A METHOD OF SOLVING A DIOPHANTINE EQUATION OF SECOND DEGREE WITH N VARIABLES

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA

ABSTRACT. First, we consider the equation
(1) $a x^{2}-b y^{2}+c=0$, with $a, b \in N^{*}$ and $c \in Z^{*}$.

It is a generalization of Pell's equation: $x^{2}-D y^{2}=1$. Here, we show that: if the equation has an integer solution and $a \cdot b$ is not a perfect square, then (1) has infinitely many integer solutions; in this case we find a closed expression for (x_{n}, y_{n}), the general positive integer solution, by an original method. More, we generalize it for a Diophantine equation of second degree and with n variables of the form:

$$
\sum_{i=1}^{n} a_{i} x_{i}^{2}=b, \text { with all } a_{i}, b \in Z, n \geq 2 .
$$

1991 MSC: 11D09

INTRODUCTION.

If $a \cdot b=k^{2}$ is a perfect square ($k \in N$) the equation (1) has at most a finite number of integer solutions, because (1) becomes:
(2) $(a x-k y)(a x+k y)=-a c$.

If (a, b) does not divide c , the Diophantine equation has no solution.

METHOD OF SOLVING.
Suppose (1) has many integer solutions. Let (x_{0}, y_{0}),
($\mathrm{X}_{1}, \mathrm{Y}_{1}$) be the smallest positive integer solutions for (1), with $0 \leq \mathrm{x}_{0}<\mathrm{x}_{1}$. We construct the recurrent sequences:
(3) $\quad\left\{\begin{array}{l}\mathrm{x}_{\mathrm{n}+1}=\alpha \mathrm{x}_{\mathrm{n}}+\beta \mathrm{y}_{\mathrm{n}} \\ \mathrm{Y}_{\mathrm{n}+1}=\gamma \mathrm{x}_{\mathrm{n}}+\delta \mathrm{y}_{\mathrm{n}}\end{array}\right.$
setting the condition that (3) verifies (1). It results in:

$$
\begin{align*}
& \mathrm{a} \alpha \beta=\mathrm{b} \gamma \delta \tag{4}\\
& \mathrm{a} \alpha^{2}-\mathrm{b} \gamma^{2}=\mathrm{a} \tag{5}\\
& \mathrm{a} \beta^{2}-\mathrm{b} \delta^{2}=-\mathrm{b} \tag{6}
\end{align*}
$$

having the unknowns $\alpha, \beta, \gamma, \delta$. We pull out $a \alpha^{2}$ and $a \beta^{2}$ from (5), respectively (6), and replace them in (4) at the square; we obtain:
(7) $\mathrm{a} \delta^{2}-\mathrm{b} \gamma^{2}=\mathrm{a}$.

We subtract (7) from (5) and find
(8) $\alpha= \pm \delta$.

Replacing (8) in (4) we obtain

$$
\text { (9) } \beta= \pm \frac{\mathrm{b}}{-} \frac{-}{\mathrm{a}} \gamma \text {. }
$$

Afterwards, replacing (8) in (5), and (9) in (6), we find the same equation:
(10) $a \alpha^{2}-b \gamma^{2}=a$.

Because we work with positive solutions only, we take:

$$
\left\{\begin{array}{l}
x_{n+1}=\alpha_{0} x_{n}+(b / a) \gamma_{0} y_{n} \\
y_{n+1}=\gamma_{0} x_{n}+\alpha_{0} Y_{n},
\end{array}\right.
$$

where $\left(\alpha_{0}, \gamma_{0}\right)$ is the smallest positive integer solution of (10) such that $\alpha_{0} \gamma_{0} \neq 0$. Let the 2×2 matrix be:

$$
A=\binom{\alpha_{0}(b / a) \gamma_{0}}{\gamma_{0} \alpha_{0}} \in M_{2}(Z) .
$$

Of course, if (x^{\prime}, y^{\prime}) is an integer solution for (1), then $A \cdot\binom{x_{0}}{y_{0}}, A^{-1} \cdot\binom{x_{0}}{y_{0}}$ is another one, where A^{-1} is the inverse matrix of A, i.e., $A^{-1} \cdot A=A \cdot A^{-1}=I$ (unit matrix). Hence, if (1) has an integer solution, it has infinitely many (clearly $\left.A^{-1} \in M_{2}(Z)\right)$.

The general positive integer solution of the equation
(1) is

$$
\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\left(\left|x_{n}\right|,\left|y_{n}\right|\right) \text {, with }
$$

$\left(\mathrm{GS}_{1}\right)\binom{x_{n}}{y_{n}}=\mathrm{A}^{\mathrm{n}} \cdot\binom{x_{0}}{y_{0}}$, for all $\mathrm{n} \in \mathrm{Z}$,
where by convention $A^{0}=I$ and $A^{-k}=A^{-1} \cdot \ldots \cdot A^{-1}$ of k times.
In the problems it is better to write (GS) as:

$$
\binom{x_{n}^{\prime}}{y_{n}}=A^{\mathrm{n}} \cdot\binom{x_{0}}{y_{0}},
$$

$n \in N$, and
$\left(\mathrm{GS}_{2}\right) \quad\binom{x_{n} "}{y_{n} "}=\mathrm{A}^{\mathrm{n}}\binom{x_{1}}{y_{1}}, \quad \mathrm{n} \in \mathrm{N}^{*}$.
We prove by reductio ad absurdum that $\left(G S_{2}\right)$ is a general positive integer solution for (1).

Let (u, v) be a positive integer particular solution
for (1). If $\exists k_{0} \in \mathrm{~N}:(u, v)=A \cdot\binom{x_{0}}{y_{0}}$, or
$\exists k_{1} \in N: \quad(u, v)=A \cdot\binom{x_{1}}{y_{1}}$, then $(u, v) \in\left(G S_{2}\right)$.
Contrarily to this, we calculate $\left(u_{i+1}, V_{i+1}\right)=A^{-1} \cdot\binom{u_{i}}{v_{i}}$ for
$i=0,1,2, \ldots$, where $u_{0}=u, v_{0}=v$. Clearly $u_{i+1}<u_{i}$ for all i. After a certain rank, i_{0}, it is found that
$\mathrm{x}_{0}<\mathrm{u}_{\mathrm{i}}{ }_{0}<\mathrm{x}_{1}$ or $0<\mathrm{u}_{\mathrm{i}}<\mathrm{X}_{0}$, but that is absurd.

It is clear we can put
$\left(\mathrm{GS}_{3}\right)\binom{x_{n}}{y_{n}}=\mathrm{A}^{\mathrm{n}} \cdot\binom{x_{0}}{\varepsilon y_{0}}, \mathrm{n} \in \mathrm{N}$, where $\varepsilon= \pm 1$.

We have now to transform the general solution (GS_{3}) into
a closed expression. Let λ be a real number.
Det (A - $\lambda \cdot I$) $=0$ involves the solutions $\lambda_{1,2}$ and the proper vectors
$v_{1,2}\left(i . e ., \quad A v_{i}=\lambda_{i} v_{i}, \quad i \in\{1,2\}\right)$. Note $P=\binom{v_{1}}{v_{2}}^{t} \in M_{2}(R)$.
Then $P^{-1} A P=\binom{\lambda_{1} 0}{0}$, whence $A^{n}=P \cdot\left(\begin{array}{ll}\left(\lambda_{1}\right)^{n n} 0 \\ 0 & \left(\lambda_{2}\right)^{n n}\end{array}\right) \cdot \mathrm{P}^{-1}$, and,
replacing it in (GS_{3}) and doing the calculation, we find a closed expression for (GS_{3}).

EXAMPLES.

1. For the Diophantine equation $2 x^{2}-3 y^{2}=5$ we obtain:

$$
\binom{x_{n}}{y_{n}}=\binom{56}{45} \cdot\binom{2}{\varepsilon}, \mathrm{n} \in \mathrm{~N},
$$

and $\lambda_{1,2}=5 \pm 2 \sqrt{ } 6, v_{1,2}=(\sqrt{ } 6, \pm 2)$, whence a closed expression for x_{n} and Y_{n} :

$$
\begin{aligned}
& 3 \varepsilon+2 \sqrt{ } 6 \quad 3 \varepsilon-2 \sqrt{ } 6 \\
& Y_{n}=-\frac{----}{6}(5+2 \sqrt{ } 6)^{n}+\underset{6}{------(5-2 \sqrt{ } 6)^{n}} \text {, }
\end{aligned}
$$

for all $\mathrm{n} \in \mathrm{N}$.
2. For the equation $x^{2}-3 y^{2}-4=0$ the general solution in positive integers is:

$$
\begin{aligned}
& x_{n}=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n} \\
& y_{n}=-\frac{1}{\sqrt{3}}\left[(2+\sqrt{3})^{n}-(2-\sqrt{3})^{n}\right]
\end{aligned}
$$

for all $\mathrm{n} \in \mathrm{N}$, that is $(2,0), 4,2),(14,8),(52,30), \ldots$.

EXERCISES FOR READERS.

Solve the Diophantine equations:
3. $x^{2}-12 y^{2}+3=0$.

Remark:

$$
\binom{x_{n}}{y_{n}}=\binom{724}{27} \cdot\binom{3}{\varepsilon}=?, \mathrm{n} \in \mathrm{~N} .
$$

4. $x^{2}-6 y^{2}-10=0$.

Remark:

$$
\binom{x_{n}}{y_{n}}=\binom{512}{25} \cdot\binom{4}{\varepsilon}=?, \quad \mathrm{n} \in \mathrm{~N} .
$$

5. $x^{2}-12 y^{2}+9=0$.

Remark:

$$
\binom{x_{n}}{y_{n}}=\binom{724}{27} \cdot\binom{3}{0}=?, \quad \mathrm{n} \in \mathrm{~N} .
$$

6. $14 x^{2}-3 y^{2}-18=0$.

GENERALIZATIONS .

If $f(x, y)=0$ is a Diophantine equation of second degree with two unknowns, by linear transformations it becomes:
(12) $a x^{2}+b y^{2}+c=0$, with $a, b, c \in Z$.

If $a \cdot b \geq 0$ the equation has at most a finite number of integer solutions which can be found by attempts.

It is easier to present an example:

1. The Diophantine equation:
(13) $9 x^{2}+6 x y-13 y^{2}-6 x-16 y+20=0$
becomes:
(14) $2 u^{2}-7 v^{2}+45=0$, where
(15) $u=3 x+y-1$ and $v=2 y+1$.

We solve (14). Thus:

$$
\begin{align*}
& \mathrm{u}_{\mathrm{n}+1}=15 \mathrm{u}_{\mathrm{n}}+28 \mathrm{v}_{\mathrm{n}} \tag{16}\\
& \mathrm{v}_{\mathrm{n}+1}=8 \mathrm{u}_{\mathrm{n}}+15 \mathrm{v}_{\mathrm{n}}, \mathrm{n} \in \mathrm{~N}, \text { with }\left(\mathrm{u}_{0}, \mathrm{v}_{0}\right)=(3,3 \varepsilon) .
\end{align*}
$$

First Solution.

By induction we prove that: for all $n \in N$ we have: v_{n} is odd, and u_{n} as well as v_{n} are multiples of 3 . Clearly
$v_{0}=3 \varepsilon, u_{0}=3$. For $n+1$ we have: $v_{n+1}=8 u_{n}+15 v_{n}=$ $=$ even + odd $=$ odd, and of course u_{n+1}, v_{n+1} are multiples of 3 because u_{n}, v_{n} are multiples of 3 , too. Hence, there exists $\mathrm{x}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}$ in positive integers for all $\mathrm{n} \in \mathrm{N}$:

$$
\begin{align*}
& \mathrm{x}_{\mathrm{n}}=\left(2 \mathrm{u}_{\mathrm{n}}-\mathrm{v}_{\mathrm{n}}+3\right) / 6 \\
& \mathrm{y}_{\mathrm{n}}=\left(\mathrm{v}_{\mathrm{n}}-1\right) / 2 \tag{17}
\end{align*}
$$

(from (15)). Now we find the (GS_{3}) for (14) as closed expression, and by means of (17) it results the general integer solution of the equation (13).

Second Solution.
Another expression of the $\left(\mathrm{GS}_{3}\right)$ for (13) we obtain if we transform (15) as: $u_{n}=3 x_{n}+y_{n}-1$ and $v_{n}=2 y_{n}+1$, for all neN. Whence, using (16) and doing the calculation, we find:

$$
\mathrm{x}_{\mathrm{n}+1}=11 \mathrm{x}_{\mathrm{n}}+\frac{52}{--\frac{1}{3}} \mathrm{Y}_{\mathrm{n}}+\begin{gathered}
11 \\
3
\end{gathered}
$$

$$
\begin{equation*}
y_{n+1}=12 x_{n}+19 y_{n}+3, n \in N, \tag{18}
\end{equation*}
$$

$$
\text { with }\left(x_{0}, y_{0}\right)=(1,1) \text { or }(2,-2)
$$

(two infinitudes of integer solutions).
Let $A=\left(\begin{array}{lll}1152 / 311 / 3 \\ 12 & 19 & 3 \\ 0 & 0 & 1\end{array}\right)$, then $\left(\begin{array}{l}x_{n} \\ y_{n} \\ 1\end{array}\right)=A^{n} \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ or

$$
\left(\begin{array}{l}
x_{n} \\
y_{n} \\
1
\end{array}\right)=A^{\mathrm{n}} \cdot\left(\begin{array}{l}
2 \\
-2 \\
1
\end{array}\right) \text {, always } \mathrm{n} \in \mathrm{~N} \text {; (19). }
$$

From (18) we have always $\mathrm{Y}_{\mathrm{n}+1} \equiv \mathrm{Y}_{\mathrm{n}} \equiv \ldots \equiv \mathrm{Y}_{0} \equiv 1(\bmod 3)$, hence always $\mathrm{x}_{\mathrm{n}} \in \mathrm{Z}$. Of course (19) and (17) are equivalent as general integer solution for (13). [The reader can calculate A^{n} (by the same method liable to the start of this note) and find a closed expression for (19).]

More General.

This method can be generalized for the Diophantine equations of the form:
(20) $\sum_{i=1}^{n} a_{i} x_{i}^{2}=b$, with all $a_{i}, b \in Z, n \geq 2$.

If $a_{i} \cdot a_{j} \geq 0,1 \leq i<j \leq n, i s f o r ~ a l l ~ p a i r s ~(i, j)$, equation (20) has at most a finite number of integer solutions.

Now, we suppose $\exists i_{0}, j_{0} \in\{1, \ldots, n\}$ for which $a_{i_{0}} \cdot a_{0^{j}}<0$ (the equation presents at least a variation of sign). Analogously, for $n \in N$, we define the recurrent sequences:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{h}}^{(\mathrm{n}+1)}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{ih}} \mathrm{x}_{\mathrm{i}}^{(\mathrm{n})} \quad, 1 \leq \mathrm{h} \leq \mathrm{n}, \tag{21}
\end{equation*}
$$

considering ($\mathrm{x}_{1}^{0}, \ldots, \mathrm{x}_{\mathrm{n}}^{0}$) the smallest positive integer solution of (20). One replaces (21) in (20), one identifies the coefficients and one looks for the n^{2} unknowns $\alpha_{i n}, 1 \leq i, h \leq n$. (This calculation is very intricate, but it can be done by means of a computer.) The method goes on similarly, but the calculation becomes more and more intricate, for example to calculate A^{n}. [The reader will be able to try his/her forces for the Diophantine equation $a x^{2}+b y^{2}-c z^{2}+d=0$, with $a, b, c \in N^{*}$ and $\left.d \in Z.\right]$

References:

[1] M. Bencze, "Aplicatii ale unor siruri de recurenta in teoria ecuatiilor diofantiene", Gamma (Brasov), XXIXXII, Anul VII, Nr. 4-5, 15-18, 1985.
[2] Z. I. Borevich, I. R. Shafarevich, "Teoria numerelor", EDP, Bucharest, 1985.
[3] A. E. Kenstam, "Contributions to the theory of the Diophantine equations $A x^{n}-B y^{n}=C "$.
[4] G. H. Hardy and E. M. Wright, "Introduction to the theory of numbers", Fifth edition, Clarendon Press, Oxford, 1984.
[5] N. Ivaschescu, "Rezolvarea ecuatiilor in numere
intregi", Lucrare gentru obtinerea titlului de profesor gradul I (Coordornator G. Vraciu), Univ. din Craiova, 1985.
[6] E. Landau, "Elementary number theory", Chelsea, 1955.
[7] Calvin T. Long, "Elementary introduction to number theory", D. C. Heath, Boston, 1965.
[8] L. J. Mordell, "Diophantine equations", London, Academic Press, 1969.
[9] C. Stanley Ogilvy, John T. Anderson, "Excursions in number theory", Oxford University Press, New York, 1966.
[10] W. Sierpinski, "Oeuvres choisies", Tome I, Warszawa, 1974-1976.
[11] F. Smarandache, "Sur la résolution d'équations du second degré à deux inconnues dans Z ", in the book Généralisations et Généralités, Ed. Nouvelle, Fès, Morocco; MR: 85h: 00003.
[In "Gaceta Matematica," $2^{\text {a }}$ Serie, Volumen 1, Numero 2, 1988, pp. 151-7; Madrid; translated in Spanish by Francisco Bellot Rosado: <Un metodo de resolucion de la ecuacion diofantica $\left.a x^{2}-b y^{2}+c=0>.\right]$

