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Z-number provides the reliability of evaluation information, and it is widely used inmany fields. However, people usually describe
things from various aspects, so multidimensional Z-number has more advantages over traditional Z-number in describing
evaluation information. In view of the uncertainty of the multidimensional Z-number, the entropy of multidimensional
Z-number is defined and an entropy formula of multidimensional Z-number is established. Furthermore, the entropy is used to
construct an average operator of multidimensional Z-numbers. In addition, a novel distance measure is introduced tomeasure the
distance between two multidimensional Z-numbers. Moreover, the group decision model in the multidimensional Z-number
environment is constructed by combining the average operator with the TOPSIS decision-making method. Finally, an illustrative
example is given to verify the feasibility and effectiveness of the proposed method.

1. Introduction

In order to solve the problem of uncertain information,
Zadeh [1] added membership function and proposed fuzzy
sets (FSs) theory to solve the problem of quantitative cal-
culation for uncertain information. However, merely adding
membership degree cannot fully express the complexity of
the practical problems. ,us, Atanassov [2] added non-
membership degree and hesitation and introduced intui-
tionistic fuzzy sets (IFSs). Torra [3] puts forward hesitant
fuzzy sets (HFSs), and it changed membership from single to
multiple and gave us the ability to express more possible
situation. Mizumoto and Tanaka [4] proposeed type-2 fuzzy
sets by replacing the given elements with intervals for the
membership degree. ,e extension of fuzzy sets above has
been successfully applied to multiattribute decision-making
(MADM) problems [5–12]. However, the classical fuzzy set
and its extension do not give the reliability measurement of
evaluation information. In order to satisfy people’s de-
scription of the fuzziness of complex uncertain problems,
Zadeh [13] proposed the Z-number theory, and a Z-number
can be denoted as Z � (A, B). It combined the objective

information of natural language with the subjective un-
derstanding of human beings by constraint A and reliability
B.

After the concept of Z-number was proposed, many
scholars have conducted in-depth research on Z-number, it
can be roughly divided into two categories.,e first category
is theoretical research and expansion. In [14, 15], Aliev et al.
developed basic arithmetic operations such as addition,
subtraction, multiplication, division, and some algebraic
operations such as maximum, minimum, square, and square
root of discrete and continuous Z-numbers. Kang et al. [16]
proposed a method of transforming Z-numbers to classical
fuzzy number according to the fuzzy expectation. It con-
tributed to the theory and methods on the classical fuzzy set
which were applied to the Z-number environment. Yager
and Ronald [17] discussed several special hidden probability
distributions of Z+-number. Banerjee and Pal [18, 19]
proposed Z∗-number which extended the purpose of
Zadeh’s Z-number. It reinforced the capability of Z-numbers
by virtue of parameters incorporating the context and time
and affects embedded in natural language sentences.
Sometimes the information was useful if some conditions
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were true; Allahviranloo and Ezadi [20] investigated
Z-advance numbers, aiming to solve the uncertain infor-
mation problem which was reliable depends on some
conditions.

,e second category is the practical application of
Z-numbers; many scholars applied Z-number to linguistic
calculation [21, 22], and some used it as a tool for fuzzy
inference [23] and pattern recognition [24]. Z-number is
more likely to be used forMADM.Wang et al. [25] discussed
the application of linguistic Z-number and proposed a
modified TODIM method by Choquet integral for MADM
problems based on linguistic Z-numbers. To apply the classic
VIKOR method to the Z-information, Shen and Wang [26]
defined the comprehensive weighted distance measure of
Z-numbers, and it not only considered the randomness but
also considered fuzziness of Z-number simultaneously. Peng
and Wang [27] raised some outranking relations of
Z-numbers and defined the dominance degree of discrete
Z-numbers according to the relations. Moreover, incorpo-
rating the advantages of ELECTRE III and QUALIFLEX,
they developed a novel outranking method to address
MADM problems. Peng andWang [28, 29] proposed several
MAGDM method based on cloud model and Z-numbers.

Technique for order preference by similarity to an ideal
solution (TOPSIS) method is a kind of common multi-
attribute group decision-making method of scheme ranking
[30, 31]; it allows the scheme to get close to the positive ideal
solution while moving away from the negative ideal solution.
Zeng [32] proposed a new MADM method based on the
nonlinear programming methodology, the TOPSIS method
and IVIFVs. Yaakob and Gegov [33] developed an extended
TOPSIS method to solve MADM problems which were
based on Z-numbers called Z-TOPSIS. Qiao et al. [34]
developed a new linear programming model for obtaining
underlying probability distribution and used it to construct a
comprehensive weighted crossentropy. Based on it, an ex-
tended TOPSIS approach was developed to solve a multi-
criteria decision-making problem under discrete Z-context.
It is on the basis of the TOPSIS method that this paper
develops the decision-making method under multidimen-
sional Z-number environment.

In uncertain sets, how to measure the uncertainty of the
set is very important. Shannon [35] proposed the concept of
shannon entropy based on probability. It was an uncertainty
measure of information. Taking into account intuitionism
and fuzziness of intuitionistic fuzzy sets, novel crossentropy
and entropy models were investigated in [36], and it can be
used to measure the discrimination among uncertain in-
formation. Considering the influence of fuzziness and the
range of the fuzzy set, Kang et al. [37] developed a new
measure of fuzziness and investigated a method of mea-
suring the uncertainty of Z-number.

As an extension of Z-number, Shen et al. [38] proposed
the concept of multidimensional Z-number ((about 3min,
about 3 km), usually). ,e multidimensional Z-number can
be used to evaluate a certain phenomenon from multiple
dimensions and provide reliability measure of compre-
hensive evaluation. It inherits the advantages of Z-number to
describe qualitative information and characterizes the

reliability of information. Compared to an original
Z-number, multidimensional Z-number has several ad-
vantages as it has a much simpler expression; it contains
more information, and it is more intuitive to evaluate things
from multiple dimensions. However, there exists few studies
about multidimensional Z-number now, and there is no
method to measure the uncertainty of the multidimensional
Z-number or apply it to decision-making problems.

,is paper develops several theories and their applica-
tions in the context of multidimensional Z-number. ,e
initial motivations and main contributions of this paper are
as follows:

(1) In order to solve the problem that the uncertainty of
multidimensional Z-number is difficult to measure,
this paper introduces a novel entropy measure which
incorporates the inherent fuzziness of fuzzy re-
striction and reliability measure and the fuzziness of
reliability level of the reliability measure.

(2) ,is paper proposes a new distance measure which
comprehensively considered the difference between
fuzzy restriction and reliability measurement be-
tween two dimensional Z-numbers. Moreover, the
differences of the membership value and element
value are both taken into account, so the distance is
about the order weight vector of each dimension of
the two dimensional Z-numbers. It can be used to
deal with the problem that the difference between
two multidimensional Z-numbers is hard to
measure.

(3) For the sake of the problem of group decision-
making under multidimensional Z-number envi-
ronment to be addressed, this paper develops a
MAGDM method which combines TOPSIS method
and multidimensional Z-number.

,is paper is organized as follows. In Section 2, some of
the definitions are briefly introduced covered in this article.
In Section 3, two methods are developed to measure the
fuzziness of multidimensional fuzzy sets; based on this, the
entropy formula for multidimensional Z-number is pro-
posed. In Section 4, a power weighted average operator is
extended to situations in which the evaluation information
consists of multidimensional Z-number. In Section 5, a
distance measure of multidimensional Z-numbers about
their order weight vector of each dimension are discussed. In
Section 6, a novel GDM method is developed by combining
multidimensional Z-numbers and TOPSIS method, and the
feasibility and effectiveness of the method is discussed in
Section 7. Finally, Section 8 gives some conclusions of this
paper.

2. Preliminaries

,is section reviews four basic definitions that are related to
the research, including fuzziness measurement of fuzzy set,
discrete Z-number, continuous Z-number, and multidi-
mensional Z-number, and the research is based on these
concepts.
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A measure of fuzziness for fuzzy set In 1972, Luca and
Termini introduced a measure of fuzziness for fuzzy set that
is as follows.

Definition 1 (see [39]). ,ere is a map

H : F(x)⟶ [0, 1], (1)

which satisfies the following properties:

(1) H(A) � 0, if and only if A is a clear set

(2) H(A) � 1, if and only if μA(x) ≡ (1/2)
(3) ∀x ∈ X, if μB(x)≤ μA(x)≤ (1/2), H(B)≤H(A)
(4) ∀x ∈ X, H(A) � H(Ac)
We denote mappingH as a measure of fuzziness on F(x)

and H(A) as the measure of fuzziness on A.

Definition 2 (see [13], discrete Z-number). Let X be a
random variable andA and B be two discrete fuzzy numbers,
where

μA : x1, x2, . . . , xn⟶ [0, 1],

μB : b1, b2, . . . , bn⟶ [0, 1].
(2)

For the membership function of A and B, respectively,
where x1, x2, . . . , xn ∈ R and b1, b2, . . . , bn ∈ [0, 1], a discrete
Z-number is defined as an ordered pair of discrete fuzzy
numbersZ � (A, B) onX, whereA is the fuzzy restriction of
X and B is the fuzzy restriction of the probability measure of
A.

Definition 3 (see [13], continuous Z-number). A continuous
Z-number is an ordered pair Z � (A, B) where A is a
continuous fuzzy number playing a role of a fuzzy constraint
on the probability measure of A:

P(A) isB. (3)

In some cases, A and B are depicted in a natural lan-
guage, such as (fair, unlikely) and(good, likely).

Definition 4 (see [38], multidimensional Z-number). Some
random variablesXi � (xi1, xi2, . . . , ximki

) defined on sample
space X and Ai ⊆Xi; then, (A1, A2, . . . , An) is called the n-
dimension restriction vector, where X � (x1k1, x2k2,{
. . . , xnkn) |xiki ∈ Xi, ki � 1, 2, . . . , mki

, i � 1, 2, . . . , n}. A
multidimensional Z-number comprises multidimensional
restriction vector, (A1, A2, . . . , An), and a fuzzy number, B,
denoted as

MZ � A1, A2, . . . , An( ), B( ). (4)

Let G � (A1, A2, . . . , An), and a multidimensional
Z-number can be expressed as MZ � (G, B).

For example, in the case of nice weather with sun and a
certain temperature, the undimensional Z-number cannot
express fully the condition of weather. Furthermore, the
weather cannot be judged from just one aspect of sun or
breezy temperature. It could be good weather or bad
weather. Hence, the information should be expressed in the
form of multidimensional Z-number (comfort weather (sun

and temperature around 26°C) and hot weather (sun and
temperature above 30°C), likely).

3. Entropy for Multidimensional Z-number

3.1. Measure of Fuzziness for a Multidimensional Fuzzy Set.
In the fuzzy decision-making process under multidimen-
sional Z-number environment, measuring the uncertainty of
the multidimensional Z-number is an important problem.
However, there is a lack of research on this aspect. In this
paper, two kinds of uncertainty measure of multidimen-
sional fuzzy set are developed by considering the possible
factors which affect the fuzziness. Some properties of them
are shown, and then this paper proposes a novel method of
measuring the uncertainty of multidimensional Z-number.

,e first uncertainty measure is constructed from the
perspective of algebra and takes full advantage of the features
of sine function. As membership value changes from the
middle to both ends, the value of fuzziness measure de-
creases and the rate of the change decreases.

Definition 5 (the algebra measurements of fuzziness for
multidimensional fuzzy set). Assume G is a continuous
multidimensional fuzzy set, where the collection elements
are normalized; the membership function of G is denoted by
μG : X⟶ [0, 1], where value g belongs to domain X. ,e
fuzziness measure for multidimensional fuzzy set is denoted
by H1(G) as follows:

H1(G) �B · · ·∫ sin μG(g) · π( )dx1 · · · dxn, (5)

where the upper and lower boundaries of every integration
are 0 and 1.

Assume a discrete multidimensional fuzzy set as G; the
membership function of G is denoted by μG : X⟶ [0, 1],
where the value g belongs to the domain X. ,e measure of
fuzziness for the multidimensional fuzzy set is denoted by
H1(G) as follows:

H1(G) �∑
X1

∑
X2

· · ·∑
Xn

sin μG(g) · π( ) × 1

p
, (6)

where p represents the cardinality of the discrete multidi-
mensional fuzzy set, when the cardinality of the fuzzy set is
infinite; this is a special case, the right side of the equation is
an infinite series, p is a number that goes to infinity and can
be expressed by the theory of limit, and n represents the
dimension of the set.

Inspired by Definition 1, four properties of the fuzziness
measure for multidimensional fuzzy set are given. Next, the
fuzziness measure satisfies the given four properties which
are proved. For convenience, this paper just proves the
continuous case, and the discrete case has the same process
of proof.

Property 1. H(G) � 0, if and only if G is a clear set.

Proof. Let G be a crisp set with membership values being
either 0 or 1, it can be obtained that H1(G) � 0 because
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μG(g) ∈ [0, 1], then sin(μG(g) · π)≥ 0 always holds. G is a
multidimensional fuzzy set and μG(g) is continuous in
[0, 1]; therefore, sin(μG(g) · π) � 0, and μG(g) � 0 or
μG(g) � 1 always holds, and it means that the multidi-
mensional fuzzy set is a clear set. So, Property 1 has been
proved.

□

Property 2. H(G) � 1, if and only if μG(g) ≡ (1/2).

Proof. Substitute μG(g) � (1/2) into the fuzziness formula,

then H1(G) � ∫∫ · · ·∫ sin(π/2)dx · · · dxn � 1; when

H1(G) � 1, 0≤ sin(μG(g) · π)≤ 1, if there is a point g0
where the membership value is not equal to 1 because this
multidimensional fuzzy set is continuous, for a very small
positive number ε, there exists an area D which is the
neighborhood of g0, in this area 1 − ε< sin(μG(g) · π)< 1; it
can be deduced that ∫

D
sin(μG(g) · π)dX<∫DdX; next in-

equality ∫
X− D+D

sin(μG(g) · π)dX< 1 can be obtained;

according to this inequality, we know sin(μG(g) · π) � 1 and
μG(g) � (1/2). So, Property 2 has been proved.

□

Property 3. Assume G and G′ are two multidimensional
fuzzy sets, for all g ∈ X, if μG(g)≤ μG′(x)≤
(1/2) andH(G)≤H(G′).

Proof. When μG(x)≤ μG′(x)≤ (1/2), it can be obtained that
sin(μB(x) · π)≤ sin(μA(x) · π). ,us, the following in-
equality is true:

∫
X
sin μG(g) · π( )dX≤∫

X
sin μG′(g) · π( )dX. (7)

,en, inequation H1(G)≤H1(G′) is held.
□

Property 4. ∀g ∈ X, asH(G) � H(Gc).

Proof. Because of μGc(g) � 1 − μG(g), it can be acquired
sin(μAc(x) · π) � sin(π − μGc(g) · π) � sin(μG(g) · π); then,
the following inequality can be deduced:

∫
X
sin μG(g) · π( )dX � ∫

X
sin μGc(g) · π( )dX. (8)

,erefore, inequality H1(G) � H1(G
c) is true, and

Property 4 can be proved.
□

Example 1. Let us consider two three-dimensional
Z-numbersMZ1 � (G1, B1) andMZ2 � (G2, B2) as follows:

G1 �
0.1

(1, 1, 1)
+

0.25

(1, 1, 2)
+

0.5

(1, 1, 3)
+

0.75

(1, 2, 1)
+

1

(1, 2, 2)
+

0.8

(1, 2, 3)
+

0.6

(1, 3, 1)
+

0.4

(1, 3, 2)
+

0.2

(1, 3, 3)
,

G2 �
0.25

(1, 1, 1)
+

0.3

(1, 1, 2)
+

0.5

(1, 1, 3)
+

0.7

(1, 2, 1)
+

0.8

(1, 2, 2)
+

0.9

(1, 2, 3)
+

1

(1, 3, 1)
+

0.5

(1, 3, 2)
+

0.3

(1, 3, 3)
,

B1 �
0.1

0
+
0.2

0.1
+
0.5

0.2
+
0.8

0.3
+

1

0.4
+
0.8

0.5
+
0.7

0.6
+
0.6

0.7
+
0.4

0.8
+
0.2

0.9
+
0.1

1
,

B2 �
0.05

0
+
0.2

0.1
+
0.6

0.2
+
0.9

0.3
+

1

0.4
+
0.7

0.5
+
0.5

0.6
+
0.4

0.7
+
0.3

0.8
+
0.1

0.9
+
0.05

1
.

(9)

According to Definition 5, it can be calculated that the
measure of fuzziness of G1 for H1(G) is H1(G1) �

(sin(0.05π)+ sin(0.25π)+ sin(0.5π)+ sin(0.75π)+ sin(π) +
sin(0.8π)+ sin(0.6π)+ sin(0.4π)+ sin(0.2π))/9� 0.6445. In
the same way, H1(G2) � 0.6701. G2 is more uncertain than
G1 and can be obtained.

For a one-dimensional fuzzy set, its uncertainty can still
be measured according to Definition 5, and then let n be 1,
and it can be calculated that H1(B1) � 0.6073 and
H1(B2) � 0.5489. H1(B1) and H1(B2) only represent the
inherent uncertainty of the fuzzy sets, independent of the
uncertainty of the probability measure of A.

From the perspective of geometric, the second kind
measure of fuzziness for multidimensional fuzzy set is
constructed. ,ere is a corresponding relation on the circle
between the measure of fuzziness and membership degree,
as shown in Figure 1.

As membership value changes from the middle to both
ends, the value of fuzziness measure decreases but the rate of
change increases.

Definition 6 (the geometric measurements of fuzziness for
multidimensional fuzzy set). Assume that a continuous
multidimensional fuzzy set is G, where the collection ele-
ments are normalized. ,e membership function of G is
denoted by μG : X⟶ [0, 1], where the value g belongs to
the domain X. ,e fuzziness measure for the multidi-
mensional fuzzy set is denoted by H2(G) as follows:

H2(G) � ∫
X
2 ×

�������������
μG(g) − μG(g)

2
√

dX, (10)

where the upper and lower boundaries of every integration
are 0 and 1.
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Assume a discrete multidimensional fuzzy set is G, and
the membership function of G is denoted by
μG : X⟶ [0, 1], where the value g belongs to the domain
X. ,e measure of fuzziness for the fuzzy set is denoted by
H2(G) as follows:

H2(G) �∑
X1

∑
X2

· · ·∑
Xn

2

�������������
μG(g) − μG(g)

2
√

×
1

p
, (11)

where p represents the cardinality of the discrete multidi-
mensional fuzzy set, when the cardinality of the fuzzy set is
infinite; this is a special case, the right side of the equation is
an infinite series, p is a number that goes to infinity, which
can be expressed by the theory of limit, and n represents the
dimension of the set.

,e first three properties of H1(G) and H2(G) have
similar proof process, and now its Property 4 is proved as
follows.

Proof

μGc(g) − μGc(g)
2

� 1 − μG(g) − 1 − μG(g)( )2
� 1 − μG(g) − 1 − 2μG(g) + μG(g)

2( )
� μG(g) − μG(g)

2.

(12)

It can be acquired that

H2 G
c( ) � ∫

X
2

��������������
μGc(g) − μGc(g)

2
√

dX

� ∫
X
2

�������������
μG(g) − μG(g)

2
√

dX

� H2(G).

(13)

,e properties have been proved.
□

Example 2. Let us consider the two three-dimensional
Z-numbers MZ1 � (G1, B1) and MZ2 � (G2, B2) in Ex-
ample 1 and the geometric measurements of fuzziness forG1

is H2(G1) � 0.7657; in the same way, H2(G1) � 0.7795 and
G2 is more uncertain than G1. H2(B1) � 0.7542 and
H2(B2) � 0.6968. B1 is more uncertain than B2. Results of

comparison of the geometric measurements of fuzziness are
the same with the results of the algebra measurements of
fuzziness, and it proves that the comparison results of the
two uncertainty measures are consistent for these sets.

3.2. Entropy Measure for Multidimensional Z-Number.
Assume a multidimensional Z-number MZ � (G, B); its
first component G, is a fuzzy restriction on the multidi-
mensional uncertain variableX. ,e second component B is
a measure of reliability for the first component G. ,e
membership function of G is denoted by
μG(g) : X⟶ [0, 1], where the value g belongs to the do-
main X; the membership function of B is denoted by
μB(y) : Y⟶ [0, 1], where the value y belongs to the do-
main Y.

In view of G and B, which are fuzzy sets, they have
inherent uncertainty that will influence the uncertainty of
multidimensional Z-number. It can be measured by the
fuzziness measure formula H1 or H2. H1 and H2 are rep-
resented here by function H. H(G) or H(B) are used to
represent the inherent uncertainty ofG and B. B is a measure
of reliability for first component G; the certainty of the
reliability degree of G measured by B also influences the
uncertainty of the multidimensional Z-number. It can be
denoted by V(B). It can be measured by the following
equality:

V(B) �
∫
Y
yμ(y)dy

∫
Y
μ(y)dy

, (14)

where ∫ denotes an algebraic integration.

Definition 7. Now the entropy measure for multidimen-
sional Z-number denoted by E(MZ) is as follows:

E(MZ) � 1 − (1 − H(G))(1 − H(B))(2|V(B) − 0.5|).

(15)
,en, inspired by Definition 1, there are some properties

of the proposed entropy measure for multidimensional
Z-number.

Property 5. ,e range value of E(MZ) is in [0, 1].

Proof. Because of 0≤H(G)≤ 1, 0≤H(B)≤ 1, and
0≤V(B)≤ 1, then 0≤ (1 − H(G))≤ 1, 0≤ 1 − H(B)≤ 1,
0≤ 2|V(B) − 0.5|≤ 1, so 0≤E(MZ) ≤ 1.

□

Property 6. E(MZ) � 0, if and only if G and B are clear sets,
V(B) � 0 or 1.

Proof. Its sufficiency can be proved easily according to
substitute H(G) � 0, H(B) � 0, V(B) � 0 or 1 entropy
formula for multidimensional Z-number; if E(MZ) � 0, due
to that 0≤ 1 − H(G)≤ 1, 0≤ 1− H(B)≤ 1, 0≤ 2|V(B) − 0.5|
≤ 1; it can be deduced that 1 − H(G) � 1, 1 − H(B) �
1, 2|V(B) − 0.5| � 1. So, it can be obtained that H(G) �
0, H(B) � 0, V(B) � 0 or 1.

□

H2 (G)

1

0 1 2

H2 (G) and 2μ (G)

Correspond one to one on the circle

2μ (G)

Figure 1: ,e geometric relationship between the fuzziness
measure and the membership function.
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Property 7. E(MZ) � 1, if any one of the three equality
H(G) � 1, H(B) � 1, andV(B) � 0.5 is true.

Proof. SubstituteH(G) � 1 orH(B) � 1 or V(B) � 0.5 into
entropy measure formula for multidimensional Z-number;
E(MZ) � 1 can be obtained.

□

Property 8. E(MZ) increases as H(G) and H(B) increase,
when 0≤V(B)≤ 0.5, E(Z) increases as V(B) increases,
0.5≤V(B)≤ 1, and E(MZ) increases as V(B) decreases.

Proof. Taking the derivative of the corresponding function,
it can be acquired that inequalities (z(E(MZ))/zH(G)) �
− (1 − H(B))(2|V(B) − 0.5|)≥ 0 and (z(E(MZ))/zH(B)) �
(1 − H(G))(2|V(B) − 0.5|)≥ 0 are true, so E(MZ) increases
as H(A) and H(B) increase; when 0≤V(B)≤ 0.5, it is easy
to know that (z(E(MZ))/zV(B)) � 2(1 − H(G))(1 − H
(B))≥ 0; it means that E(Z) increases as V(B) increases;
when 0.5≤V(B)≤ 1, (z(E(MZ))/zV(B)) � − 2(1 − H(G))
(1 − H(B))≤ 0, so E(MZ) increases as V(B) decreases.

,e variation tendency of the entropy of a multidi-
mensional Z-number with the changing ofH(G), H(B), and
V(B) is shown in Figures 2 and 3.

□

Example 3. Kang et al. [37] developed a new entropy of
Z-number, for Z-numbers Z1 � (A, B) and Z2 � (A

∗, B∗), it
can be obtained that E(Z1) � 0.6227, E(Z2) � 0.5512, and
Z1 is more ambiguous than Z2, where fuzzy numbers A, B,
A∗, and B∗ are as follows:

A �
0

1
+
0.5

2
+
0.7

3
+
1

4
+
0.7

5
+
0.5

6
+
0

7
,

B �
0

0.1
+
0.3

0.2
+
0.9

0.3
+

1

0.4
+
0.9

0.5
+
0.3

0.6
+

0

0.7
,

A∗ �
0

1
+
0.4

2
+
0.8

3
+
1

4
+
0.8

5
+
0.4

6
+
0

7
,

B∗ �
0

0.1
+
0.1

0.2
+

1

0.3
+

1

0.4
+

1

0.5
+
0.1

0.6
+

0

0.7
.

(16)

Applying the entropy measure, it can be calculated that
H1(A)�0.2857,H1(B)�0.3194,V(B)�0.4,H1(A

∗)�0.4397,
H1(B

∗)�0.0883,andV(B∗)�0.4, so E(Z1)�0.9028, E(Z2)�

0.8978, and Z1 is more ambiguous than Z2. For the
abovementioned example, the result of the proposedmethod
is consistent with Kang’s method, and it is concluded that
the proposed entropy for Z-number can effectively represent
the uncertainty of the Z-number.

Example 4. Let us consider the two three-dimensional
Z-numbers MZ1 � (G1, B1) and MZ2 � (G2, B2) in Ex-
ample 1; let functionH equal toH1, and it can obtained that
E(MZ1) � 0.9948 and E(MZ2) � 0.9836. According to the
entropy measure for multidimensional Z-number this paper
proposed, it can be known that MZ2 is more certain than
MZ1. From Examples 2 and 3, it can be seen that the

proposed entropy can measure the fuzziness of classic and
multidimensional Z-number simultaneously, which reflects
the superiority of entropy proposed in this paper.

4. Power Weighted Average Operator with
Multidimensional Z-Number

In the process of group decision-making, evaluation in-
formation usually have to be fused. ,is section extends the
power weighted average operator to situations in which the
evaluation information consists of multidimensional
Z-number.

Definition 8. Let MZj � (Gj, Bj)(j � 1, 2, . . . , m) be a
collection of multidimensional Z-numbers. Suppose the
weight vector is ] � ]1, ]2, . . . , ]m{ }. It can be obtained as
follows:
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Figure 2: Variation tendency of entropy with the change with
H(G) and H(B), when V(B) � 1.
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Figure 3: Variation tendency of entropy with the change with
H(G) and V(B), when H(B) � 0.
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vj �
W MZj( )MZj∑mj�1W MZj( ), (17)

where W(MZj) is used to calculate the importance of
MZj(j � 1, 2, . . . , m). ,is paper uses the entropy to esti-
mate it, and the multidimensional Z-number with higher
entropy is given a smaller weight because of the greater
uncertainty. ,erefore, W(MZj) can be defined as follows:

W MZj( ) � 2max
k

E MZk( ) − E MZj( ) − min
k
E MZk( )

2max
k

E MZk( ) − 2min
k
E MZk( ) .

(18)
In particular, when mink E(MZk) � mink E(MZk), it

means that all the multidimensional Z-numbers have the
same fuzziness, so they can be assigned the same weight.

Definition 9. ,e multidimensional Z-numbers power
weighted average operator is the mapping
MZPWA : Xm⟶ X, which can be defined as follows:

MZPWA MZ1,MZ2, . . . ,MZm( )
�
W MZ1( )MZ1∑mj�1W MZj( )
⊕W MZ2( )MZ2∑mj�1W MZj( ) ⊕ · · · ⊕W MZm( )MZm∑mj�1W MZj( )
�∑m
j�1

W MZj( )MZj∑mj�1W MZj( ),

(19)

where “⊕” has a special definition, and it means that the
following equality is true:

aMZk ⊕ bMZm � ∫
X

aμGk gk( ) + bμGm gm( )
xj1, xj2, . . . , xjn( ) ,

∫
Y

aμBk(y) + bμBm(y)

y
),

(20)

where ∫ is a representation of a fuzzy set. According to the
operations of multidimensional Z-number provided in
equation (19), the following results can be obtained.

Theorem 1. Let MZj � (Aj1, Aj2, . . . , Ajn, Bj) be a collec-
tion of multidimensional Z-numbers, the aggregated value
calculated by the ZMPWA operator is also a multidi-
mensional Z-number.

Proof

MZPWA MZ1, . . . ,MZm( )
� ∫

X

∑mj�1 W MZj( )μGj gj( )/∑mj�1W MZj( )( )
xj1, xj2, . . . , xjn( ) ,



∫
Y

∑mj�1 W MZj( )μBj(y)/∑mj�1W MZj( )( )
y

.
(21)

,eorem 1 can easily be proved according to the defi-
nition of multidimensional Z-number and the definition of
the operation of ⊕.

□

Theorem 2. 9is theorem reflects the boundary of the op-
erator. Let MZj � (Aj1, Aj2, . . . , Ajn, Bj) � (Gj, Bj) be a
collection of multidimensional Z-numbers, and let
p � (Gp, Bp) � (∩mj�1Gj,∩mj�1Bj), q� (Gq, Bq) � (∪mj�1Gj,
∪mj�1Bj); then, we can obtain p≺MZPWA(MZ1,
. . . ,MZm)≺ q.

Proof. For convenience, let MZPWA(MZ1, . . . ,
MZm) � (A1, A2, . . . , An, B) � (G, B), since Gp ⊆Gj ⊆Gq,
Bp ⊆Bj ⊆Bq. ,en, there are

Gp ⊆∫
X

∑mj�1 W MZj( )μGj gj( )/∑mj�1W MZj( )( )
xj1, xj2, . . . , xjn( ) � G,

Bp ⊆∫
Y

∑mj�1 W MZj( )μBj(y)/∑mj�1W MZj( )( )
y

� B.

(22)
,erefore, according to the inclusion relationship above,

it can be proved that p≺MZPWA(MZ1, . . . ,MZm)). In
the same way, MZPWA(MZ1, . . . ,MZm)≺ q can also be
acquired. ,us, p≺MZPWA(MZ1, . . . ,MZm)≺ q.

□

Theorem 3. Let MZj � (Ai1, Ai2, . . . , Ain, Bi) � (Gj, Bj) be
a collection of multidimensional Z-numbers, and
(MZ1
′,MZ2
′, . . . ,MZm′) be any permutation of

(MZ1,MZ2, . . . ,MZm); then, MZPWA(MZ1
′,MZ2
′,

. . . ,MZm′) �MZPWA(MZ1,M Z2, . . . ,MZm).
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Proof

MZPWA MZ1, . . . ,MZm( )
� ∫

X

∑mj�1 W MZj( )μGj gj( )/∑mj�1W MZj( )( )
xj1, xj2, . . . , xjn( ) ,



∫
Y

∑mj�1 W MZj( )μBj(y)/∑mj�1W MZj( )( )
y



� ∫
X

∑mj�1 W MZj′( )μGj gj( )/∑mj�1W MZj′( )( )
xj1, xj2, . . . , xjn( ) ,



∫
Y

∑mj�1 W MZj′( )μBj(y)/∑mj�1W MZj′( )( )
y


�MZPWA MZ1

′,MZ2
′, . . . ,MZm′( ).

(23)
□

Theorem 4. 9is theorem reflects the idempotency of the op-
erator. LetMZ1 andMZ2 be twomultidimensional Z-numbers,
if MZ1 �MZ1 �MZ. 9en, MZPWA(MZ1,M2) �MZ.
9e proof is similar to 9eorem 3.

Example 5. Let us consider the two three-dimensional
Z-numbers MZ1 � (G1, B1) and MZ2 � (G2, B2) in Ex-
ample 1; let function H equal to H1, and it can be denoted
that MZ3 � (G3, B3) �MZPWA(MZ1,MZ2). Because of
E(MZ1) � 0.9948, E(MZ2) � 0.9836, thenW(MZ1) � 0.5,
W(MZ2) � 1; for the element (1, 1, 1), its membership value
after fusion is 0.5/(1 + 0.5) × 0.1 + 1/(1 + 0.5) × 0.25 � 0.2.
In this way, the following results can be obtained:

G3 �
0.2000

(1, 1, 1)
+

0.2833

(1, 1, 2)
+

0.5000

(1, 1, 3)
+

0.7167

(1, 2, 1)
+

0.8667

(1, 2, 2)

+
0.8667

(1, 2, 3)
+

0.8667

(1, 3, 1)
+

0.4667

(1, 3, 2)
+

0.2667

(1, 3, 3)
,

B3 �
0.0667

0
+
0.2000

0.1
+
0.5667

0.2
+
0.8667

0.3
+
1.0000

0.4

+
0.7333

0.5
+
0.5667

0.6
+
0.4667

0.7
+
0.3333

0.8
+
0.1333

0.9
+
0.0667

1
.

(24)

5. Distance Measure of Multidimensional
Z-numbers about Their Order Weight
Vector of Each Dimension

Distance measure is an important concept in fuzzy set and
plays an important role in fuzzy decision-making and
classification. Inspired by hamming distance, this paper
proposes the distance measure of multidimensional
Z-numbers about their order weight vector of each di-
mension as follows.

Definition 10. Let MZi and MZj be two continuous mul-
tidimensional Z-number and ω � ω1,ω2, . . . ,ωn{ } be the
order weight vector of each dimension of the multidi-
mensional Z-number. ,e distance betweenMZi andMZj
about the order weight vector ω is defined as follows:

d MZi,MZj( ) � ∑n
k�1

ωk
n
∫
Xk

μGik xk( ) − μGjk xk( )∣∣∣∣∣∣ ∣∣∣∣∣∣dxk
+ ∫

Y
μBi(y) − μBj(y)
∣∣∣∣∣∣ ∣∣∣∣∣∣dy,

(25)

where Xk refers to the upper and lower limits of the mul-
tidimensional Z-number in the kth dimension; μGik(xk) �
max μGi(gik), xk is value of the kth dimension of gik; in the
same way μGjk(xk) � max μGj(gjk), xk is value of the kth
dimension of gjk.

Property 9. Let MZi, MZj, and MZt be three multidi-
mensional Z-numbers, the distance measure defined in
Definition 10 satisfies the following properties:

(1) d(MZi,MZj)≥ 0
(2) d(MZi,MZj) � d(MZj,MZi)

(3) if MZi ≤MZj ≤MZt, then d(MZj,MZt)
≤ d(MZi,MZt)

Proof. It can be easily obtained that the distance
d(MZi,MZj) about the order weight vector ω satisfies (1)
and (2) in Property 3, and the proof of (3) in Property 9 is as
follows.

If MZi ≤MZj ≤MZt, it means that Gi ⊆Gj ⊆Gt and
Bi ⊆Bj ⊆Bt. With regard to the kth dimension of the
multidimensional Z-numbers, it can be easily deduced that
μGik(xk)≤ μGjk(xk)≤ μGtk(xk) and μBi(y)≤ μBj(y)≤ μBt(y).
,us, the following inequality is true:

μGjk xk( ) − μGtk xk( )∣∣∣∣∣∣ ∣∣∣∣∣∣≤ μGik xk( ) − μGtk xk( )∣∣∣∣∣ ∣∣∣∣∣,
μBj(y) − μBt(y)
∣∣∣∣∣∣ ∣∣∣∣∣∣≤ μBi(y) − μBt(y)

∣∣∣∣∣ ∣∣∣∣∣. (26)

,en, the following inequalities is true:
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∫
Xk

μGjk xk( ) − μGtk xk( )∣∣∣∣∣∣ ∣∣∣∣∣∣dxk
≤∫

Xk

μGjk xk( ) − μGtk xk( )∣∣∣∣∣∣ ∣∣∣∣∣∣dxk,
∫
Y
μBi(y) − μBt(y)
∣∣∣∣∣ ∣∣∣∣∣dy
≤∫

Y
μBj(y) − μBt(y)
∣∣∣∣∣∣ ∣∣∣∣∣∣dy.

(27)

,erefore, according to abovementioned inequalities,
when MZi ≤MZj ≤MZt, d(MZj,MZt)≤ d(MZi,MZt)
can be proved.

□

6. A GDM Method Using Multidimensional
Z-numbers and TOPSIS Method

In this section, a novel group decision-making method is
developed by combining multidimensional Z-numbers and
TOPSIS method.

Group decision-making problems in the multidimen-
sional Z-number environment consist of a group of alter-
natives, denoted by Aj(1≤ i≤m); a multidimensional
Z-number has n dimensions; ω � ω1,ω2, . . . ,ωn{ } is the
order weight vector of each dimension of the multidi-
mensional Z-number. For any ωi that
ωi ∈ [0, 1], ∑ni�1 ωi � 1. Let D � d1, d2, . . . , dq{ } be a set of
decision makers. All evaluation information is presented by
multidimensional Z-numbers, and the evaluation infor-
mation of decision maker dk on alternative Aj is denoted as
MZkj .

Combining power weighted average operator, distance
measure of multidimensional Z-numbers about the order
weight vector ω, and TOPSIS method, this paper develops a
new GDM method. ,e procedures can be described as
follows.

Step 1. Normalize the fuzzy evaluation information.
,e scale of evaluation information varies in different

dimensions, so it is difficult to compare. If the value of ith
dimension increases, a negative effect on the evaluation of
the alternative occurs; we call it positive dimension, denoted
as i ∈ P. If the value of ith dimension increases, a negative
effect on the evaluation of the alternative occurs; we call it
negative dimension, denoted as i ∈ N. xji represents the
value of the ith dimension of the multidimensional
Z-number MZj. In this paper, the evaluation information
can be normalized as follows:

x̂ji �

xji − min
j
xji

max
j

xji − min
j
xji
, i ∈ P, (28)

x̂ji �

max
j

xji − xji

max
j

xji − min
j
xji
, i ∈ N. (29)

Step 2. Obtain the comprehensive evaluation information.

For alternative Aj(1≤ i≤m), the evaluation information
of q experts are written as MZ1

j ,MZ
2
j , . . . ,MZ

q
j . Compre-

hensive evaluation information for this alternative can be
obtained by Definition 9 and denoted asMZj. ,e process is
as follows:

MZj �MZPWA MZ1
j ,MZ

2
j , . . . ,MZ

q
j( ). (30)

Step 3. Computer the order weight vector
ω � ω1,ω2, . . . ,ωn{ } of each dimension of multidimensional
Z-numbers.

Because the importance of each dimension is unknown,
the maximizing deviation method can be used to solve this
problem. In the decision-making process, if there is a big
difference in one dimension, it is obviously easier to dis-
tinguish the alternatives, so it can be given more weight.
Based on this idea, the following linear programming model
is given in this paper to determine the order weight of each
dimension.

Taking into account the comprehensive evaluation in-
formation MZ1,MZ2, . . . ,MZm, a maximizing deviation
model can be established to derive the order weight of each
dimension using distance measure as follows:

minF ωk( ) �∑m
i�1

∑
j�1,j≠ i

1 − d MZi,MZj( )
2

s.t. ∑n
k�1

ωk � 1,

ωk ≥ 0,


(31)

where d(MZi,MZj) is the distance measure between
multidimensional Z-numberMZi andMZj about the order
weight vectorω andωk represents the order weight of the kth
dimension of the multidimensional Z-numbers.

Step 4. Determine the positive ideal MZ+ solution and
negative ideal solution MZ− .

In this step, the positive and negative ideal solution of the
decision index is determined.,e comprehensive evaluation
information MZ1,MZ2, . . . ,MZm{ } is a set of multidi-
mensional Z-numbers. xji(μG(g))means that the μG(g)-cut
set of the ith dimension of the multidimensional Z-number
MZj, where the value of μG(g) is from 0 to 1. ,e positive
and negative ideal solution of the set can be obtained
according to the following equations:

MZ+ � ∫ μG(g)

max
j

sup xj1 μG(g)( ), . . . ,max
j

supxjn μG(g)( ),

∫ μB(y)

max
j

supyj μB(y)( ),
(32)

where ∫ is a representation of a fuzzy set, the value of μB(y)
is from 0 to 1, supyj(μB(y)) refers to the supremum of the
μG(g)-cut set of the reliability measure B of the
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multidimensional Z-number MZj, and sup xji(μG(g)) re-
fers to the supremum of the μG(g)-cut set of the ith di-
mension of the multidimensional Z-number MZj.

MZ− � ∫ μG(g)

min
j

inf xj1 μG(g)( ), . . . ,min
j

inf xjn μG(g)( ),

∫ μB(y)

min
j

inf yj μB(y)( ),
(33)

where ∫ is a representation of a fuzzy set, the value of μB(y)
is from 0 to 1, inf yj(μB(y)) refers to the infimum of the
μG(g)-cut set of the reliability measure B of the multidi-
mensional Z-numberMZj, and inf xji(μG(g)) refers to the
infimum of the μG(g)-cut set of the ith dimension of the
multidimensional Z-number MZj.

Step 5. Rank all the alternatives.
In this step, positive and negative ideal solutions already

have been obtained. Following the steps of the TOPSIS
method, the distance between each alternative can be ac-
quired using the distance measure defined in Definition 10.
,e distance between alternative Aj and the positive ideal
solution about their order weight vector of each dimension is
calculated as follows:

D+
j � d MZj,MZ

+( ). (34)

,e distance between alternative Aj and the negative
ideal solution about their order weight vector of each di-
mension is calculated as follows:

D−
j � d MZj,MZ

−( ). (35)

,en, the closeness coefficient of alternative Aj can be
obtained:

Dj �
D−
j

D+
j +D

−
j

. (36)

,e ranking of all alternatives can be obtained by the
closeness coefficientDj; the larger the value ofDj, the better
the alternative Aj will be. ,e main process of the decision-
making method is shown in Figure 4.

7. Illustrative Example

In this section, an example is given, combining comparative
analysis and sensitivity analysis to verify the effectiveness
and superiority of the proposed method jointly.

7.1. A Practical Example. Cloud services are patterns of
growth, use, and interaction of internet-based related

services; it often involves providing dynamically scalable and
often virtualized resources over the Internet. Cloud is a
metaphor for the Internet. ,e cloud used to be used in
diagrams to represent the telecommunications network, and
later it is used to represent abstractions of the Internet and
underlying infrastructure. Cloud services are services that
are available in an on-demand, scalable way over the net-
work. ,is service can be related to IT, software, or other
services. It means that computing power can also flow as a
commodity over the Internet.

,e emergence of cloud services cater to the devel-
opment of network technology and the service needs of the
customer. ,erefore, how to choose the right cloud service
provider is very important. After market research and
preliminary screening, there are four potential cloud ser-
vices A1, A2, A3, andA4 that need to be evaluated. ,e
assessment team consists of three experts denoted by
d1, d2, and d3. ,ey evaluate the cloud service provider in
two dimensions: security and accuracy. ,e order weight
vector of each dimension is ω � ω1,ω2{ }. xji represents the
value of the ith dimension of the multidimensional
Z-number MZj.

In this case, the fuzziness measure function of the
multidimensional fuzzy set is H � H1. ,e evaluation in-
formation of experts is shown in Table 1.

Step 6. Normalize the fuzzy evaluation information.
Because all the dimensions have a positive effect on the

evaluation of alternatives, when the value of ith dimension
increases, all the evaluation information can be normalized
by equation (28). ,e normalized evaluation information is
denoted as Rk � (MZ′kj )1×m.

Step 7. Obtain the comprehensive evaluation information.
,e evaluation information given by the three experts is

integrated by the MZPWA operator, and the comprehen-
sive evaluation information is shown in Table 2.

Step 8. Compute the order weight vector
ω � ω1,ω2, . . . ,ωn{ } of each dimension of multidimensional
Z-numbers.

According to linear programming model (31), it can be
obtained that ω � (0.3767, 0.6233).

Step 9. Determine the positive ideal MZ+ solution and
negative ideal solution MZ− .

According to equations (32) and (33). ,e positive and
negative ideal solutions of comprehensive evaluation in-
formation can be obtained as follows:
MZ+ � (G+, B+), MZ− � (G− , B− ), where
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G+ �
0

(1/3, 1/4)
+

0

(1/3, 2/4)
+

0.0596

(1/3, 3/4)
+

0.2781

(1/3, 4/4)
+

0

(2/3, 1/4)
+

0.1720

(2/3, 2/4)

+
0.3797

(2/3, 3/4)
+

0.6660

(2/3, 4/4)
+

0.2440

(3/3, 1/4)
+

0.5180

(3/3, 2/4)
+

0.8303

(3/3, 3/4)
+

1

(3/3, 4/4)
,

B+ �
0.1681

0.6
+
0.3267

0.65
+
0.5069

0.7
+
0.6290

0.75
+
0.7152

0.8
+
0.8653

0.85
+
0.7471

0.9
+
0.8569

0.95
+
0.4654

0.1
,

G− �
0

(1, 1)
+

0.5655

(1/3, 2/4)
+

0.1974

(1/3, 3/4)
+

0

(1/3, 4/4)
+

0.6543

(2/3, 1/4)
+

1

(2/3, 2/4)
+

0.6800

(2/3, 3/4)

+
0.3621

(2/3, 4/4)
+

0

(3/3, 1/4)
+

0.3655

(3/3, 2/4)
+

0.1100

(3/3, 3/4)
+

0

(3/3, 4/4)
,

B− �
0.1602

0.6
+
0.2742

0.65
+
0.4316

0.7
+
0.5351

0.75
+
0.5894

0.8
+
0.7337

0.85
+
0.6772

0.9
+
0.5351

0.95
+
0.3266

1
.

(37)

A noval GDM method based on multidimensional Z-
number

Construct the original decision matrix

Fuzzinezss measure H1 Fuzzinezss measure H2

Calculate the entropy of each alternative

Integrate the evaluation information of m experts

Calculate the weight of each
dimension

Calculate the positive and negative ideal
solutions

Calculate the distance between positive and negative ideal solutions of
each alternative

Rank all the alternatives

Figure 4: Procedure of the TOPSIS method based on multidimensional Z-number.
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Step 10. Rank all the alternatives.
By equations (34)–(36), the distance of each alternative

and the positive/negative ideal solution can be obtained as
Table 3.

By comparing the values of closeness coefficient, the
priority of the alternatives is as follows:

A1≺A3≺A2≺A4. (38)

,erefore, the best result is alternative A4 and the worst
result is alternative A1.

7.2. Comparison with Other Existing Methods. In order to
testify the feasibility and effectiveness of the approach which
are proposed in this paper, some previous methods are used
to compare the ranking results. However, few scholars have
carried out the group decision-making problem under the
multidimensional Z-number environment before, so we
have to change the data of the multidimensional Z-number
to the ordinary Z-number. Making each dimension of the
multidimensional Z-number an attribute of the evaluation
alternative; it means that ((A1, A2, . . . , An), B) will become
(A1
′, B), (A2

′, B), . . . , (An′, B), where Ai and Ai′ have the same
elements, and the maximum membership value corre-
sponding to an element in Ai is the membership value of Ai′.
For example, we are going to change (0.2/ (1, 1) +
0.5/(1, 2) + 0.4/(2, 1) + 1/(2, 2), 0.1/0.7 + 0.1/0.8 + 0.3/0.9)
into (0.5/1 + 1/2, 0.1/0.7 + 0.1/0.8 + 0.3/0.9) and (0.4/1+
1/2, 0.1/0.7 + 0.1/0.8 + 0.3/0.9).

Considering the randomness and fuzziness of Z-number,
Shen and Wang [26] defined the comprehensive weighted
distance measure of Z-number and presented a novel fuzzy
VIKOR decision-making method based on Z-number
context. As the goal is maximum entropy, Qiao et al. [34]
developed a new linear programming model for obtaining
underlying probability distribution and used it to construct a
comprehensive weighted crossentropy. Based on it, one
extended TOPSIS approach was developed to solve a
multicriteria decision-making problem under discrete
Z-context. Yao et al. [40] defined three different measure-
ments dominance degree from three levels of geometry,
algebra, and crossentropy based on the outranking rela-
tionship and established a multiattribute decision model on
the basis of new grey association analysis and QUALIFLEX
method. For the changed data in the example, applying the
abovementioned three methods, the results are shown in
Table 4.

It can be seen that the ranking of the four methods are
essentially in agreement, and the results in [34] are com-
pletely consistent with the results of the proposed method.
,e results obtained by the other two methods are slightly
different from the proposed method, which may be because
the preference of the decision maker has different influence
on the results in different methods; transforming multidi-
mensional Z-number to Z-number has the loss of infor-
mation that will also affect the ranking. To synthesize the
ranking results of the four methods, we add the ranking
values of the four methods, and the results are shown in
Figure 5; it can be seen that the value of the sum from small

to large, and their corresponding alternatives are
A1, A3, A2, andA4. From the comparison above, the result
illustrates the approach proposed in this paper is reasonable
and scientific.

7.3. SensitivityAnalysis. In order to explore the effects of the
different fuzziness of multidimensional fuzzy set, this paper
substitutes H1 with H2 and applies the abovementioned
example to make group decision again. ,e comparison of
the closeness coefficient between each alternative and the
ideal solution is shown in Figure 6.

As shown in Figure 6, the best alternative and the worst
alternative, A1 and A4, do not change. However, the rank of
A2 and A3 changes. Furthermore, the values of closeness
coefficient under fuzziness measure H2 is roughly bigger
than that which is under fuzziness measureH1. ,erefore, it
can be found that the ranking results will be affected by the
selection of fuzziness measure.

,e reason why Figure 6 appears is probably becauseH1

andH2 are considered in two different aspects, and with the

Table 3: ,e closeness coefficient of four alternatives.

Alternatives D+ D− D

A1 0.5788 0.0732 0.1123
A2 0.3659 0.4643 0.5593
A3 0.3175 0.2793 0.3505
A4 0.0802 0.5374 0.8702

Table 4: Ranking results obtained by different methods.

Method Ranking results

Method in [26] A3≺A1≺A4≺A2

Method in [34] A1≺A3≺A2≺A4

Method in [40] A2≺A1≺A3≺A4

Proposed method A1≺A3≺A2≺A4
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Figure 5: ,e sum of the ranking values of the four methods.
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change of membership degree of multidimensional fuzzy set,
the fuzziness value changes in different ways. ForH1, as the
membership value changes from the middle to both ends,
the value of fuzziness measure decreases and the rate of
change also decreases. For H2, as the membership value
changes from the middle to both ends, the value of fuzziness
measure decreases but the rate of change increases.

,e preceding analysis reveals that different uncertainty
measures will affect the ranking results; in the specific de-
cision-making problem, decision makers can select appro-
priate fuzziness measures to ensure that the results are
reasonable and accurate.

8. Conclusion

In order to solve the problem of group decision-making in
the information environment of multidimensional
Z-number, firstly, this study proposes two kinds of measure
of fuzziness for multidimensional fuzzy set from the per-
spective of algebra and geometry, respectively. ,en, the
entropy for multidimensional Z-number is established by
incorporating the inherent fuzziness of fuzzy restriction and
reliability measure and the fuzziness of reliability level of the
reliability measure. Next, the entropy is used to construct an
average operator of multidimensional Z-numbers. In ad-
dition, a distance measure is introduced to measure the
distance between two multidimensional Z-numbers about
their order weight vector of each dimension. Furthermore,
the group decision model in the multidimensional
Z-number environment is constructed by combining the
average operator with the TOPSIS decision-making method.
Finally, the proposed method is applied to the issue of cloud
service provider selection as an illustrative example to verify
the feasibility and effectiveness of the proposed method.

,is paper develops two kinds of fuzziness measure,
which can be used to measure the fuzziness of the multi-
dimensional fuzzy set from different aspects, and it is a
complement to the measure of fuzziness of the multidi-
mensional fuzzy set. ,e entropy for multidimensional
Z-number fills the gap of uncertainty measure of multidi-
mensional Z-number. ,e developed group decision-mak-
ing method provides a solution to the decision-making
problems under the multidimensional Z-number
environment.

Further research will establish the dominance relation-
ship and the crossentropy of multidimensional Z-number
and develop other decision-making methods under multi-
dimensional Z-number environment in the future.
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