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ABSTRACT
The light-cone (LC) effect imprints the cosmological evolution of the redshifted 21-cm signal
Tb(n̂, ν) along the frequency axis that is the line-of-sight (LoS) direction of an observer.
The effect is particularly pronounced during the epoch of reionization (EoR) when the mean
hydrogen neutral fraction x̄H I(ν) falls rapidly as the universe evolves. The multifrequency
angular power spectrum C�(ν1, ν2) quantifies the entire second-order statistics of Tb(n̂, ν)
considering both the systematic variation along ν due to the cosmological evolution and also
the statistically homogeneous and isotropic fluctuations along all the three spatial directions
encoded in n̂ and ν. Here, we propose a simple model where the systematic frequency (ν1, ν2)
dependence of C�(ν1, ν2) arises entirely due to the evolution of x̄H I(ν). This provides a new
method to observationally determine the reionization history. Considering an LC simulation
of the EoR 21-cm signal, we use the diagonal elements ν1 = ν2 of C�(ν1, ν2) to validate our
model. We demonstrate that it is possible to recover the reionization history across the entire
observational bandwidth provided we have the value x̄H I at a single frequency as an external
input.

Key words: methods: statistical – dark ages, reionization, first stars – diffuse radiation – large-
scale structure of Universe – cosmology: theory – observations.

1 IN T RO D U C T I O N

Observations of the redshifted 21-cm signal from neutral hydro-
gen (H I) are the most promising probe of the epoch of reioniza-
tion (EoR). A considerable amount of effort is underway to detect
the EoR 21-cm signal using ongoing and upcoming radio interfero-
metric experiments, e.g. GMRT (Paciga et al. 2013), LOFAR (van
Haarlem et al. 2013; Yatawatta et al. 2013), MWA (Bowman et al.
2013; Tingay et al. 2013; Dillon et al. 2014), PAPER (Parsons et al.
2014; Ali et al. 2015; Jacobs et al. 2015), SKA (Mellema et al.
2013; Koopmans et al. 2015), and HERA (DeBoer et al. 2017).

Using the redshifted H I 21-cm signal one can, in principle, map
the H I distribution in the intergalactic medium in 3D with the line-
of-sight (LoS) axis being the frequency (or redshift). However, an
observer’s view of the universe is restricted to the backward light
cone (LC), and the H I 21-cm signal evolves along the LoS. This
gives rise to the LC effect that has a significant impact on the EoR

� E-mail: Rajesh.Mondal@sussex.ac.uk

21-cm signal and its various statistics. This has been taken into
account by Barkana & Loeb (2006) and Zawada et al. (2014) while
modelling the LC anisotropies in the two-point correlation function.
Datta et al. (2012, 2014) and La Plante et al. (2014) have examined
the impact of this effect on the EoR 21-cm 3D power spectrum,
which is the primary observable of the first generation of radio
interferometers.

Another important LoS effect is the redshift space distor-
tion (RSD) due to the peculiar velocities of H I. Similar to the LC
effect, RSD introduces anisotropies in the 21-cm signal (Bharad-
waj & Ali 2004) along the LoS. Although, there has been substantial
effort invested in including the RSD in EoR simulations by Mao
et al. (2012), Majumdar, Bharadwaj & Choudhury (2013), Majum-
dar et al. (2016), and Jensen et al. (2013), the problem of how to
properly include the peculiar velocities of H I in LC simulation was
addressed by Mondal, Bharadwaj & Datta (2018).

The statistical homogeneity (or ergodicity) along the LoS gets
destroyed by the LC effect. One of the main problems regarding the
interpretation of the EoR 21-cm signal through its 3D power spec-
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trum P (k) lies in the signal’s non-ergodic nature. The 3D power
spectrum P (k) assumes that the signal is ergodic and periodic,
thus it provides a biased estimate of the statistics of EoR signal
(Trott 2016). In contrast, the multifrequency angular power spec-
trum (hereafter MAPS) C�(ν1, ν2) (Datta, Choudhury & Bharadwaj
2007) does not have any such intrinsic assumption in its definition.
Mondal et al. (2018) have demonstrated that the entire second-order
statistics of the non-ergodic LC EoR signal can be expressed by the
MAPS.

In this letter, we demonstrate, as a proof of concept, how one
can use the intrinsic non-ergodicity of the LC EoR 21-cm signal to
uncover the underlying reionization history. The reionization history
is one of the most sought-after outcomes of any experiment aiming
to observe the EoR. We propose and validate a formalism whereby
the measured MAPS can be used to extract the reionization history
in a model-independent manner. In this letter, we have used the
Planck+WP best-fitting values of cosmological parameters (Planck
Collaboration XVI 2014).

2 SI M U L AT I N G TH E L C 2 1 - C M S I G NA L F RO M
T H E EO R

In this section, we briefly summarize the simulation technique used
for generating the LC EoR 21-cm signal. The reader is referred to
section 2 of Mondal et al. (2018) for a detailed description of the sim-
ulations. Here, we have considered a region that spans the comoving
distance range rn = 9001.45 Mpc (nearest) to rf = 9301.61 Mpc (far-
thest), which corresponds to the frequencies νn = 166.91 MHz and
νf = 149.04 MHz, respectively. We have simulated snapshots of the
H I distribution (coeval cubes) at 25 different comoving distances
ri in the aforesaid r range (see fig. 2 of Mondal et al. 2018), which
were chosen so that the mean neutral Hydrogen fraction x̄H I varies
approximately by an equal amount in each interval.

We have used seminumerical simulations to generate the coeval
ionization cubes with a comoving volume V = [300.16 Mpc]3. These
simulations involve three main steps. First step involves a particle-
mesh N-body code to simulate the dark matter distribution. The N-
body run has 42883 grids with 0.07 Mpc grid spacing using 21443

dark matter particles (particle mass 1.09 × 108 M�). In the next
step, a Friends-of-Friends (FoF) algorithm is used to identify col-
lapsed halos in the dark matter distribution. A fixed linking length of
0.2 times the mean inter-particle distance is used for the FoF and we
have set the criterion that a halo should have at least 10 dark matter
particles. In the third and last step, an ionization field is produced
following an excursion set formalism (Furlanetto, Zaldarriaga &
Hernquist 2004). For this, we have adopted the ionization param-
eters {Nion, Mhalo,min, Rmfp} = {23.21, 1.09 × 109 M�, 20 Mpc},
identical to Mondal, Bharadwaj & Majumdar (2017). This final
step closely follows the assumption of homogeneous recombina-
tion adopted by Choudhury, Haehnelt & Regan (2009). The H I dis-
tributions in our simulations are represented by particles whose
H I masses were calculated from the neutral Hydrogen fraction xH I
interpolated from its eight adjacent grid points. The positions, pe-
culiar velocities, and H I masses of these particles are then saved for
each such coeval cube.

To construct the LC map, we slice the coeval maps at 25 different
radial distances ri, and construct the LC map for the region between
ri and ri + 1 with the H I particles from corresponding slices of
the coeval snapshot. Finally, we map the H I particles within the
LC box from r = r n̂ to observing frequency ν and direction n̂,
which are the appropriate variables for the observations of redshifted
21-cm brightness temperature fluctuations δTb(n̂, ν) in 3D. Note

that for this mapping, the cosmological expansion and the radial
component of the H I peculiar velocity n̂ · v together determine
the observed frequency ν for the 21-cm signal originating from
the point n̂r . Our LC box is centred at the comoving distance rc =
9151.53 Mpc (νc = 157.78 MHz), which corresponds to the redshift
≈8. The mass-averaged H I fraction x̄H I at the centre of the LC
simulation is ≈0.51, and it changes from x̄H I ≈ 0.65 (at farthest
end) to x̄H I ≈ 0.35 (at nearest end), following the reionization
history of Mondal et al. (2018).

3 MO D E L L I N G TH E M U LT I F R E QU E N C Y
ANGULAR POW ER SPECTRUM

The issue under consideration here is ‘How to quantify the statistics
of the non-ergodic EoR 21-cm signal δTb(n̂, ν) in 3D?’. We know
that the LC effect makes the cosmological 21-cm signal (δTb(n̂, ν))
evolve significantly along the LoS direction ν. The 3D power spec-
trum P (k) is not accurate when the statistical properties of the
signal evolve along a specific direction. Additionally, the Fourier
transform imposes periodicity on the signal, an assumption that can-
not be justified along the LoS when the LC effect has been taken into
account. As a consequence, the 3D power spectrum fails to quantify
the entire information in the signal and gives a biased estimate of
the statistics (Trott 2016; Mondal et al. 2018). In contrast to this the
MAPS C�(ν1, ν2) quantifies the entire second-order statistics of the
EoR 21-cm signal even in the presence of the LC effect (Mondal
et al. 2018).

The redshifted 21-cm brightness temperature fluctuations are de-
composed into spherical harmonics as

δTb(n̂, ν) =
∑
�,m

a�m(ν) Y m
� (n̂) , (1)

and these are used to define the MAPS (Datta et al. 2007) using

C�(ν1, ν2) = 〈
a�m(ν1) a∗

�m(ν2)
〉
. (2)

This takes into account the assumption that the EoR 21-cm signal
is statistically homogeneous and isotropic with respect to different
directions in the sky; however, it does not assume the signal to be
statistically homogeneous along the LoS direction ν. Considering
the particular situation where the signal is ergodic (statistically
homogeneous) along the LoS, we have C�(ν1, ν2) = C�(�ν), i.e. it
depends only on the frequency separation �ν = ‖ν1 − ν2‖.

Under the assumption that the H I spin temperature is much larger
than the CMB temperature, i.e. Ts � Tγ, the redshifted 21-cm bright-
ness temperature fluctuations (equations 4 and A5 of Bharadwaj &
Ali 2005) can be expressed as (Mondal et al. 2018)

Tb(n̂, ν) = T̄0
ρH I
ρ̄H

(
H0νe

c

) ∣∣∣∣ ∂r

∂ν

∣∣∣∣ , (3)

where

T̄0 = 4.0 mK

(

bh

2

0.02

) (
0.7

h

)
, (4)

ρH I/ρ̄H is the ratio of the neutral hydrogen density to the mean
hydrogen density, and r refers to the comoving distance from which
the redshifted H I emission, observed at frequency ν, is originated.
The factors ρH I/ρ̄H and ∂r/∂ν both evolve along the LoS direction
(ν or z) due to a variety of factors including the evolution of various
quantities pertaining to the background cosmological model and
the growth of density perturbation in ρH I. However, during the
EoR the evolution of the mean mass-weighted neutral hydrogen
fraction x̄H I = ρ̄H I/ρ̄H by far dominates over the other factors
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that cause Tb(n̂, ν) to evolve along the LoS direction. Based on this,
we propose a model

C�(ν1, ν2) = x̄H I(ν1) x̄H I(ν2) CE
� (�ν) , (5)

where CE
� (�ν) is ergodic along the LoS, and the factor

x̄H I(ν1) x̄H I(ν2) that accounts for the evolution of the mean hy-
drogen neutral fraction breaks the ergodicity along the LoS. We
expect the above relation to hold at small scales where the H I den-
sity traces the underlying DM density. However, at scales larger
than the typical bubble size the evolution is expected to be domi-
nated by the evolution of bubble sizes and the above relation may
not stay valid in that regime. This will provide a handle to measure
the evolution of the H I neutral fraction x̄H I(z) as reionization pro-
ceeds. Unfortunately, this will only allow us to determine the ratio
x̄H I(z2)/x̄H I(z1) at two different epochs, and it will not allow us
to uniquely determine x̄H I(z1) or x̄H I(z2). For the purpose of this
letter, we consider

x̄H I(z2)

x̄H I(z1)
=

√
C�(ν2, ν2)

C�(ν1, ν1)
, (6)

which does not uniquely determine the H I reionization history.
However, the reionization history is uniquely specified if we com-
bine these measurements with a single measurement of x̄H I at any
particular epoch say z1 using an independent method (e.g. Majum-
dar, Bharadwaj & Choudhury 2012).

4 VA L I DAT I N G O U R M O D E L

As a first step towards validating our model, we consider a situation
where the brightness temperature fluctuations are, by construction,
of the form

δTb(n̂, ν) = f (ν) × δe(n̂, ν) , (7)

where f(ν) is a known function and δe(n̂, ν) is a random field that is
isotropic in n̂ and ergodic in ν. Using this, we investigate whether
our method of analysis can determine f(ν) from the estimated
C�(ν1, ν2). Here, we have simulated 10 000 statistically indepen-
dent realizations of homogeneous and isotropic Gaussian random
fields δe(x) corresponding to a realization of the CDM power spec-
trum PDM(k). Working in the regime where the flat-sky approxi-
mation holds true, we have converted the comoving displacement
with respect to the centre of the box x = (x⊥, x‖) to angle and fre-
quency, respectively, using θ = x⊥/r and ν − νc = x‖/r ′ where we
assume that the centre of the simulation box is located at a redshift
zc = 1420 MHz/νc with corresponding comoving distance r and
with r

′ = dr/dν evaluated at νc. The resulting δe(θ, ν) is statistically
isotropic in θ and ergodic in ν. The ergodicity along the LoS is
broken by the function f(ν), which we have assumed to be of the
form

f (ν) = 1 − a

(
ν − νc

B

)
. (8)

Here, f(ν) is a linear function that has a value f(νc) = 1 at the centre
of the frequency bandwidth B, and it has values f = 1 − a/2 and f =
1 + a/2 at the nearest and farthest edges of the band, respectively.
In principle, one can choose different forms of f(ν). The aim here
is to mimic a situation where we are analysing observations of a
part of the reionization history where the evolution of the neutral
fraction is approximately linear (see fig. 2 of Mondal et al. 2018).
Different values of a correspond to different values of the slope or
equivalently different values of the reionization rate. The different

panels of Fig. 1 show δTb(θ , ν) for a single realization of δe(x)
considering different values of a.

We have used the simulated δTb(θ , ν) to estimate C�(ν1, ν2) in
the flat-sky approximation (Mondal et al. 2018). Here, we focus
on the diagonal elements ν1 = ν2 where the MAPS signal peaks.
In principle, one can use the full information contained in MAPS
matrix C�(ν1, ν2) to analyse the results. However, for simplicity
we have only considered the diagonal terms. We have used the
ratio A

√
C�(ν)/C̄� to determine f(ν) from our simulations. Here,

C�(ν) ≡ C�(ν, ν), C̄� = B−1
∫ B/2

−B/2 C�(ν) dν, and A is a normaliza-
tion constant whose value has to be externally specified. Here, we
use the prior information that f(νc) = 1 to decide the value of A.
Fig. 2 shows the ratio A

√
C�(ν)/C̄� evaluated at different � values,

which all have been shown as a function of ν − νc. We have used
10 equally spaced logarithmic � bins. We find that the ratio is inde-
pendent of �, i.e. they all overlap. We also see that the ratio is able
to correctly recover the functional form f(ν) from the simulations
shown in Fig. 1. This validates our method of analysis.

We next apply the same method to our LC simulations to test if
our model (equation 5) actually holds for the simulated EoR 21-cm
signal. The LC EoR 21-cm signal is undoubtedly non-ergodic along
the LoS. An earlier work (fig. 9 of Mondal et al. 2018) demonstrates
that C�(ν)/C̄� − 1 shows a systematic variation with ν, the value of
C�(ν)/C̄� − 1 is found to increase as we move from the nearest to the
farthest end of the simulation box along LoS. This result correlates
well with the fact that x̄H I increases along the LoS direction. This
systematic variation, however, is only seen at the large � bins (small
angular scales) where we have a large number of Fourier modes in
each bin. This systematic variation is not seen in the small � bins,
partly because of the fewer number of Fourier modes in each bin
(leading to a large sample variance) and partly due to the fact that
the evolution of the H I signal at these scales is dominated by the
evolution of ionized bubbles not the x̄H I. To avoid this uncertainty,
we restrict the � range to � > 2571 for the present analysis.

We divide the � range corresponding to our LC simulation into
equally spaced logarithmic bins, and we compute

√
C�(ν)/C̄� for

all of these bins for which � > 2571. We see that the values of√
C�(ν)/C̄� display a large scatter (Fig. 3), i.e. for a fixed ν we

find a range of values of
√

C�(ν)/C̄� across the different � bins.
We attempt to mitigate the effect of these variations by estimat-
ing C(ν) that is obtained by combining the signal in all the modes
with � > 2571 into a single bin. Note that the EoR 21-cm sig-
nal is highly non-Gaussian (Bharadwaj & Pandey 2005; Mondal
et al. 2015; Majumdar et al. 2018), which makes it quite non-
trivial to predict errors for the estimated C(ν) (Mondal, Bharad-
waj & Majumdar 2016), and we have not attempted this here.
Apart from the cosmic variance there will be instrumental noise,
which will further worsen our predictions (i.e. the goodness of fit
χ2 of our model).

We find that in addition to a systematic increase with decreas-
ing frequency, the values of

√
C(ν)/C̄ exhibit an apparently ran-

dom fluctuation with varying frequency (Fig. 3). In order to model
this systematic variation, we have fitted a second-order polyno-
mial

√
C(ν)/C̄ = a0 + a1

(
ν−νc

B

) + a2

(
ν−νc

B

)2
to the values esti-

mated from the LC simulation. We have used a least-squares fit to
obtain the best-fitting a0, a1, and a2. We find that the best-fitting
curve captures the systematic variation of

√
C(ν)/C̄ quite well and

the residuals after subtracting out the fit appear to be consistent with
random fluctuations around zero (the lower panel of Fig. 3). If our
model (equation 5) holds, we then have x̄H I(ν) = A

√
C(ν)/C̄. As

mentioned earlier, it is necessary to introduce one additional input
to determine the value of A. Here, we use the information that we
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Figure 1. This shows a section through one realization of the different Gaussian brightness temperature fluctuation fields for a = 0 (ergodic), 0.5, and 1.0 (see
equation 8). In the panels, the value of a increases from the left to the right.

Figure 2. This shows A
√

C�(ν)/C̄� for different values of a as shown in
the figure. The points show results from our simulations and the solid lines
show the function f(ν) (equation 8).

have x̄H I ≈ 0.51 at νc = 157.78 MHz. We use this in conjunction
with the polynomial fit to determine the value of A. Fig. 3 shows
a comparison of x̄H I(ν) corresponding to the reionization history
(see fig. 2 of Mondal et al. 2018) of our LC simulation and the
best-fitting values of A

√
C(ν)/C̄ estimated from the LC simulation.

We find that the two are in close agreement, thereby validating our
model.

5 SU M M A RY A N D C O N C L U S I O N S

The LC effect imprints the cosmological evolution history on the
redshifted H I 21-cm signal Tb(n̂, ν) along the LoS direction ν. This
effect is particularly pronounced during EoR when x̄H I(ν) falls
rapidly as the universe evolves. The MAPS C�(ν1, ν2) fully quanti-
fies the second-order statistics of Tb(n̂, ν). It does not assume the
signal to be ergodic along the LoS direction ν, and the frequency
(ν1, ν2) dependence of C�(ν1, ν2) quantifies both the systematic vari-
ation and the random fluctuations of the signal along ν. Here, we
have proposed a simple model (equation 5) where the systematic
variations of C�(ν1, ν2) with (ν1, ν2) arise entirely due to the evolu-
tion of x̄H I(ν). This provides a unique method to observationally
determine the reionization history of the universe.

Figure 3. The upper panel shows A
√

C�(ν)/C̄� estimated from our LC EoR
simulation. The red points show the results at different � bins with � > 2571.
The blue points show A

√
C(ν)/C̄, which have been estimated by combining

all the modes with � > 2571 into a single bin. The light blue solid line shows
the second-order polynomial fit to the values of A

√
C(ν)/C̄ and the lower

panel shows the residual after subtracting out the fit. The black solid line
shows the values of x̄H I(ν) corresponding to the reionization history of our
LC simulation. The horizontal green line shows the value x̄H I(νc) = 0.51.

In this letter, we have used an LC simulation of the EoR 21-
cm signal to estimate C�(ν1, ν2). Using the diagonal elements
C�(ν) ≡ C�(ν, ν), we show that our model (equation 5) is indeed
valid for large values of �. Assuming an external input, which pro-
vides us with the value of x̄H I(νc) at a particular frequency νc, we
demonstrate that it is possible to recover the reionization history
x̄H I(ν) from the estimated C�(ν) across the entire observational
bandwidth B. The accuracy of our estimates depends on how accu-
rately the value of x̄H I is measured at a particular frequency. An
incorrect determination of x̄H I will result in a biased estimate of
the reionization history.

The present analysis of C�(ν1, ν2) is restricted to the diagonal
elements (ν1 = ν2). The analysis can be enlarged to include the
information contained in the non-diagonal elements and thereby
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improve the signal-to-noise ratio for the recovered x̄H I(ν). It is
however necessary to note that the EoR 21-cm signal is largely lo-
calized in the elements within the vicinity of the diagonal elements,
and the elements at a large frequency separation ‖ν1 − ν2‖ do not
contain significant signal (Bharadwaj & Ali 2005; Datta et al. 2007).
We plan to address these issues in a future work.

Our analysis is a proof of concept and based on simple seminu-
merical simulations. The details will possibly differ if one uses
high-resolution simulations or includes fully coupled 3D radiative
transfer (e.g. Iliev et al. 2006; Gnedin, Becker & Fan 2017). How-
ever, one can treat our predictions as being characteristic of the
qualitative nature of the non-ergodic LC EoR 21-cm signal.
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