLINDERS

Hertz [2] has derived formulae for stress and deflections of solid

elastic bodics in contact. Roark's handbook [22] gives a summary of deflec-

tion formulae that are basd on a Hertz pressure distribution.

For the case of two identical cylinders pressed into contact, the dis-

tance between the cylinders is reduced by

22(l KE v2 [Il + 2 In (Lb)	 (Al)

where

p	 Load per unit length

V	 Poisson's ratio

E	 Young's modulus

d	 diameter

b	 total contact width

The total contact width b is given by

b - 2.15
ZE
	(A2)

where v - 0.3.

For the case of two gear teeth in contact the width of contact b is

given by

P 
b - 2.15	

E

where

I



P

2P1P2

K0	 P1 + 
P2

and 0 1 102 are the radii of curvature of gear tooth 2 and gear tooth 2 at

the point of contact.

For two identical gears in mesh the distance alon3 tht contact path

from the pitch point is given by

s • rbe
	

(A5)

where r 	 is the base circle radius and a is the angle of gear rotation

at the pitch point o - 0. The expression for K 	 in this case is given

by

s---7

2
Kp • rb tan 6 1 - (rb tan

where 6 is the pressure angle.

(A^)

(A6)
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TABLE I. - DISPLACEMENTS AT CORNER NODES OF FINE MESH REGION

[Displacement, mm (in.)]

Node Case 1 Case 2 Case 3
3x9 mesh 5x9 mesh 10x9 mesh

A 6.6390540-4 6.6384410-4 6.63997x10-4
(2.61380x10-5 ) (2.61356x10- 5 ) (2.6141640-5)

B 6.5514740-4 6.55881x10-4 6.56245x10-4
(2.5793240-5 ) (2.582210x10- 5 ) (2.5836410-5)

C 5.9900640-4 5.9936640-4 5.9942740-4
(2.3582940- 5 ) (2.35971x10-5 ) (2.3599540-5)

D 6.5263540-4 6.53811x10-4 6.5396440-4
(2.5694340- 5 ) (2.57406x10- 5 ) (2.57466x10-5)
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TABLE II. - SPUR GEAR DATA

[Gear tolerance per ASME class 12.]

Number of teeth .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . . 28
Diametral	 pitch.	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 8
Circular pitch,	 cm	 (in.)	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.9975 (0.3927)

Whole depth,	 cm	 (in.) .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.762 (0.300)
Addendum,	 cm (in.)	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.318 ( 0.125)
Chordal tooth thickness reference, cm	 (in.).	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.485 (0.191)
Pressure angle, deg 	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 20
Pitch diameter,	 cm (in.)	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 8.890 (3.500)
Tooth width,	 cm (in.).	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 0.625 (0.250)
Outside diameter,	 cm (in.)	 .	 .	 .	 . .	 .	 .	 .	 .	 .9.525 (3.750)
Root fillet,	 cm	 (in.).	 .	 . 0.102 to 0.152 (0.04 to 0.06)
Measurement over pins, cm (in.). 9.603 to 0.630 (3.1807 to 3.7915)

Pin diameter, cm (in.) 	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 9.549 ( 0.216)
Ba;-klash reference, 	 cm (in.)	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 0.0254 (0.010)
Tip relief,	 cm	 (in.)	 .	 .	 .	 .	 .	 . .	 .	 .	 . 0.001 to 0.0015 (0.0004 to 0.0006)
Young's modulus, N1W (psi) .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 2.074011 (30x106)
Poisson's ratio .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 . 0.30

IF _._.	 _ . z
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TABLE III. - RESULTS OF FEM CALCULATION FOR TOOTH DEFLECTION NORMAL TO THE

TOOTH SURFACE AT POINTS ALONG THE LINE OF ACTION

[NASA test gear.)

Roll	 angle Distance from pitch Load Deflection
point along line of

rad deg action N lb mm in.

mm in.

0.2208 12.65 -5.979 -0.2354 93.05 20.92 5.7412 E-4 2.2603 E-5
.2271 13.01 -5.718 -.2251 238.4 53.59 1.5026 E-3 5.9158 E-5
.2361 13.53 -5.342 -.2103 446.1 100.3 2.8184 E-3 1.1096 E-4
.2474 14.17 -4.867 -.1916 706.8 158.9 4.5072 E-3 1.1145 E-4
.2609 14.95 -4.308 -.1696 1018 228.9 6.5641 E-3 2.5843 E-4
.2760 15.81 -3.673 -.1446 1366 307.2 8.9797 E-3 3.5353 E-4
.2922 16.74 -2.997 -.1180 1615 363.0 1.0875 E-2 4.2813 E-4
.3084 17.67 -2.322 -.0914 1615 363.0 1 1200 E-2 4.4095 E-4
.3238 18.55 -1.676 -.0660 1615 363.0 1.1554 E-2 4.5488 E-4
.3386 19.40 -1.057 -.0416 1615 363.0 1.1930 E-2 4.6970 E-4
.3529 20.22 -.462 -.0182 1615 363.0 1.2345 E-2 4.8603 E-4
.3640 20.86 0 0 1615 363.0 1.2600 E-2 4.9605 E-4
.3747 21.47 .447 .0176 1615 363.0 1.3035 E-2 5.1320 E-4
.3876 22.21 .986 .0388 1615 363.0 1.3501 E-2 5.3155 E-4
.4000 22.92 1.506 .0593 1615 363.0 1.4004 E-2 5.5135 E-4
.4121 23.61 2.012 .0792 1615 363.0 1.4537 E-2 5.7233 E-4
.4237 24.28 2.497 .0983 1615 363.0 1.5090 E-2 5.9408 E-4
.4350 24.92 2.969 .1169 1615 363.0 1.5680 E-2 6.1722 E-4
.4458 25.54 3.419 .1346 1608 339.0 1.5132 E-2 5.9573 E-4
.4557 26.11 3.830 .1508 1280 287.7 1.3438 E-2 5.2905 E-4
.4645 26.61 4.199 .1653 1077 272.2 1.1713 E-2 4.6113 E-4
.4723 27.06 4.526 .1782 896.7 201.6 1.0058 E-2 3.9598 E-4
.4793 27.46 4.818 .1897 735.3 165.3 8.5060 E-3 3.3488 E-4
.4855 27.82 5.077 .1999 592.5 133.2 7.0455 E-3 2.7738 E-4
.4909 28.13 5.304 .2088 467.5 105.1 5.6937 E-3 2.2416 E-4
.4956 28.40 5.502 .2166 359.3 80.77 4.4691 E-3 1.7595 E-4
4997 28.63 5.669 .2232 265.0 59.57 3.3726 E-3 1.3278 E-4

:5031 28.83 5.812 .2288 186.2 41.87 2.4210 E-3 9.5315 E-5
.5059 28.99 5.928 .2334 121.7 27.35 1.6135 E-3 6.3525 E-5
.5080 29.11 6.017 .2369 73.21 16.46 9.6342 E-4 3.7930 E-5
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Fgure 1. - Finite element model of half cylinder. Zone of fine mesh near point

of load application.
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Figure 4 - loading diagram.



(a) GEAR TOOTH GRID.
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Ib1 TOOTH AND GEAR BLANK

Fk;ure 5. - Spur gear mesh.
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Figure 6. - Results of FEM calculation for tooth deflection normal to
the tooth surface at points along the line of action.
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Figure 7. - Results of Wang and Cheng and results of Cornell com-
pared to present results for spur gear deflection.
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Figure f3. - Tooth deflection calculated by the method of Cornell.
reference 5.
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