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Dempster-Shafer evidence theory (D-S theory) has been widely used in many information fusion systems since it was proposed
by Dempster and extended by Shafer. However, how to determine the basic probability assignment (BPA), which is the main and

rst step in D-S theory, is still an open issue, especially when the given environment is in an open world, which means the frame
of discernment is incomplete. In this paper, a method to determine generalized basic probability assignment in an open world
is proposed. Frame of discernment in an open world is established 
rst, and then the triangular fuzzy number models to identify
target in the proposed frame of discernment are established. Pessimistic strategy based on the di�erentiation degree betweenmodel
and sample is de
ned to yield the BPAs for known targets. If the sum of all the BPAs of known targets is over one, then they will be
normalized and the BPA of unknown target is assigned to 0; otherwise the BPA of unknown target is equal to 1minus the sum of
all the known targets BPAs. IRIS classi
cation examples illustrated the e�ectiveness of the proposed method.

1. Introduction

As one of the most important tools in multisources informa-
tion fusion, Dempster-Shafer evidence theory (D-S theory)
[1, 2] has been widely used since it has abilities to deal with
uncertainty and unknown information and requires fewer
conditions than probability theory. D-S theory has a signif-
icant advantage over the traditional probabilistic approach;
that is, it allows for the allocation of probabilitymass to sets or
intervals. And it can hence handle both aleatory uncertainty
and epistemic (or subjective) uncertainty.

Although D-S theory is widely used in many application
systems such as information fusion systems [3–6], evidential
reasoning [7, 8], risk and reliability analysis [9–12], and
decision making [13–15], some basic problems are still not
completely clari
ed. One typical open issue is dependent
evidence combination [16–18]. 	e other open issue is how
to determine the basic probability assignment (BPA). So far,
there is no general method to obtain BPA.

In the years, many researchers have investigated di�erent
approaches to solve this problem. Xu et al. [19] put for-
ward a nonparametric method to determine BPA based on

the relationship between the test sample and the probability
models. In their work, a nonparametric probability density
function (PDF) is calculated 
rstly using the training data.
Suh and Yook [20] presented a method to determine BPA
through sensor data. 	eir study showed that a pedestrian
could recognize a moving object with its method of deter-
mining BPA throughmultisensor data fusion. Yoon et al. [21]
proposed a novel way to obtain BPA using sensor signals.
	e method enabled context inference even when there was
no advanced information of the situation. Recently, with the
generalized fuzzy numbers [22], we presented a fuzzymethod
to generate BPA [23].

Another vital issue is that the result of BPAs combination
is always contradictory to common sense, using D-S theory
of evidence to fuse highly con�icting evidences.	is problem
o�en appears in engineering applications because environ-
mental noises and human disturbances o�en lead to con�ict
among the reports of multiple sensors.

Zadeh, the author of fuzzymathematics, gives an example
to analyze the de
ciency of the combination rule of evidence
theory, which has aroused the interest of many scholars [24].
How to handle con�icting evidence is heavily studied [25,
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26]. Yager [27] holds on to the fact that the normalization
of the combination rule is the main reason which leads to
irrational fusion results. He advocates assigning the con�ict
coe�cient to the unknown items in the frame of discernment
(FOD) directly, without normalization step. Yager’s method
and the method in [28] only satisfy commutativity, but not
associativity. 	is limits the real application of evidence
theory. Smets and Kennes [29] present another ingenious
approach. 	ey argue that the con�ict is mainly due to the
incomplete knowledge base when the reports of sensors are
all reliable, so they put forward the concepts of the closed
world and the open world. In the transferable belief model
(TBM), the so-called closed world means that the FOD
consists of all the possible propositions, and the open world
refers to the incomplete FOD due for lack of knowledge
and various uncertainty. 	ey point out that the methods of
Dempster et al. combine BPAs on the premise of assumptions
that the information fusion environment is in a closed world.

Based on the conception of closed world and open world,
Deng [30] proposed the basic frame of generalized evidence
theory (GET). In GET, Ø is regarded as an element with
the same properties as the other elements. It represents
unknown, but not a common empty. For example, in military
applications, suppose there are three targets (�, �, and �) on
the FOD. 	en, the sensors can only recognize the di�erent
unions of these three targets. However, if there exists an
unknown target (�), the sensors cannot distinguish whether
it is one of the previous three targets. In GET, Ø can be
interpreted as the unknown targets and �(Ø) ̸= 0. GET
is a proper tool to build the real world in a rational way.
In the open world, the generalized combination rule (GCR)
can solve the problem that the result of BPAs combination is
counterintuitive because of the incompleteness of FOD. In the
closed world, GET degenerates to D-S theory.

As mentioned above, there are already various methods
in the closed world. However, there’s nomethod to determine
BPA in the openworld.Determining BPA in the openworld is
a question worth to be explored. 	is paper proposed a new
method to determine BPA in the open world. 	is method
can be applied to classi
cation problems and identi
cation
problems, especially when the FOD is not complete.

	e remainder of this paper is organized as follows.
Section 2 starts with a brief presentation of D-S theory and
some necessary related concepts. 	e proposed method to
construct BPA function is presented in Section 3. Section 4
investigates the e�ectiveness of the proposedmethod through
a classical classi
cation problem. Conclusions are presented
in Section 5.

2. Preliminaries

2.1. Dempster-Shafer Evidence �eory. D-S theory, intro-
duced by Dempster [1] and extended later by Shafer [2], is
concerned with the question of belief in a proposition and
systems of propositions. It mainly focuses on the epistemic
uncertainty, but it is also valid for aleatoric uncertainty. D-S
theory has many advantages, compared to probability theory.
For instances, it can handlemore uncertainty in real world. In
probability theory, the belief can be only assigned to singleton

subsets, while in D-S theory the belief can be assigned to
any subsets of FOD. And in D-S theory, prior distribution is
not necessary before information fusion. Due to its ability to
handle uncertainty or imprecision embedded in the evidence,
D-S theory has been increasingly applied in many 
elds [31–
35]. Formally, D-S theory concerns the following preliminary
notations.

2.1.1. Frame of Discernment and Mass Function. Evidence
theory 
rst supposes the de
nition of a set of hypothe-
ses �� called the frame of discernment, de
ned as Θ =
{�1, �2, . . . , ��}.	e setΘ is composed of
 exhaustive and
exclusive hypotheses. Denote �(Θ), the power set composed

of 2� propositions of Θ, as
� (Θ) = {Ø, {�1} , {�2} , . . . , {��} , {�1 ∪ �2} , {�1 ∪ �3} ,

. . . , Θ} , (1)

where Ø denotes the empty set. 	e 
 subsets containing
only one element each are called singletons.

When the FOD is determined, the mass function � is
de
ned as a mapping of the power set �(Θ) to a number
between 0 and 1; that is,

� : � (Θ) ��→ [0, 1] (2)

which satis
es the following conditions:

∑
�∈�(Θ)

�(�) = 1,

� (Ø) = 0.
(3)

	e mass function � is also called the basic probability
assignment (BPA) function. �(�) expresses the proportion
of all relevant and available evidence that supports the claim
that a particular element of Θ belongs to the set � but to no
particular subset of�. Any subset� ofΘ such that�(�) > 0
is called a focal element.

2.1.2. Belief and Upper Probability Functions [2]. A function

Bel : 2Θ → [0, 1] is called a belief function overΘ if it is given

by (4) for some basic probability assignment� : 2Θ → [0, 1].
Consider

Bel (�) = ∑
�⊆�

�(�) . (4)

Whenever Bel is belief function over a frameΘ, the function
�∗ : 2Θ → [0, 1] de
ned by (5) is called the upper probability
function of �:

�∗ (�) = 1 − Bel (�) . (5)

2.1.3. Dempster’s Combination Rule [2]. Suppose Bel1 and
Bel2 are belief functions over the same frame Θ, with BPA
�1 and �2 and focal elements �1, . . . , �� and �1, . . . , �ℓ,
respectively. 	en the function � : 2Θ → [0, 1] de
ned by
�(Ø) = 0 and

�(�) = ∑�∩�=��1 (�)�2 (�)
1 − � (6)
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with

� = ∑
�∩�=Ø

�1 (�)�2 (�) (7)

for all nonempty � ⊂ Θ is a BPA. 	e core of the belief
function given by � is equal to the intersection of the cores
of Bel1 and Bel2. It is also called the ���ℎ��� �! "#� of Bel1
and Bel2 and is denoted by Bel1 ⊕ Bel2.

2.2. Jousselme Distance. Jousselme et al. [36] proposed a new
distance to measure the di�erence between two bodies of
evidence, which is also called the evidence distance.

Let �1 and �2 be two BPAs on the same FOD Θ,
containing
 mutually exclusive and exhaustive hypotheses.
	e distance between�1 and�2 is

�BPA (�1, �2) = √1
2 (�→�1 − �→�2)�*(�→�1 − �→�2), (8)

where �→�1 and �→�2 are the BPAs according to (3) in Subsec-

tion 2.1 and* is a 2� × 2� matrix whose elements are

* (�, �) = |� ∩ �|
|� ∪ �| , (9)

where �, � ∈ �(Θ) are derived from�1 and�2, respectively.
2.3. Fuzzy Sets �eory. Fuzzy sets theory was 
rst proposed
by Zadeh [37] in 1965. 	e theory is widely used in many
uncertain environments such as decisionmaking [38–41] and
optimization [42–44]. Some relative notions on fuzzy sets are
given as follows.

De�nition 1 (fuzzy set). Let / be a universe of discourse,

where �̃ is a fuzzy subset of /; and for all 4 ∈ /, there is
a number 5�̃(4) ∈ [0, 1] which is assigned to represent the

membership degree of 4 in �̃ and is called the membership

function of �̃ [45].

De�nition 2 (fuzzy number). A fuzzy number �̃ is a normal
and convex fuzzy subset of/ [45].

Here, “normality” implies that

⋁
�
5�̃ (4) = 1, ∃4 ∈ R, (10)

and “convex” means that

5�̃ (841 + (1 − 8) 42) ⩾ min (5�̃ (41) , 5�̃ (42))
∀41 ∈ /, 42 ∈ /, ∀8 ∈ [0, 1] . (11)

De�nition 3 (generalized fuzzy numbers). A generalized
fuzzy number � = (�1, �2, �3, �4; @) is described as any fuzzy
subset of the real line A with membership function B� that
possesses the following features:

(1) B�(4) : A → [0, @] is continuous, 0 ≤ @ ≤ 1.
(2) B�(4) = 0, for all 4 ∈ (−∞, �1].

(3) B�(4) is strictly increasing in [�1, �2].
(4) B�(4) = @, for 4 ∈ [�2, �3], where @ is a constant and

0 < @ ≤ 1.
(5) B�(4) is strictly decreasing in [�2, �3].
(6) B�(4) = 0, for all 4 ∈ [�4,∞).

Particularly, a trapezoidal fuzzy number and triangular fuzzy
number can be shown in Figures 1(a) and 1(b), respectively.

2.4. Generalized Evidence �eory [30]. Generalized evidence
theory (GET), based on the classical Dempster-Shafer (D-
S) theory, was proposed by Deng [30]. GET abolished the
restriction on �(Ø) = 0; that is, �(Ø) is not necessarily
zero. In GET, the empty set (Ø) can be singleton subsets or
multiple hypothesis sets. Moreover, GET can degenerate to
the classical D-S theory if the value of �(Ø) is zero. In other
words, GET is the extension of the classical D-S theory and
can express and deal with more uncertain information in the
open world, comparing with D-S theory.

2.4.1. Generalized Basic Probability Assignment [30]. Suppose
that F is a frame of discernment in an open world [30]. Its
power set, 2��, is composed of 2� propositions, ∀� ⊂ F. If the
function� : 2�� → [0, 1]meets the condition

∑
�⊆2��

�� (�) = 1
(12)

then �� is the GBPA of the frame of discernment F.
	e di�erence between GBPA and traditional BPA is the
restriction of Ø. Note that ��(Ø) = 0 is not necessary in
GBPA. If��(Ø) = 0, the GBPA reduces to a traditional BPA.

2.4.2. Generalized Combination Rule (GCR) [30]. In GET,
Ø1 ∩Ø2 = Ømeans that the intersection between two empty
sets is still an empty set. Given two GPBAs (�1 and �2), the
GCR is de
ned as follows [30]:

�(�) = (1 − � (Ø)) ∑�∩�=��1 (�)�2 (�)
1 − G (13)

with

G = ∑
�∩�=Ø

�1 (�)�2 (�) ,

� (Ø) = �1 (Ø)�2 (Ø) .
(14)

�(Ø) = 1 if and only ifG = 1.
3. Proposed Method to

Determine BPA Function

3.1. Sample Di
erence Degree. In order to re�ect the di�er-
ence between the sample and the target model, we proposed
a sample di�erence degree function, which performs well in
the measurement of di�erence between the sample data and
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�Ã(x)

(a)

0 a1 a4
x

1

a2 = a3
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Figure 1: Trapezoidal and triangular fuzzy number.

the model data. And now, it will be amended to de
ne
pessimistic function in a more reasonable way.

In our method, the triangular fuzzy numbers, which
denote the target model and the sample data, should 
rstly be

normalized into the interval [0, 1] as �̃ and �̃0, respectively.
Four normalized triangular fuzzy numbers are de
ned as
follows:

(1) Triangular fuzzy number of target model �̃ = (�, �,
�; @).

(2) Triangular fuzzy number of sample data �̃0 = (�0, �0,�0; 1).
(3) Le� standard triangular fuzzy number �̃0 = (0, 0, 0;

1).
(4) Right standard triangular fuzzy number �̃1 = (1, 1, 1;

1).
@ ∈ [0, 1], 0 ⩽ � ⩽ � ⩽ � ⩽ 1. 	en the Le� and right

average area, JL(�̃), JL(�̃0), JR(�̃), and JR(�̃0), are de
ned
as follows and are shown in Figure 2. As can be seen from

Figure 2, �1(4) is the le� membership degree curve of �̃, and
�−11 (4) denotes inverse function of �1(4); �2(4) is the right
membership degree curve of �̃, and �−12 (4) denotes inverse
function of �2(4). 	en the le� adjacent area JLA is the area
enclosed by �1(4) and le� standard triangular fuzzy number
(0, 0, 0; 1); the le� far area JLF is the area enclosed by �2(4)
and le� standard triangular fuzzy number (0, 0, 0; 1); the right
adjacent area JRA is the area enclosed by �2(4) and right
standard triangular fuzzy number (1, 1, 1; 1); the right far area
JRF is the area enclosed by�1(4) and right standard triangular
fuzzy number (1, 1, 1; 1). Obviously, the four kinds of area can
be obtained by the following equations:

JLA = ∫�
0
�−11 (4) d4,

SLF = ∫�
0
�−12 (4) d4,

JRA = ∫�
0
(1 − �−12 (4)) d4,

JRF = ∫�
0
(1 − �−11 (4)) d4.

(15)

Based on the four kinds of area, JLA, JLF, JRA, and JRF, the
le� average area JL and the right average area JR are de
ned,
respectively, as follows:

JL = JLA + JLF
2 , (16)

JR = JRA + JRF
2 . (17)

Figure 2 indicates that the larger JL, the closer the fuzzy

number �̃ to �̃1; the larger JR, the closer the fuzzy number

�̃ to �̃0. 	at is to say, JL and JR can accurately represent
the position and the state information of a triangular fuzzy
number in the interval [0, 1]. Based on the fact that the shape
and position of a fuzzy number can, to a large extent, be
expressed as the credibility of the proposition, a conclusion
can be made that the di�erence between the average area

(JL(�̃), JR(�̃)) of �̃ and the average area (JL(�̃0), JR(�̃0)) of �̃0
re�ects the di�erence between the sample �̃0 and the model

�̃. So, it is reasonable to de
ne the di�erence degree dif� to
measure the di�erence between the sample and the model as
follows:

dif� = LLLLLJL (�̃) − @JL (�̃0)LLLLL + LLLLLJR (�̃) − @JR (�̃0)LLLLL . (18)

3.2. Frame of Discernment in Open World. According to the
basic framework of the generalized evidence theory [30], an
open world is absolute and a closed world is relative. Assume
the system to be concerned is not complete and the system
FOD Θ is constructed as Θ = {�1, �2, . . . , ��,Ø}, where Ø
denotes the unknown objects. Ø could be one unknown
object or the conjunction of several unknown objects. During
the procedure of applying GET, new target representation
model is generated by machine learning method along with
the accumulation of sensor reports to revise the existing
targetmodel library until the system is judged to be complete.

3.3. Pessimistic Function. As can be seen from (18), the
dif� re�ects the possibility that the sample data may be
distributed into the interval built by the training samples.
	e larger the dif�, the greater the deviation between
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Figure 2: Le� and right area between a triangle fuzzy number and standard fuzzy number.

the test sample and the training samplemodel, and vice versa.
From this point of view, we use the dif� as argument to
de
ne a pessimistic function and yield initial BPA, following
a pessimistic strategy: when dif� is greater than a threshold
value, the incremental rate of BPA is less than the decreasing
rate of dif�; on the contrary, when dif� is less than the
threshold value, the incremental rate of BPA is greater than
the decreasing rate of dif�. In this way, pessimistic function
can e�ectively re�ect the di�erence between test sample and
training sample models to generate the initial BPA.

De�nition 4 (pessimistic function). Consider

J = @ ⋅ N−�⋅(dif�/2), (19)

where @ denotes the height of sample triangular fuzzy
number, � denotes the di�erence coe�cient, which is used to
revise the membership degree of unknown samples, and dif�
denotes the sample di�erence de
ned as (18).

3.4. Procedures to Determine BPA. A �ow chart of the
proposed method is shown in Figure 3 and details are as
follows: Consider species / = {41, 42, . . . , 4�,Ø}, where
Ø denotes the unknown elements. Each species 4� has �

attributes4�1, 4�2, . . . , 4��, so the test sample O to be recognized
also has � attributes O1, O2, . . . , O�. We randomly choose �
instances for each species 4� and build the model:

P� = (��1, ��2, . . . , ���) , (20)

where P� is a � × � matrix and the Qth row P�(Q, :) denotes Q
attribution value of each sample of species 4�.
3.4.1. Step 1: Establish the Triangular Fuzzy Number Model

Matrix. A triangular fuzzy number model �̃�� = (���, ���, ���;1) for Q attribution of species 4� is established according to
the sample values, where

��� = min (P� (Q, :)) ,

��� = ∑P� (Q, :)
� ,

��� = max (P� (Q, :)) .
(21)

	en the triangular fuzzy numbermodels for each attribution

of species 4� can be represented as R� = (�̃�1, �̃�2, . . . , �̃��).
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Figure 3: 	e steps to determine BPA.

Furthermore, all the triangular fuzzy numbermodels for each
attribution of species 4� (S = 1, 2, . . . ,  ) can be acquired
and denoted as a  × � matrix R = (R1,R2, . . . ,R�)�,
where each column of R represents the triangular fuzzy
numbers belonging to the di�erent species but the same
attribution. As can be seen from Figure 4, there is o�en
some intersection between two triangular fuzzy numbers. In
most cases, the intersection is a generalized fuzzy number.
But in some cases, it is not a generalized fuzzy number,
as shown in Figure 4. For this particular case, it can be
processed by the method proposed by Xiao et al. [46] to
construct a generalized triangular fuzzy number. Besides,
if these is no intersection between two fuzzy numbers, a
special fuzzy number (0, 0, 0; 0) could be used to represent

a2 a1 = a3 b1 b3 b2 c1 = c2 c3 1

1

0

�

C̃

B̃Ã

Figure 4: Generalized fuzzy number yield by two normal fuzzy
numbers.

this case. To do the same operation on each column ofR, we
can get a fuzzy number matrix R� = (R1,R2, . . . ,R2�−1)�.
	e �th attribution value O� (1 ⩽ � ⩽ �) of the test
sample O to be recognized should be converted to a special

triangular fuzzy number Õ� = (O�, O�, O�; 1). Doing this
processing � times, we can get a triangular fuzzy number

matrix Õ = (Õ1, Õ2, . . . , Õ�). 	en R� and Õ can be merged
into a matrixR�. Nowwe need to normalize every triangular
fuzzy number of the matrixR� to [0, 1]. Each element of the
matrix R� is divided by  times of the maximum element
value, where  represents normalization coe�cient, which is
adjustable according to di�erent engineering application.

3.4.2. Step 2: Establish the Di
erentiationMatrix. In this step,
we need to calculate the le� and right average area (JL, JR)
for each triangular fuzzy number in matrix R� according to
(16) and (17). Based on the area, the sample di�erentiation
matrix dif� between each of the 
rst 2� − 1 rows in R� and
the (2� − 1) × � test sample O0 could be calculated.

3.4.3. Step 3: Calculate the Similarity Matrix J. For each
element in matrix dif�, a pessimistic function can be de
ned
according to (19):

J (S, Q) = @�� ⋅ N−�⋅(dif�(�,�)/2); (22)

now we could obtain a similarity matrix J0, which denotes
the similarity degree between the test sample and the target
species models. Assume FOD is incomplete; we 
rst calculate
the value of the Qth (Q = 1, 2, . . . , �) column of matrix J0.
	en if the result is larger than 1, the Qth column should be
normalized and set J(2�, Q) = 0 which denotes the similarity
degree between the test sample O0 and Ø; else if the result is
less than 1, J(2�, Q) = 1 − J(:, Q) is regarded as the similarity
between the test sample O0 and Ø, where J(:, Q) represents the
sum of the 
rst 2�−1 rows in similarity matrix J0. Finally, the
modi
ed 2� × � similarity matrix J0 could be regarded as the
initial BPA matrix J2�×�.
3.4.4. Step 4: Calculate Evidence Disctance. Taking each col-
umn J(:, Q) (Q = 1, 2, . . . , �) in matrix J2�×� as a piece of
evidence or as a vector, we could calculate the distance
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between any two bodies of evidence based on (8) to obtain
a distance matrix [*��]�×�, where *�� represents the distance
between the Sth and Qth column of the initial BPA matrix
J2�×�. Obviously, *�� equals *��; that is, distance matrix
[*��]�×� is a symmetrical matrix, which can simplify the
calculation to a great extent.

3.4.5. Step 5: Determine the Extent of Con�ict of Evidence.
First, we can sum each row *(Q, :) (Q = 1, 2, . . . , �) in
matrix *�×� and obtain a vector �0; it can be normalized
as a vector � = �0/max(�0), where max(�0) denotes the
maximum element of �0. As debated in Section 1, classical
D-S theory has a vital problem that combining two highly
con�icting evidences could get even a wrong result. So
a con�ict threshold U (0 ⩽ U ⩽ 1) should be set 
rst accord-
ing to concrete engineering application. If the maximum
element value of vector � is less than con�ict threshold U,
the con�ict degree is acceptable and the initial BPAs could
be combined with GCR (see (12) and (13)) directly; otherwise
the initial BPAs should be adjusted. 	e speci
c process is in
Section 3.4.6, with the discount coe�cient method.

3.4.6. Step 6: Adjust the Con�icting Evidence by Using the
Discount Coe�cient Method. 	is step will be operated if
evidence con�ict is over threshold U. In this step, con�ict
resolution between initial BPAs should 
rstly be done. 	en
GCR could be applied to combine the preprocessed BPAs.
Computational procedure is summarized as follows:

(1) Construct a comparative matrix �with the average of

each row (��) in distance matrix*�×�:
� (S, Q) = ��

�� , (23)

where �(S, Q) is the Sth row and Qth column element in

matrix �, �� is the Sth row of *�×�, and �� is the Qth
row of*�×�.

(2) Calculate eigenvector (@�) corresponding to the max-
imum eigenvalue and normalize @� as discount coef-

cient @.

(3) Discount the initial BPAs with coe�cient @ to obtain
the 
nal BPAs.

(4) Combine the 
nal BPAs with GCR and then the 
nal
recognized result will be acquired.

4. Experimental Analysis

In this paper, we take Iris dataset [47] to demonstrate the
e�ectiveness of the proposed method.	e Iris dataset, which
is perhaps the best known database to be found in pattern
recognition literature, involves classi
cation of three species
of the Iris �owers, Iris setosa (S), Iris versicolour (E), and Iris
virginica (V), on the basis of four numeric attributes of the
Iris �ower: sepal length (SL) in cm, sepal width (SW) in cm,
petal length (PL) in cm, and petal width (PW) in cm [47].

In the Iris dataset, there are 50 instances for each of three
species. 	e data are obtained from the UCI repository (UCI
Machine Learning Repository: http://archive.ics.uci.edu/ml/
datasets/Iris) of machine learning databases. Among 50
instances of each species, 30 instances are randomly selected
as the training set, and the remaining 20 instances serve as the
test set. Each of four attributes is regarded as an information
source, and correspondingly there are three training sets and
three test sets.

4.1. To Recognize Known Species of Iris Dataset. Before the
experiment, the fully optimized parameter settings should be
obtained 
rst by training the dataset. 	e con�ict threshold
U can be set according to experts’ experience usually. In this
experiment, U = 0.2. It means that the con�ict is in the
acceptable scale only if themaximum con�ict between bodies
of evidence is less than 0.2. Otherwise the initial BPAs should
be adjusted. 	e di�erence coe�cient � can be obtained by
an iterative program. 	e di�erence coe�cient � would be
adjusted in each iterative step. When the average recognition
rate of known species is up to an acceptable scale and the
deviation of the average recognition rate between current
step and last step was tiny enough, the parameter � would
be obtained. A�er the training process, we have obtained the
optimized parameter settings as {� = 12.0, U = 0.2}. Because
these optimized parameters 
t the dataset well, parameters
are all set as the optimized settings in the following.

Following the steps in Section 3.4, triangular fuzzy num-
bers of the training samples are built, shown in Table 1 and in
Figure 5.

According to Step 5 in Section 3.4.5, we can obtain BPAs
for each attribute of a Setosa instance (5.1, 3.5, 1.4, 0.2) shown
in Table 2.

A�er con�ict resolution (if needed), these BPAs in Table 2
could be combined with GCR. 	e results are as follows:

�(S) = 0.9655,
� (E) = 0.0344,
� (V) = 0.0002,
� (SE) = 0,
� (SV) = 0,
� (EV) = 0,
� (SEV) = 0,
� (Ø) = 0.

(24)

As can be seen, the combination result illustrates that the test
instance (5.1, 3.5, 1.4, 0.2) belongs to species setosa, which is
consistent with the actual situation.

4.2. To Recognize Unknown Species of Iris Dataset. In order
to check the proposed method’s ability to recognize the
unknown species of data in an open world, triangular fuzzy
number models are constructed only by two species of Iris
dataset selected randomly from the three species this time.
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Table 1: Fuzzy number model constructed by 90 Iris data instances.

Item
Attributes

SL SW

S (4.4, 4.94, 5.8; 1.0) (3.0, 3.47, 4.0; 1.0)

E (4.9, 5.48, 6.2; 1.0) (2.0, 2.65, 3.4; 1.0)

V (6.1, 6.85, 7.7; 1.0) (2.6, 2.94, 3.2; 1.0)

SE (4.9, 5.2625, 5.8; 0.625) (2.0, 2.65, 3.4; 1.0)

SV (0, 0, 0; 0) (2.6, 2.94, 3.2; 1.0)

EV (6.1, 6.151, 6.20; 0.068) (2.6, 2.849, 3.2; 0.733)

SEV (0, 0, 0; 0) (2.6, 2.849, 3.2; 0.733)

Item
Attributes

PL PW

S (1.0, 1.43, 1.9; 1.0) (0.1, 0.24, 0.6; 1.0)

E (3.3, 3.9, 4.5; 1.0) (1.0, 1.2, 1.6; 1.0)

V (4.8, 5.71, 6.7; 1.0) (1.4, 1.99, 2.3; 1.0)

SE (0, 0, 0; 0) (0, 0, 0; 0)

SV (0, 0, 0; 0) (0, 0, 0; 0)

EV (0, 0, 0; 0) (1.4, 1.519, 1.6; 0.202)

SEV (0, 0, 0; 0) (0, 0, 0; 0)

	us, the remaining species of Iris dataset could be regarded
as test sets, which are unknown to the recognition system.
For example, we randomly selected 30 instances from Setosa
(S) and Versicolour (E), respectively, as training samples to
construct triangular fuzzy number model and the remaining
20 instances in each species as test samples. And parameters
should also be set as the optimized settings obtained in
the training process. 	e training samples’ triangular fuzzy
number model is shown in Table 3.

For a known Setosa instance (4.9, 3.1, 1.4, 0.2), we can
obtain BPAs for each attribute in Table 4, according to Step 5
in Section 3.4.5.

A�er con�ict resolution (if needed), these BPAs in Table 4
should be combined with GCR. 	e results are as follows:

�(S) = 0.9629,
� (E) = 0.0371,
� (SE) = 0,
� (Ø) = 0.

(25)

As can be seen, the combination result illustrates that the test
instance (4.9, 3.1, 1.4, 0.2) belongs to species setosa.

Similarly, to recognize an instance from the open world,
we can obtain BPAs for each attribute of a Virginica (V)
instance (unknown species) (6.3, 3.3, 6.0, 2.5) in Table 5. As
can be seen from Table 5, the di�erence function dif� (see
(18)) and pessimistic function (see (19)) indeed recognized
this instance as a member of species V.

A�er con�ict resolution (if needed), these BPAs in Table 5
should be combined again with GCR. 	e results are as
follows:

�(S) = 0.0009,
� (E) = 0.3955,
� (SE) = 0,
� (Ø) = 0.6036.

(26)

Table 2: BPAs for each attribute of a Setosa instance.

Item
Attributes

SL SW PL PW

S 0.3232 0.1828 0.8279 0.8321

E 0.2790 0.1369 0.1536 0.1595

V 0.2104 0.1579 0.0185 0.0084

SE 0.0717 0.1369 0 0

SV 0 0.1579 0 0

EV 0.1157 0.1138 0 0

SEV 0 0.1138 0 0

Ø 0 0 0 0

Table 3: Fuzzy number model constructed by 60 Iris data instances.

Item
Attributes

SL SW

S (4.7, 5.19, 5.7; 1.0) (3.1, 3.62, 4.4; 1.0)

E (5.1, 5.97, 6.7; 1.0) (2.5, 2.84, 3.1; 1.0)

SE (5.1, 5.478, 5.7; 0.4383) (0, 0, 0; 0)

Item
Attributes

PL PW

S (1.3, 1.5, 1.7; 1.0) (0.2, 0.28, 0.4; 1.0)

E (3.0, 4.23, 5.0; 1.0) (1.1, 1.36, 1.7; 1.0)

SE (0, 0, 0; 0) (0, 0, 0; 0)

Table 4: BPAs for each attribute of a Setosa instance.

Item
Attributes

SL SW PL PW

S 0.4448 0.3888 0.8036 0.8256

E 0.3352 0.3888 0.1964 0.1559

SE 0.2200 0.2224 0 0

Ø (V) 0 0 0 0.0185

And the recognition result suggests that the test instance
(6.3, 3.3, 6.0, 2.5) is an unknown species of Iris datasets.

In order to further illustrate the validity and accuracy
of the proposed method, the same experiments have been
done 100 times. And to be satis
ed, the average recognition
rate about known-species Iris dataset (in closed world) is up
to 81.55% and the average recognition rate about unknown-
species Iris dataset (in open world) is up to 73.40%. Several
unrecognized data in one experiment are shown in Table 6.
As can be seen from Table 6, two instances of species E were
recognized as species V, and two datasets of species V were
recognized as species E andØ (that is, species S), respectively.
And two instances of species Ø (species S) were recognized as
species E.

It is not di�cult to explain the wrong results. FromTable 1
and Figure 5 we can see that only attributes PL and PW of
species setosa are totally separated from species E and species
V, and the two remaining attributes are all intersected with
others. At the same time, species E and species V intersect
with each other for each of attributes. Especially since the
length of interval overlapping in the SL and SW attribute
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Figure 5: 	e fuzzy number representation of each attribute of each species.

Table 5: BPAs for each attribute of a Virginica instance.

Item
Attributes

SL SW PL PW

S 0.0118 0.2214 0 0

E 0.0434 0.0188 0.0011 0.0001

SE 0.0313 0.0983 0 0

Ø (V) 0.9136 0.6615 0.9989 0.9999

is large, all the attributes of some data intersect with each
other and it is di�cult to distinguish these attributes using
pessimistic function. Even so, the simulation examples show
that the average recognition rate for the instances of the
known species is up to 81.55% and the average recognition
rate of the unknown-species instances is up to 73.40%.
Moreover, during the process of recognition, the number of
training samples is small (only 30 instances in each species),
and test samples are totally separated from training samples.

Table 6: Unrecognized instances in an experiment.

SL SW PL PW Sample species Recognition result

5.9 3.2 4.8 1.8 E V

6.7 3.1 4.7 1.5 E V

7.7 2.6 6.9 2.3 V Ø

6.1 2.6 5.6 1.4 V E

5.0 3.0 1.6 0.2 Ø E

5.4 3.4 1.5 0.4 Ø E

It scienti
cally proves that the proposedmethod to determine
BPA has great e�ectiveness and could work well with GET.

5. Conclusion

In the application of data fusion, the generalized evi-
dence theory (GET) has more advantages than the classical
Dempster-Shafer evidence theory due to its ability to deal
with evidence con�ict when the frame of discernment is
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incomplete. How to determine the generalized basic proba-
bility assignment (GBPA) in an open world is still an open
issue. A method to construct GBPA is proposed in this
paper. 	is method uses training samples to build triangular
fuzzy number models for each attribute of the multiattribute
dataset. 	en, the di�erentiation function and the similarity
function are de
ned. 	e initial GBPAs are generated by the
similarity function, and bodies of evidence are fused with
Dempster’s rule or the generalized combination rule (GCR)
according to the actual target environment. 	is method
makes full use of the advantages of GET to deal with these
targets in the open world. In order to reduce the impact
of con�icting evidence on the fusion results, the distance
between each body of evidence is calculated and con�ict
resolution is to be done in the initial stage of determining
GBPAs to eliminate human interference and environment
noise. Several numerical examples show that the method is
concise and e�ective, and this method has a very signi
cant
data processing capacity of small samples based on a good
theoretical foundation. 	e proposed method to obtain
GBPA can e�ectively overcome the problem of subjectivity,
which has strong generality. 	e classi
cation of Iris data is
used to illustrate the e�ciency and the low computational
complexity of the proposed method. 	is method will help
to promote GET and use GCR e�ectively.
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