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In this paper, a fixed point theorem for condensing maps combined with upper

and lower solutions are used to investigate the existence of solutions for first

order functional differential inclusions.
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1.  Introduction

This paper is concerned with the existence of solutions for the initial multivalued problem:

C − JÐ>ß C Ñ > − N œ Ò!ß X Ó Ð"Ñw
> , for a.e. 

C œ ß Ð#Ñ! 9

where  is a nonempty compact and convex valuedJ À N ‚ GÐN ß Ñ Ä # ÐN œ Ò  <ß !ÓÑ! !‘ ‘

multivalued map, .9 ‘− GÐN ß Ñ!

 For any continuous function  defined on the interval  and any , weC N œ Ò  <ß X Ó > − N"

denote by  the element of  defined byC GÐN ß Ñ> ! ‘

C Ð Ñ œ CÐ>  Ñ − N Þ> !) ) )   

Here  represents the history of the state from time , up to the present time .C Ð † Ñ >  < >>

 The method of upper and lower solutions has been successfully applied to study the

existence of multiple solutions for initial and boundary value problems of first order

functional differential equations.
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 This method has been used only in the context of single-valued, functional differential

equations.  We refer to the papers of Haddock and Nkashama [6], Hristova and Bainov [10],

Liz and Nieto [13], and Nieto, Jiang and Jurang [15].  For other results on functional

differential equations using other methods, we refer to the books of Erbe, Qingai and Zhang

[5], Hale [7], Henderson [9], and the survey paper of Ntouyas [16].  Notice that very recently

this method has been used for initial and boundary value problems for differential inclusions

in the papers of Benchohra and Boucherif [2], Benchohra and Ntouyas [3], and Halidias and

Papageorgiou [8].

 In this paper we establish an existence result for the problem (1)-(2).  Our approach is

based on the existence of upper and lower solutions and a fixed point theorem for condensing

maps developed by Martelli [14].

2.  Preliminaries

We will briefly recall some basic definitions and facts from multivalued analysis that we will

use in the sequel.

  is the space of all absolutely continuous functions .EGÐN ß Ñ CÀ N Ä‘ ‘
  is the Banach space of all continuous functions  normed byGÐN ß Ñ CÀ N Ä" "‘ ‘

² C ² œ Ö ± CÐ>Ñ ± À > − N × C − GÐN ß ÑÞ∞ " "sup  for each ‘

Set .  For IÀ œ GÐN ß Ñ ∩ EGÐN ß Ñ Cß C − I À œ ÖC − IÀ CÐ>Ñ œ Ð>Ñß a> − N ×
" ! !‘ ‘ 9

condition

C Ÿ C CÐ>Ñ Ÿ C Ð>Ñ > − N  if and only if  for all "

defines a partial ordering in .  If  and , we denoteI ß − I Ÿ! !α " α "

Ò ß Ó œ ÖC − I À Ÿ C Ÿ ×Þα " α "!

Let  be a normed space.  A multivalued map  is convex (closed)Ð\ß ² † ² Ñ KÀ\ Ä #\

valued if  is convex (closed) for all .   is bounded on bounded sets ifKÐBÑ B − \ K
KÐFÑ œ KÐBÑ \ F \-

B−F  is bounded in  for all bounded subsets  of  (i.e.,

sup sup .   is called upper semi-continuous u.s.c.) on  ifB−FÖ Ö ² C ² À C − KÐBÑ××  ∞Ñ K Ð \
for each  the set  is a nonempty, closed subset of , and, if for each open set B − \ KÐB Ñ \ R! !

of  containing , there exists an open neighborhood  of  such that .\ KÐB Ñ Q B KÐQÑ © R! !

  is said to be completely continuous if  is relatively compact for every boundedK KÐFÑ
subset .F § \
 If the multivalued map  is completely continuous with nonempty compact values, then K K
is u.s.c. if and only if  has a closed graph (i.e.,   implyK B Ä B ß C Ä C ß C − KÐB Ñ8 ‡ 8 ‡ 8 8

C − KÐB ÑÑ‡ ‡ .

  has a fixed point if there is  such that .K B − \ B − KÐBÑ
 In the following,  denotes the set of all nonempty compact and convex subsets ofGGÐ\Ñ
\.

 An upper semi-continuous map  is said to be condensing [14] if for anyKÀ\ Ä #\

bounded subset  with , we have , where  denotes theR © \ ÐRÑ Á ! ÐKÐRÑÑ  ÐRÑ. . . .
Kuratowski measure of noncompactness [1].  We remark that a compact map is the easiest

example of a condensing map.  For more details on multivalued maps, see the books of

Deimling [4] and Hu and Papageorgiou [11].

 The multivalued map  is said to be measurable if, for every , theJ À N Ä GGÐ Ñ C −‘ ‘
function inf  is measurable.> È .ÐCß J Ð>ÑÑ œ Ö ² C  D ² À D − JÐ>Ñ×
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   A multivalued map  is said to be an -Caratheo-´Definition 2.1: J À N ‚ GÐN ß Ñ Ä # P!
"‘ ‘

dory if

   is measurable for each ;Ð3Ñ > È JÐ>ß ?Ñ ? − GÐN ß Ñ! ‘
   is upper semicontinuous for almost all ;Ð33Ñ ? È JÐ>ß ?Ñ > − N
  For each , there exists  such thatÐ333Ñ 5  ! − P ÐN ß Ñ: ‘5 

"

² JÐ>ß ?Ñ ² œ Ò ± @ ± À @ − JÐ>ß ?ÑÓ Ÿ Ð>Ñsup  for all :5

² ? ² Ÿ 5 > − N Þ and for almost all 

Let us start b defining what we mean by a solution of the problem (1)-(2).

   A function  is said to be a solution of -  if there exists a func-Definition 2.2: C − I Ð"Ñ Ð#Ñ
tion  such that  a.e. on ,  a.e. on  and .@ − P ÐN ß Ñ @Ð>Ñ − JÐ>ß C Ñ N C Ð>Ñ œ @Ð>Ñ N C œ" w

> !‘ 9
 The following concept of lower and upper solutions for (1)-(2) was introduced by Halidias

and Papageorgiou in [8] for second order multivalued boundary value problems.  It will be

the basic tool in the approach that follows.

   A function  is said to be a lower solution of (1)-(2) if there existsDefinition 2.3: α − I!

@ − P ÐN ß Ñ @ Ð>Ñ − JÐ>ß Ñ N Ð>Ñ Ÿ @ Ð>Ñ N" " > "
" w‘ α α such that  a.e. on ,  a.e. on .  Similarly, a

function  is said to be an upper solution of (1)-(2) if there exists   such" ‘− I @ − P ÐN ß Ñ! #
"

that  a.e. on ,  a.e. on .@ Ð>Ñ − JÐ>ß Ñ N Ð>Ñ   @ Ð>Ñ N# > #
w" "

 For the multivalued map  and for each  we define  byJ C − GÐN ß Ñ W"
"
J ßC‘

W œ Ö@ − P ÐN ß ÑÀ @Ð>Ñ − JÐ>ß C Ñ > − N×Þ" "
J ßC >‘  for a.e. 

 Our main result is based on the following:

  [12]Lemma 2.4:   Let  be a Banach space and  a real compact interval.  Let\ N
JÀ N ‚ \ Ä GGÐ\Ñ P W Á g be an -Caratheodory multivalued map with  and let  be a´" "

J >
linear continuous mapping from  to , then the operatorP ÐN ß\Ñ GÐN ß\Ñ"

> > >‰ W ÀGÐN ß\Ñ Ä GGÐGÐN ß\ÑÑ C È Ð ‰ W ÑÐCÑÀ œ ÐW Ñ" " "
J J JßC, 

is a closed graph operator in .GÐN ß\Ñ ‚ GÐN ß\Ñ
 Let  be an u.s.c. and condensing map.  If the setLemma 2.5:  [14]  KÀ\ Ä GGÐ\Ñ

QÀ œ Ö@ − \À @ − KÐ@Ñ  "×- - for some 

is bounded, then  has a fixed point.K

3.  Main Result

We are now in a position to state and prove our result for the problem (1)-(2).

 Theorem 3.1:  Suppose  is an -Caratheordory multivalued´J À N ‚ GÐN ß Ñ Ä GGÐ Ñ P!
"‘ ‘

map which satisfies the condition

  there exist  and  in  lower and upper solutions, respectively, for theÐLÑ Iα " !

problem -  such that .Ð"Ñ Ð#Ñ Ÿα "
Then the problem -  has at least one solution  such thatÐ"Ñ Ð#Ñ C − I

α "Ð>Ñ Ÿ CÐ>Ñ Ÿ Ð>Ñ > − N Þ for all "

 Proof:  Set
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G ÐN ß ÑÀ œ ÖC − GÐN ß ÑÀ CÐ>Ñ œ Ð>Ñß > − N ×Þ! " " !‘ ‘ 9

Transform the problem into a fixed point problem.  Consider the following modified problem

C Ð>Ñ − JÐ>ß Ð CÑ Ñ > − N ß Ð$Ñw
>7 , a.e.  

C œ ß Ð%Ñ! 9

where  is the truncation operator defined by7 ‘ ‘À G ÐN ß Ñ Ä G ÐN ß Ñ! " ! "

Ð CÑÐ>Ñ œ
Ð>Ñß CÐ>Ñ  Ð>Ñà

CÐ>Ñß Ð>Ñ Ÿ C Ÿ Ð>Ñà
Ð>Ñß Ð>Ñ  CÐ>ÑÞ

7
α α

α "
" "

Ú
ÛÜ

if 

if 

if 

 A solution to (3)-(4) is a fixed point of the operator  defined byKÀG ÐN ß Ñ Ä #! "
G ÐN ß Ñ‘ ! " ‘

KÐCÑ œ 2 − GÐN ß ÑÀ 2Ð>Ñ œ

Ð>Ñß > − N à

Ð!Ñ  @Ð=Ñ.=ß > − N

Ú Ú Þ
Û Û ßÜ Ü à'"

!
>

!

‘

9

9

if 

if 
    

where  and@ − W
µ "

J ß C7

W œ Ö@ − W À @Ð>Ñ   @ Ð>Ñ E @Ð>Ñ Ÿ @ Ð>Ñ E ×ß
µ "

J ß C
"
J ß C " " # #7 7  a.e. on  and  a.e. on 

W œ Ö@ − P ÐN ß ÑÀ @Ð>Ñ − JÐ>ß Ð CÑ Ñ > − N×ß" "
J ß C >7 ‘ 7  for a.e. 

E œ Ö> − N À CÐ>Ñ  Ð>Ñ Ÿ Ð>Ñ× E œ Ö> − N À Ð>Ñ Ÿ Ð>Ñ  CÐ>Ñ×Þ" #α " α ", 

    For each , the set  is nonempty (see Lasota and OpialRemark 3.2: Ð3Ñ C − GÐN ß Ñ W‘ "
J ßC

[1]).

  For each  the set  is nonempty.  Indeed, by  there existsÐ33Ñ C − GÐN ß Ñ W Ð3Ñ
µ

‘
"

J ß C7

@ − W"
J ßC.  Set

A œ @  @  @ ß" #E E E; ; ;
" # $

where

E œ Ö> − N À Ð>Ñ Ÿ CÐ>Ñ Ÿ Ð>Ñ×Þ$ α "

Then by decomposability .A − W
µ "

J ß C7

 We shall show that  is a completely continuous multivalued map, u.s.c. with convexK
closed values.  The proof will be given in several steps.

    is convex for each .Step 1: KÐCÑ C − G ÐN ß Ñ! " ‘

 Indeed, if  belong to , then there exist  and  such that2ß 2 KÐCÑ @ − W @ − W
 µ µ" "

J ß C J ß C7 7

2Ð>Ñ œ Ð!Ñ  @Ð=Ñ.=ß > − N9 '    >
!

  



Functional Differential Inclusions 273

and

2 Ð>Ñ œ Ð!Ñ  @ Ð=Ñ.=ß > − N Þ
 9 '   >

!

  

Let .  Then for each  we have! Ÿ 5 Ÿ " > − N

Ò52  Ð"  5Ñ2 ÓÐ>Ñ œ Ð!Ñ  Ò5@Ð=Ñ  Ð"  5Ñ@ Ð=ÑÓ.=Þ
 9 '    >

!

Since  is convex (because  has convex values) thenW J
µ "

J ß C7

52  Ð"  5Ñ2 − KÐCÑÞ


    sends bounded sets into bounded sets in .Step 2: K - ÐN ß Ñ! ‘
 Let  be a bounded set in  and , thenF À œ ÖC − G ÐN ß ÑÀ ² C ² Ÿ ;× G ÐN ß Ñ C − F; ! ∞ ! ;‘ ‘
for each  there exists  such that2 − KÐCÑ @ − W"

J ß C7

2Ð>Ñ œ Ð!Ñ  @Ð=Ñ.= > − N Þ9 '    >
!

,  

Thus, for each  we get> − N

± 2Ð>Ñ ± Ÿ ± Ð!Ñ ±  ± @Ð=Ñ ± .=9 '     >
!

Ÿ ² ²  ² ² Þ9 :; P"

    sends bounded sets in  into equicontinuous sets.Step 3: K G ÐN ß Ñ! ‘
 Let , ,  be a bounded set in? ß ? − N ?  ? F À œ ÖC − G ÐN ß ÑÀ ² C ² Ÿ ;×" # " # ; ! ∞‘

G ÐN ß Ñ C − F 2 − KÐCÑ @ − W
µ

! ;

"

J ß C‘  and .  For each  there exists  such that7

2Ð>Ñ œ Ð!Ñ  @Ð=Ñ.= > − N Þ9 '    >
!

,  

We then have

± 2Ð? Ñ  2Ð? Ñ ± Ÿ ± @Ð=Ñ ± .=# "

?

?

'     #

"

Ÿ ± Ð=Ñ ± .=Þ'      ?
?

;

#

"

:

 As a consequence of Step 2 and Step 3, together with the Ascoli-Arzela theorem,
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we can conclude that  is a compact multivalued map and, therefore aKÀG ÐN ß Ñ Ä #!
G ÐN ß Ñ‘ ! ‘

condensing map.

    has a closed graph.Step 4: K
 Let ,  and .  We shall prove that .  C Ä C 2 − KÐC Ñ 2 Ä 2 2 − KÐC Ñ 2 − KÐC Ñ8 ! 8 8 8 ! ! ! 8 8

means that there exists  such that@ − W
µ

8 Jß C7 8

2 Ð>Ñ œ Ð!Ñ  @ Ð=Ñ.=ß > − N Þ8 8

>

!

9 '      

 We must prove that there exists  such that@ − W
µ

!

"

J ß C7 !

2 Ð>Ñ œ Ð!Ñ  @ Ð=Ñ.= > − N Þ! !

>

!

9 '    ,  

Consider the linear continuous operator  defined by> ‘ ‘À P ÐN ß Ñ Ä GÐN ß Ñ"

Ð @ÑÐ>Ñ œ @Ð=Ñ.=Þ> '    >
!

We have

² Ð2  Ð!ÑÑ  Ð2  Ð!Ñ ² Ä !Þ8 ! ∞9 9

 From Lemma 2.4, it follows that  is a closed graph operator.  Also, from the de-> ‰ W
µ "

J

finition of  we have>

2 Ð>Ñ  Ð!Ñ − ÐW ÑÞ
µ

8

"

J ß C9 > 7 8

Since , it follows from Lemma 2.4 thatC Ä C8 !

2 Ð>Ñ œ Ð!Ñ  @ Ð=Ñ.=ß > − N! !

>

!

9 '       

for some .@ − W
µ

!

"

J ß C7 !

   Now, we are going to show that the setStep 5:

QÀ œ Ö@ − G ÐN ß ÑÀ @ − KÐ@Ñ  "×! ‘ - - for some 

is bounded.

 Let  then  for some .  Thus there exists  such thatC − Q C − KÐCÑ  " @ − W
µ

- -
"

J ß C7

CÐ>Ñ œ Ð!Ñ  @Ð=Ñ.= > − N Þ- 9 -" "
>

!

'     ,  
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Thus

± CÐ>Ñ ± Ÿ ² ²  ± @Ð=Ñ ± .= > − N Þ9 '     >
!

,   

From the definition of  there exists  such that7 9 ‘− P ÐN ß Ñ" 

² JÐ>ß Ð CÑ Ñ ² œ Ö ± @ ± À @ − JÐ>ß Ð CÑ Ñ× Ÿ Ð>Ñ C − GÐN ß ÑÞ7 7 : ‘> >sup  for each 

Thus we obtain

² C ² œ ± CÐ>Ñ ± Ÿ ² ²  ² ² Þ
> − N

∞ P

"

sup 9 :
"

 This shows that  is bounded.  Hence, Lemma 2.5 applies and  has a fixed point whichQ K
is a solution to problem (3)-(4).

   We shall show that the solution  of (3)-(4) satisfiesStep 6: C

α "Ð>Ñ Ÿ CÐ>Ñ Ÿ Ð>Ñ > − N Þ for all "

 Let  be a solution to (3)-(4).  We prove thatC

αÐ>Ñ Ÿ CÐ>Ñ > − N Þ for all 

Suppose not.  Then there are two cases:

   for all , and there exists  such that  andÐ+Ñ Ð>Ñ   CÐ>Ñ > − N > − N Ð> Ñ  CÐ> Ñα α‡ ‡ ‡

  there exists ,  such that  and .Ð,Ñ > > − N Ð> Ñ  CÐ> Ñ Ð> Ñ  CÐ> Ñ‡ ‡ ‡
‡ ‡ ‡α α

 In case , from the definition of  one hasÐ+Ñ 7

C Ð>Ñ − JÐ>ß Ñ N Þw
>α  a.e. on 

Thus there exists  a.e. on  with  a.e. on  such that@Ð>Ñ − JÐ>ß Ñ N @Ð>Ñ   @ Ð>Ñ Nα> "

C Ð>Ñ œ @Ð>Ñ Nw  a.e. on .

An integration from  to  yields! >‡

CÐ> Ñ  Ð!Ñ œ @Ð=Ñ.=Þ‡
>

!

9 '     ‡

Since  is a lower solution to (1)-(2), thenα

α αÐ> Ñ  Ð!Ñ Ÿ @ Ð=Ñ.=Þ‡
>

!
"'     ‡

It follows from the facts ,  that  which is a contradiction,9 α αÐ!Ñ œ Ð!Ñ @Ð>Ñ   @ Ð> Ñ  CÐ> Ñ"
‡ ‡

since .CÐ> Ñ  Ð> Ñ‡ ‡α
 The case  yields also to a contradiction.  Consequently,Ð,Ñ

αÐ>Ñ Ÿ CÐ>Ñ > − N Þ for all 
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Analogously, we can prove that

CÐ>Ñ Ÿ Ð>Ñ > − N Þ"  for all 

 This shows that the problem (3)-(4) has a solution in the interval .  Since Ò ß Ó ÐCÑ œ Cα " 7
for all , then  is a solution to (1)-(2).C − Ò ß Ó Cα "
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