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ABSTRACT

Aims. Rotational speed is an important physical parameter of stars, and knowing the distribution of stellar rotational velocities is
essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution
between the rotational speed and the sine of the inclination angle v sin i.
Methods. We developed a method to deconvolve this inverse problem and obtain the cumulative distribution function for stellar
rotational velocities extending the work of Chandrasekhar & Münch (1950, ApJ, 111, 142)
Results. This method is applied: a) to theoretical synthetic data recovering the original velocity distribution with a very small error;
and b) to a sample of about 12.000 field main-sequence stars, corroborating that the velocity distribution function is non-Maxwellian,
but is better described by distributions based on the concept of maximum entropy, such as Tsallis or Kaniadakis distribution functions.
Conclusions. This is a very robust and novel method that deconvolves the rotational velocity cumulative distribution function from a
sample of v sin i data in a single step without needing any convergence criteria.

Key words. methods: data analysis – methods: numerical – methods: statistical – stars: rotation – stars: fundamental parameters –
methods: analytical

1. Introduction

It is well known that all stars rotate and the understanding about
how stars rotate is essential to describe and model their forma-
tion, internal structure and evolution, and how they interact with
their companions, disks or planets. Unfortunately, it is not pos-
sible to measure the value of their rotational velocities from ob-
servations, and instead the projected value of v sin i is the mea-
sured quantity, where i is the inclination angle. The standard
assumption to disentangle or deconvolve the rotational veloc-
ity distribution function is that the inclination angles are uni-
formly distributed over the sphere. Based on this assumption,
Chandrasekhar & Münch (1950) studied the integral equations
that describe the distribution of the true (v) and the apparent
(v sin i) rotational velocities, finding that the formal solution is
proportional to a derivative of Abel’s integral.

As Chandrasekhar & Münch (1950) pointed out, the differ-
entiation in this formal solution can lead to misleading results
due to an intrinsic numerical problem associated with the deriva-
tive of Abel’s integral, unless the sample is of high precision.
This is the main reason why this method is not usually applied.
An alternative and general method was introduced by Lucy
(1974). Lucy’s method is a Bayesian iterative method for decon-
volving a distribution function assuming a prescribed formula
for the kernel of Eq. (1); e.g., for the case of rotational veloci-
ties, this kernel describes the projections of an uniform distribu-
tion of inclination angles i. Lucy’s method has the disadvantage

that it poses no convergence criteria and the requested number
of iterations is only justified a posteriori in view of the results.
Nevertheless, Lucy’s method is widely used in the astronomical
community to disentangle distribution functions from different
samples of observations.

In this article, we are able to enhance the pioneer work of
Chandrasekhar & Münch (1950), by integrating the probability
distribution function (PDF) for the rotational velocities and ob-
tain the cumulative distribution function (CDF) for the veloci-
ties. This CDF is attained in just one step, without the need for
the convergence criteria usually necessary in iterative methods,
giving robustness to our novel method.

This article is structured as follows. In Sect. 2, we present
the mathematical description of the method. In Sect. 3, we apply
it to a theoretical example of v sin i, and we show that v sin i is
given by an χ distribution when the velocity distribution comes
from a Maxwellian distribution (Deutsch 1970). Our method re-
covers the Maxwellian distribution with a very high degree of
confidence. We also discuss in this section the relation between
the length of the sample and the error in the CDF. Section 4 is
dedicated to a real sample of circa 12 000 main-sequence field
stars. We obtain for the first time the true CDF for the velocities
of this sample. Furthermore, we recover the results of Carvahlo
et al. (2009), demonstrating that the rotational velocity distribu-
tion function for this sample is non-Maxwellian, and instead is
better described by Tsallis or Kaniadakis distribution functions.
In the last section, we discuss our conclusions and future work.
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2. The method

An important class of inverse problems in astronomy has the
following form:

fY (y) =

∫
p(y | x) fX(x)dx, (1)

which is known as Fredholm integral problem of the first kind
(Lucy 1994), where fY is a function accessible to observation
and fX is the function of interest. The kernel p of this integral is
related to the remoteness of the measurement process. Different
approaches are considered in the literature (see Lucy 1994, and
references therein), almost all of them based on maximum like-
lihood, where the optimization is carried out using Bayesian-
based iterative methods (see Richardson 1972).

In many problems, the function of interest is the cumulative
distribution FX of the random variable X, different approaches
could be applied. For a special form of the kernel p related to a
specific applications, we can invert the integral problem (1).

2.1. The basic problem

The problem that we wish to consider may be formulated in the
following form: a positive continuous random variable X occurs
with a probability given by a unknown density function fX . The
probability density function fY of an observed variable Y is re-
lated to fX by Eq. (1), where p is the kernel or conditional prob-
ability density function, i.e.:

p(y | x) dy = P(Y ∈ [y, y + dy) | X = x). (2)

This mathematical problem consists in obtaining fX from the
theoretical function p and the observed distribution fY . We study
the particular case where Y is a projection of X: p(y | x) = 0 if
y > x or y < 0 and depends only on the ratio s = y/x. In this
case, we can write p(y | x) dy = q(y/x) dy/x and then

FY (y) = 1 −
∫ ∞

y

Q(y/x) fX(x) dx, (3)

where FY the cumulative distribution function.
Chandrasekhar & Münch (1950) considered the integral

equation governing the distribution of the true and apparent ro-
tational velocities of stars, y = x sin i, where x = v and i is the
inclination angle, assuming uniform distribution over the sphere
(a detailed derivation of Q(y/x) is given in Appendix A). In this
case, the integral equation reads as follows:

fY (y) =

∫ ∞

y

y

x
√

x2 − y2
fX(x)dx, (4)

They obtain the solution to this problem, based on the formal
solution to Abel’s integral equation, namely:

fX(x) = −
2

π
x2 ∂

∂x
x

∫ ∞

x

1

y2
√
y2 − x2

fY (y)dy, (5)

which is not of much practical use, since it requires differentia-
tion of a functional of the observed density function fY and it can
lead to the wrong results (see Chandrasekhar & Münch 1950).

From the definition of CDF of a random variable

FX(x) =

∫ x

0

fX(ξ)dξ = 1 −
∫ ∞

x

fX (ξ)dξ,

and using Eq. (5), we obtain:

FX(x) = 1 +
2

π

∫ ∞

x

ξ2g′(ξ) dξ,

where g(ξ) = ξ

∫ ∞

ξ

1

y2
√
y2 − ξ2

fY (y) dy. After applying inte-

gration by parts, we get:

FX(x) = 1 +
2

π
ξ2g(ξ)

∣∣∣∣∣
ξ=∞

ξ=x

− 4

π

∫ ∞

x

ξ g(ξ) dξ. (6)

Using the following inequality

ξ2g(ξ) =

∫ ∞

ξ

ξ3

y2
√
y2 − ξ2

fY (y) dy

≤ sup
y≥ξ

fY (y)

∫ ∞

ξ

ξ3

y2
√
y2 − ξ2

dy

= ξ sup
y≥ξ

fY (y) ≤ sup
y≥ξ
y fY (y),

it holds that lim
ξ→∞
ξ2 g(ξ) = 0, provided lim

y→∞
y fY (y) = 0. The latter

assumption is true for all of the known distribution functions.
Therefore, rearranging Eq. (6), we get:

FX(x) = 1 −
2

π

∫ ∞

x

x3

y2
√
y2 − x2

fY (y)dy −
4

π

∫ ∞

x

ξ g(ξ) dξ. (7)

By interchanging the order of integration, the last integral can be
written as

∫ ∞

x

ξ g(ξ) dξ =

∫ ∞

x

∫ ∞

ξ

ξ2

y2
√
y2 − ξ2

fY (y)dy dξ

=

∫ ∞

x

⎛⎜⎜⎜⎜⎜⎝
∫ y

x

ξ2

y2
√
y2 − ξ2

dξ

⎞⎟⎟⎟⎟⎟⎠ fY (y)dy

=
1

2

∫ ∞

x

⎛⎜⎜⎜⎜⎜⎝
x
√
y2 − x2

y2
+ arccos(x/y)

⎞⎟⎟⎟⎟⎟⎠ fY (y)dy.

Finally, substituting into (7), we obtain:

FX(x) = 1 − 2

π

∫ ∞

x

⎛⎜⎜⎜⎜⎜⎝
x√
y2 − x2

+ arccos(x/y)

⎞⎟⎟⎟⎟⎟⎠ fY (y) dy. (8)

This equation provides a numerically stable method for solv-
ing (1) in this particular case. Our purpose is to develop a novel
algorithm for solving the general problem (1) that can serve as an
alternative to the iterative method proposed by Lucy (1974), and
to recover the original Chandrasekhar & Münch method, with-
out introducing numerical instabilities due to the derivative (see
Eq. (5)).

3. A theoretical test

In this section, we evaluate the proposed method in Sect. 2.
We assume that the distribution of velocities is given by a
Maxwellian distribution (as it is considered by Deutsch 1970)
with dispersion σ, i.e.,

fX(x) =

√
2

π

x2

σ3
e
− x2

2σ2 (9)
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Fig. 1. Histogram of a synthetic sample
of y = v sin i with n = 1000 from the
PDF (Eq. (13)), with σ = 8. The solid
black line plots the corresponding the-
oretical (Maxwellian) PDF. The dashed
line shows the corresponding KDE of this
sample calculated with a Gaussian kernel.

where x > 0. The behavior of this distribution is shown as a solid
line in Fig. 1.

Therefore, Eq. (4) yields:

fY (y) =

∫ ∞

y

y

x
√

x2 − y2

√
2

π

x2

σ3
e
− x2

2σ2 dx . (10)

This integral has an explicit analytic solution, which is:

fy(y) =
y

σ2
e
− y

2

2σ2 (11)

for y > 0. Whereas the definition of the χ-distribution is:

fχ(ν; z) =
21− ν

2 e−
z2

2 zν−1

Γ
(
ν
2

) (12)

where ν is a real positive parameter, z is any positive real number,
and Γ is the Gamma function. Then, Eq. (11) corresponds to:

fY (y) =
1

σ
fχ

(
2;
y

σ

)
· (13)

To apply this method, we first create a sample of v sin i
values using Eq. (13), i.e., generating n random values

{Y1, Y2, · · · , Yn−1, Yn}, then we obtain f̂Y (y) using a kernel density
estimator method (KDE) for this sample and insert it in Eq. (8).
The KDE is a nonparametric method to estimate the probability
distribution of a random variable (in our case y = x sin i) from a
random sample.

The KDE estimator is defined as follows:

f̂Y (y) =
1

n h

n∑

j=1

K

(
y − Y j

h

)
, (14)

where K is the kernel function and h is the bandwidth. In this
work, we use a Gaussian kernel, KG(y) = 1/

√
2π e−

1
2
y2

, because
this kernel smooths the distribution. The bandwidth is defined as:

h = 0.9 min

(
σ̃,

IQ

1.34

)
n−1/5,

where σ̃ is the standard deviation of the random variable un-
der study, Y, and IQ is the correspondent interquartile range

(Silverman 1986). Figure 1 shows histogram of a synthetic sam-
ple of n = 1000, and the corresponding KDE function is shown
as a dashed line.

The steps of our algorithm to get the estimated CDF are the
following: i) have a sample of v sin i; ii) obtain a KDE from this
sample using a suitable kernel function; and iii) calculate the
estimated CDF using Eq. (8) with KDE (from previous step) as
the fY (y) function.

We point out, that exists an arbitrary choice in the number
of values of x that can be obtained from Eq. (8). A reasonable
restriction is to take a ∆x not lower than the sample’s mea-
surement error. For the sample we use in Sect. 4, the error is
∆x = 1 km s−1, hence the value that we use in this theoretical
example.

Figure 2 shows the estimated CDF in the interval 0 to
35 km s−1, with a step of 1 km s−1, for a synthetic sample of
v sin i of size n = 1000 and parameter σ = 8. These data were
obtained directly using the method described previously, without
needing any convergence criteria. From this empirical CDF we
can calculate the moments of the distribution (e.g., mean, vari-
ance), but moments analysis in Chandrasekhar & Münch (1950)
is more straightforward. Nevertheless, with this new method we
can calculate percentiles, intervals, and, in general, any proba-
bility associated with the velocity distribution.

Figure 2 also shows the theoretical CDF (solid line) of this
Maxwellian distribution for the same parameter, i.e.,

FM(x) = erf

(
x
√

2σ

)
−
√

2

π

x

σ
e
− x2

2σ2 , (15)

where erf corresponds to the error function.
In order to get an estimation of our method’s error, we use

the standard discrete integrated square error (ISE) defined as:

ISE =
1

n

n∑

j=1

(
CDF(x j) − FM(x j)

)2
(16)

and afterward we obtain the standard discrete mean integrated
square error (MISE) by computing the mean of ISE for several
samples of a given fixed size n. Therefore, we run a monte carlo
(MC) simulation calculating ISE for a set of 500 samples of n =
1000 data and another set of 500 samples with n = 10 000 data.
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Fig. 2. CDF values calculated from
Eq. (8) with a step of 1 km s−1 (black
dots). The theoretical Maxwellian distri-
bution is shown as a solid black line.

Table 1. MISE.

Sample Mean Median

1000 1.60 × 10−4 1.28 × 10−4

10 000 2.09 × 10−5 1.71 × 10−5

Figure 3 shows the ISE histogram for both sets of samples, and
Table 1 shows the mean and median values of our simulations,
where the mean value of each set represents the estimated MISE
of our model. Clearly, we find the greater the data sample, the
lower the error in the estimation of the CDF.

The MISE depends mostly on the KDE of each sample used
for computation of the CDF, when the KDE from the sample is
improved, as does the estimation of CDF. We can conclude that
our method recovers the Maxwellian distribution with very high
precision.

4. Application to main-sequence field stars

In this section, we apply this method to a large sample of
measured v sin i data. We use the sample from the Geneva-
Copenhagen survey of the solar neighborhood (Nordström et al.
2004; Holmberg et al. 2007), which contains information about
16 500 F and G main-sequence field stars. In this catalog,
12 931 stars have values of v sin i. Furthermore, considering that
the listed values of v sin i are rounded to the nearest km s−1 up
to 30 km s−1, and upwards of that value the survey lists v sin i
to the nearest 5 or 10 km s−1, and that about 91% of the sample
have rotational speeds below 30 km s−1, we only select (follow-
ing Carvalho et al. 2009) stars with v sin i ≤ 30 km s−1, obtaining
a sample of 11 818 stars.

Applying our method, we obtained the estimated CDF from
this sample, as shown as black dots in Fig. 4. To estimate the
error of the estimated CDF, we create 1000 bootstrap samples
of the original and calculate the corresponding 1000 bootstrap
CDF. In Fig. 4, we also plotted all the bootstrap CDF in light-
gray. Concerning the error’s estimator we add in each point of
Fig. 4 an error bar which is the 95% confidence interval (see the
zoomed plot in Fig. 4). Since the estimated bootstrap CDF from

the original sample are functions, it is difficult to obtain the dis-
tribution of probability of the estimator. Therefore, to calculate
the probability of the original estimated CDF, we used the ap-
proximated confidence interval with normal standard percentile
Zα/2, namely:

ĈDF ± Zα/2 ŝe,

where ŝe is the standard deviation of bootstrap samples, Zα/2 is
the value in which the standard normal distribution accumulate
97.5% of the area under its PDF, and α = 0.05 (=1− 0.95) is the
complement of the confidence. This procedure is the simplest
one for calculating confidence intervals from Bootstrap method
proposed in Efron (1993).

One of the advantages of getting the CDF is to provide in-
formation about the rotational velocity distribution. Observing
the black dots from Fig. 4, we see that approximately 50% of
the sample have a magnitude less than 7 km s−1 and 10% of the
fastest rotational speeds are approximately between 24 km s−1

and 30 km s−1.
Deutsch (1970) proved, using methods of classical statistical

mechanics, that the distribution of rotational speeds is given by
a Maxwellian distribution (Eq. (9)), under the assumption that
the angles are distributed uniformly over the sphere. Therefore,
to describe the rotational velocity distribution function, we fit a
Maxwellian CDF to our estimated CDF. The fitting method min-

imizes the least squares, i.e., φ = 1
n

∑n
j=1

(
Y j − FM(X j)

)2
, where

FM is the CDF for the Maxwellian distribution (Eq. (15)). For
the minimization process, we use the Nelder-Mead simplex al-
gorithm (Nelder & Mead 1965) .

Figure 5 shows the estimated CDF and also shows the
Maxwellian’s CDF (solid black line). The minimization gives
a dispersion of σ = 5.64 that corresponds to the minimum value
of φ = 0.0087. Clearly from this figure, a Maxwellian distri-
bution cannot describe the proper distribution of the rotational
speeds of this sample. Indeed, the estimated CDF has tails with
higher positive probability than those of Maxwellian’s CDF, i.e.,
the distribution of rotational velocity has more dispersion than
the CDF from a Maxwellian distribution.

This sample has been used by Carvalho et al. (2009), who
performed a statistical study of it, showing that the empirical
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Fig. 3. Histogram of the ISE for a set of
500 samples with 1000 data each, shown
in light-gray and a set of 500 samples of
10 000 data each shown in dark-gray (see
text for details).
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Fig. 4. Estimated CDF from the sample of
11 818 stars are shown as black dots, with an
approximated confidence interval (error bar).
All the bootstrap CDFs are also plotted in light-
gray . The zoomed inset shows the error bar
calculated using the methodology from Efron
(1993).

distribution function of this sample cannot be fitted using a
Maxwellian distribution (Deutsch 1970). They obtained a much
better fit when the assumption of Gibbs entropy in standard sta-
tistical mechanics is released and distribution functions from
nonextensive statistical mechanics are applied to the sample.
Specifically, they used the Tsallis distribution (Tsallis 1998) and
the Kaniadakis power-law distribution (Kaniadakis 2002, 2005),
both based on the concept of maximum entropy (Gell-Mann &
Tsallis 2004).

These distributions are also plotted in Fig. 5. We can see
that for the left tail, the estimated CDF (black dots) and both
Tsallis and Kaniadakis distributions have velocity values below
8 km s−1, representing the 60% of the data, while for the
Maxwellian distribution this percentage is reached of about
10 km s−1. Concerning the right tail, the Maxwellian distribution
for the rotational velocity of less than 17 km s−1 has a probability
of about 95%, while for the other two distributions this probabil-
ity is reached for rotational speeds with values above 25 km s−1.

Having a known integral expression (given by Eq. (8)), our
method allows us to fit any known distribution. In this case, we

Table 2. Non-linear model results.

Distribution LS σ Second parameter

Maxwellian 0.3142 5.639 . . .
Tsallis 0.0126 3.461 q = 1.413
Kaniadakis 0.0217 4.638 k = 0.445

reach the same conclusion as Carvalho et al. (2009), but using
a different algorithm, i.e., Tsallis or Kaniadakis distributions are
in close agreement to the empirical CDF, although the two dis-
tributions show a slight discrepancy in their tails.

5. Discussion and conclusions

In this work, we have obtained the cumulative distribution
function of “de-projected” velocities. It is well known that
from the estimated CDF we can obtain general aspects of the
probabilities, e.g., the distributional moments, the probability of
an interval, median, percentiles, and any other statistical feature
of the sample.
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Fig. 5. Empirical CDF from the sam-
ple, shown as black dots without er-
ror bar. The fitted CDF function from a
Maxwellian distribution with σ = 5.64 is
shown as a solid black line, fitted Tsallis
distribution with σq = 3.46 and q =
1.41 is shown as a dashed line and fitted
Kaniadakis distribution with σk = 4.64
and k = 0.45 is shown as a dotted line.

This novel method we present is an extension of the pioneer
work introduced by Chandrasekar & Münch (1950). Our method
allows to obtain the CDF without numerical instability caused
by the use of a derivative, which was the main disadvantage of
the PDF of Chandrasekar & Münch (1950). Furthermore, this
estimated CDF is obtained in just one step without needing any
convergence criteria in comparison with the widely used iterative
method of Lucy (1974).

Deutsch (1970) shows that if the direction of the rotational
velocity is uniformly distributed and each Cartesian component
is distributed independent of the other ones, then the magnitude
of the velocity follows a Maxwellian distribution law. However,
the independence assumption is not clear and we proved in the
previous section that the Maxwellian distribution does not accu-
rately fit the empirical CDF.

On the other hand, Carvalho et al. (2009) found a bet-
ter agreement for two other probability distributions, namely:
Tsallis and Kaniadakis. These distributions are based on the con-
cept of maximum entropy. In our case, using the new method, we
confirm their analysis but this time from the rotational velocity
estimated CDF. These results open the question about the valid-
ity of the assumption of Maxwellian distribution.

Future work: we will extend the applicability of our model
for samples that show bimodal velocity distributions, e.g., the
data from VLT FLames Tarantula Survey (Ramírez-Agudelo
et al. 2013).

There are samples that show few, if any, stars with very low
rotational velocities (see, e.g., Yudin 2011; Ramírez-Agudelo
et al. 2013). If the distribution of inclination angles is uniform,
then independent of the rotational velocity distribution, there
must be a nonnegligible portion of the sample with lower val-
ues of the projected rotational velocity due to low values of i.
There are some studies of open clusters where this assump-
tion no longer seems reasonable, see Silva et al. (2013) and
Rees y Zijlstra (2013). We want to develop a “completeness” test
for the uniform distribution of angles of a sample of v sin i.

Furthermore, we want to use a general function to describe
an arbitrary orientation of rotational axes and to study the
distribution of rotational velocities in a more general descrip-
tion. Finally, a very ambitious project will be to simultaneously
obtain both distributions from a data sample.
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Appendix A: Distribution of projected angles

Let x be a random vector in 3D and y be the projection of x to
the plane normal to the line of sight. If X = ‖x‖, Y = ‖y‖, i is
the angle between x and the line of sight, and S = | sin(i)| =
Y/X ∈ [0, 1], the condition S ≤ s is equivalent to x̂ = x/X ∈ A,
where A is the polar region of the unit sphere corresponding to
the inclination angle i ∈ [0, i0] ∪ [π − i0, π], azimuthal angle
φ ∈ [0, 2π], and i0 = arcsin(s) (see Fig. B). Asume X, x̂ are
independent and x̂ is uniformly distributed over the unit sphere,
i.e., P(x̂ ∈ A) is proportional to the area of A. Therefore,

P(S ≤ s) =
Area(A)

4π
=

1

2π

∫ i0

0

∫ 2π

0

sin(i) dφ di

=

∫ i0

0

sin(i) di = 1 − cos(arcsin(s)) = 1 −
√

1 − s2.

Since the PDF verifies fS (s) = d P(S ≤ s) /ds, we have fS (s) =

s/
√

1 − s2, and substituting into (1) we obtain:

fY (y) =

∫ ∞

y

y

x
√

x2 − y2
fX(x) dx, (A.1)

which corresponds to Eq. (9) from Chandrasekhar & Münch
(1950).

Appendix B: Tsallis & Kaniadakis distributions

A standard assumption of statistical mechanics, based on the
Gibbs entropy is that quantities, such as energy are extensive
variables, i.e., the total energy of the system is proportional to
the system size; similarly, the entropy is also supposed to be
extensive. Tsallis statistical mechanics is based on the concept
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M. Curé et al.: Deconvolving stellar rotational velocities

Fig. B.1. Distribution of sin i.

of maximum entropy (see details in Gell-Mann & Tsallis 2004).
From a mathematical point of view, the Tsallis PDF is defined as:

fq(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
4(q − 1)3/2Γ

(
1

q−1

)

√
πσ3

qΓ
(

1
q−1
− 3

2

)
⎞⎟⎟⎟⎟⎟⎟⎟⎠ x2

⎛⎜⎜⎜⎜⎝1 −
(1 − q)x2

σ2
q

⎞⎟⎟⎟⎟⎠
1

1−q

(B.1)

where σq is the dispersion. When the q-parameter tends to 1 the
standard Maxwellian distribution is attained. The CDF of this
distribution is:

Fq(x) =

(
2
√
π
√

q − 1σ3
qΓ

(
1

2
+

1

q − 1

) (
(q − 1)x2 + σ2

q

))−1

× σ
2

q−1

q x
q+3

1−q Γ

(
1

q − 1

) ⎛⎜⎜⎜⎜⎜⎝−q −
σ2

q

x2
+ 1

⎞⎟⎟⎟⎟⎟⎠

1
1−q

×
⎡⎢⎢⎢⎢⎢⎢⎣σ
− 2

q−1

q x
− 2

q−1

⎛⎜⎜⎜⎜⎝
(q − 1)x2

σ2
q

+ 1

⎞⎟⎟⎟⎟⎠
1

1−q (
σ2

q x
2

q−1 + (q − 1)x
2q

q−1

)

×
⎛⎜⎜⎜⎜⎜⎝−q −

σ2
q

x2
+ 1

⎞⎟⎟⎟⎟⎟⎠
− 1

1−q (
2σ2

qx
4

q−1

(
(q − 1)x2 + σ2

q

)

× 2F1

⎛⎜⎜⎜⎜⎝1,
1

2
+

1

1 − q
;

1

2
;−

(q − 1)x2

σ2
q

⎞⎟⎟⎟⎟⎠

+ (q − 3)(3q − 5)x
4q

q−1 − σ2
q x

4
q−1

(
4(2q − 3)x2 + 3σ2

q

))

+ e
iπ

q−1

(
(9q − 17)σ4

qx
2q

q−1 + x
2

q−1

(
−(q − 3)2(q − 1)x6

+ (q(7q − 18) + 7)σ2
qx4 + σ6

q

))]
. (B.2)

Here 2F1 is the Gauss Hypergeometric function and Γ is the
Gamma function.

Kaniadakis (2002, 2005), based on the same concept of max-
imum entropy, developed a power-law statistics, where the dis-
tribution function is given by:

fk(x) =
8

√
2
π
k4Γ
(

7
4
+ 1

2k

)

σ3
k
Γ
(

1
2k
− 3

4

) x2

⎛⎜⎜⎜⎜⎜⎜⎝

√
k2 x4

σ4
k

+ 1 − kx2

σ2
k

⎞⎟⎟⎟⎟⎟⎟⎠

1
k

· (B.3)

Here σk is the dispersion. When the k-parameter tends to 1 again
the standard Maxwellian distribution is attained. The CDF of
Kaniadakis distribution is:

Fk(x) = 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
5
2
− 1

k Γ
(

7
4
+ 1

2k

)
Γ
(

1
k

) (
kx2

σ2
k

) 3
2
− 1

k

√
π

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× 3F̃2

⎛⎜⎜⎜⎜⎝
1

2k
− 3

4
,

k + 1

2k
,

1

2k
;

k + 2

4k
,

1

k
+ 1;−

σ4
k

k2x4

⎞⎟⎟⎟⎟⎠ (B.4)

where 3F̃2 is the regularized generalized hypergeometric
function.
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