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Abstract. A method for estimating the occurrence of freez-

ing rain (FZRA) in gridded atmospheric data sets was eval-

uated, calibrated against SYNOP weather station observa-

tions, and applied to the ERA-Interim reanalysis for climato-

logical studies of the phenomenon. The algorithm, originally

developed at the Finnish Meteorological Institute for detect-

ing the precipitation type in numerical weather prediction,

uses vertical profiles of relative humidity and temperature as

input. Reanalysis data in 6 h time resolution were analysed

over Europe for the period 1979–2014. Mean annual and

monthly numbers of FZRA events, as well as probabilities

of duration and spatial extent of events, were then derived.

The algorithm was able to accurately reproduce the observed,

spatially averaged interannual variability of FZRA (correla-

tion 0.90) during the 36-year period, but at station level rather

low validation and cross-validation statistics were achieved

(mean correlation 0.38). Coarse-grid resolution of the reanal-

ysis and misclassifications to other freezing phenomena in

SYNOP observations, such as ice pellets and freezing driz-

zle, contribute to the low validation results at station level.

Although the derived gridded climatology is preliminary, it

may be useful, for example, in safety assessments of critical

infrastructure.

1 Introduction

Freezing rain (FZRA) is liquid, supercooled precipitation

which freezes when coming into contact with solid objects,

forming a coating of ice (World Meteorological Organisa-

tion, 2010, 2011). It is a relatively rare but high-impact win-

tertime weather phenomenon, and in Europe it affects mainly

the central, eastern and northern parts of the continent. Al-

though major events resulting in heavy ice accretion are not

as common as lighter cases, the direct damages they cause

to critical infrastructure (transportation, communication, and

energy), and forestry are substantial. For example, the ice

coating formed on trees and power lines causes them to fail,

leading to severe power outages, transportation disruption,

delays in emergency responses and severe economic losses

(Call, 2010; Lambert and Hansen, 2011). Lighter freezing

rain events are also harmful because of their indirect effects,

the most important being the reduced friction on road sur-

faces that results in increased rates of accidents, injuries, and

difficulties in transportation (Degelia et al., 2015).

During recent years some major events have been expe-

rienced across Europe. Between 31 January and 3 February

2014 a prolonged, heavy FZRA and blizzard event hit the

Alpine region, Hungary, and the Balkan Peninsula. In Slove-

nia, over these 4 days, 40–300 mm precipitation fell and re-

sulted in 10 cm accumulation of ice (Markosek, 2015). Se-

vere damage was caused to critical infrastructure, e.g. 30 km

of power lines were completely destroyed and 174 km were

inoperative, while railways and road traffic were heavily dis-

rupted or closed for several days. Over 0.5 million hectares

of forest were damaged, and the total cost resulted in around

EUR 400 million (Vajda, 2015). In Croatia, over 80 % of the

population were left without electricity (Editorial, 2014).

Other severe cases include the Moscow FZRA event dur-

ing 25–26 December 2010, when flights were cancelled at

the Domodedovo Airport and power supplies to trains, trams,

and buses were destroyed; and the 13 December 2012 case,

when the British Isles and France suffered from a mix of

freezing rain and snow.
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Despite the severe impacts of FZRA events, only a few

publications concerning the European climatology of this

phenomenon currently exist. Carrière et al. (2000) provided

a climatology of freezing precipitation (including FZRA,

freezing drizzle, and ice pellets) based on SYNOP weather

station reports from three winters. Bezrukova et al. (2006)

and Groisman et al. (2016) presented climatological infor-

mation of FZRA over Russia and eastern Europe. Most of

the other studies focus on the occurrence of in-cloud or near-

surface icing (e.g. Bernstein et al., 2009; Bernstein and Le

Bot, 2009; Le Bot, 2004; Le Bot and Lassegues, 2004).

More comprehensive studies have been undertaken on ice

storm and FZRA climatologies over North America, includ-

ing studies for various regions (Cortinas, 2000; Changnon,

2003; Cortinas et al., 2004), impacts of ice storms on differ-

ent sectors (Proulx and Greene, 2001), and changes in FZRA

climatology (Cheng et al., 2007, 2011; Lambert and Hansen,

2011; Klima and Morgan, 2015) as well as on various win-

tertime precipitation types (Stewart et al., 2015) and impacts

and details of FZRA storms and related synoptics (Hosek

et al., 2011; Call, 2010; Roberts et al., 2008).

The two formation mechanisms of FZRA are rather well

known. In the majority of cases a near-surface freezing layer

with an accompanying melting layer above leads the hy-

drometeors – formed above these layers – to be in a liquid,

supercooled phase when they hit the ground and freeze on

contact with objects at the surface (World Meteorological

Organisation, 2010). Other FZRA cases occur without the

cold layer – melting layer structure, as a result of the warm

rain process (Bocchieri, 1980; Huffman and Norman, 1988;

Rauber et al., 2000) where collision and coalescence of the

small droplets ensure the liquid form. The latter mechanism

is usually associated with drizzle or freezing drizzle, but in

some cases it may lead to formation of FZRA.

Several approaches have been developed for identifying

wintertime precipitation types (e.g. snow, ice pellets, freezing

rain) in numerical weather prediction (NWP) models, most

of them for North America and many of them reviewed by

Cortinas et al. (2002). With varying complexity, all of them

are based on the vertical temperature profile which is used

to predict the state of the hydrometeors in the atmosphere

and on the surface level in particular. Usually the vertical hu-

midity profile is used as well. For example, Ramer (1993)

developed an empirical method which explicitly resolves the

melting and freezing of the descending hydrometeors. This

method has been widely used in NWP and in related studies

(e.g. Reeves et al., 2014), showing good skill among the other

precipitation typing algorithms. A slightly more indirect,

and perhaps simpler approach was presented by Bourgouin

(2000), who estimated the phase of precipitation based on

areas between the temperature profile and the 0 ◦C isotherm

on a tephigram.

Three-dimensional gridded meteorological data sets at

daily or subdaily temporal resolution, such as output from

numerical climate models or reanalysis models, are com-

monly used in climate studies to account for gaps in time

series of weather station data and to fill the sparsely covered

areas, like seas and the above-surface atmosphere. However,

a variety of issues complicate their use for estimating precip-

itation types. One important uncertainty arises from the fact

that it is not straightforward to compare point-like weather

station observations (representing local climate) and grid

cells (representing climate of a larger area). As shown, e.g. by

Stewart et al. (2015), Reeves et al. (2014), and Ryzhkov et al.

(2014), even small details in the vertical distribution of tem-

perature can affect the surface precipitation type. However,

because a gridded data set typically has rather coarse hori-

zontal, vertical, and temporal resolutions, its vertical temper-

ature structure may differ locally from the reality. Similarly,

very minor modelling uncertainty or natural uncertainty re-

lated to subgrid-scale processes, might cause the predicted

temperatures of the freezing or melting layers to be slightly

off from the values that would lead to FZRA.

In this study we introduce a freezing rain detection algo-

rithm, originally developed and operationally used in the nu-

merical weather prediction at the Finnish Meteorological In-

stitute (denoted by FMINWP), and implemented here for cli-

matological applications. The algorithm was applied to the

ERA-Interim reanalysis data (Dee et al., 2011) to test the

applicability of a coarse-resolution method in derivation of

proxies of FZRA and to provide a climatology of FZRA in

Europe for the period 1979–2014. First, the SYNOP weather

station and reanalysis data sets used in calibration of the algo-

rithm are introduced, along with an optimization-based cal-

ibration procedure; second, the calibration results are vali-

dated using multiple approaches; and lastly the climatology

is produced and analysed shortly. In the analysis the follow-

ing statistics are focused on the total number of 6 h FZRA

cases at each station or grid cell during the 36-year study pe-

riod and the average frequency of these cases per location in

the whole study domain and in three subregions as a function

of time. In addition, duration and spatial extent of the FZRA

events are studied.

2 Materials and methods

The FMINWP algorithm uses threshold values of the air tem-

perature and humidity in the near-surface freezing layer and

in the above melting layer to distinguish the FZRA events

from non-events. In order to estimate the FZRA climatology

in Europe based on reanalysis data, these threshold values

needed to be reconsidered for two reasons. First, some of the

original threshold values were subjectively selected by me-

teorologists in Finland, which involves uncertainty related

to subjective decisions. Second, the values are likely to be

somewhat sensitive to potential biases in temperature and hu-

midity, and these biases may be different in NWP data and

in reanalysis data. Consequently, a calibration procedure was

developed that employed SYNOP weather station observa-
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tions to redefine the threshold values of the parameters, as

discussed below. The calibrated version of the FMINWP al-

gorithm, used in the climatological analysis of FZRA, is de-

noted here by FMICLIM.

2.1 SYNOP weather station data

For validation and algorithm-calibration purposes, the ob-

served occurrence of FZRA events was derived from 3 h

SYNOP weather station recordings. Data from 4600 man-

ually operated stations were collected from the Meteorologi-

cal Archival and Retrieval System (MARS) of the European

Centre for Medium-Range Weather Forecasts (ECMWF).

Automated stations were not accepted due to their reduced

ability to distinguish different types of precipitation, espe-

cially freezing rain and freezing drizzle (Marijn, 2007). The

present weather part of a SYNOP observation (World Meteo-

rological Organisation, 2011) consists of 100 codes describ-

ing the most important weather at the time of observation

and 1 h before it. In this study the WMO codes directly re-

ferring to FZRA were selected to represent the phenomenon:

24 (freezing rain within the previous hour but not at observa-

tion time), 66 (light freezing rain), and 67 (moderate to heavy

freezing rain).

To be included in this study, the stations were required to

contain a valid present weather code in > 80 % of the 3 h time

steps during the period 1979–2014. If stations with shorter

or less regular records had not been excluded, the observed

number of FZRA events per station might have been dis-

torted. Besides, regularly working and maintained stations

with high-frequency observations are assumed to be more

reliable. Altogether 525 stations out of 4600, presented in

Fig. 1, passed these first conditions. During the cold season

months September–May the proportion of missing data was

10 % on average.

For calibration and validation purposes, and for further

analyses of FZRA in station locations, the data were filtered

further:

– Stations located above 2000 m above sea level (8 sta-

tions) were excluded as the algorithm does not have

enough pressure levels for high elevations.

– Stations having less than 10 FZRA observations

(224 stations) were excluded because reliable observa-

tions might be difficult for observers with limited expe-

rience of the phenomenon due to its rarity.

– To exclude grossly erroneous recordings, the FZRA ob-

servations with surface temperatures below −15 ◦C or

above +5 ◦C were rejected.

Applying the above-mentioned restrictions excluded 224

stations (circles in Fig. 1) and thus reduced the total num-

ber of stations to 293. These remaining stations were used in

the calibration and validation process of this study. Finally,

Figure 1. Total number of FZRA cases 1979–2014 in Europe ac-

cording to 6 h SYNOP observations (orange) and the FMICLIM al-

gorithm (cyan), applied to the 6 h ERA-Interim reanalysis. The size

of the markings indicates the frequency classes. The distance to the

nearest coastline (in km) is shown with black isolines, which divide

the stations into coastal, semi-coastal, and continental groups. Sta-

tions that were excluded from the calibration, validation, and further

analyses of the FMICLIM algorithm are indicated with circles.

the time steps 00:00, 06:00, 12:00, and 18:00 Z were picked

from the 3 h SYNOP observations to allow direct compar-

isons of the present weather codes with predictions of the

FZRA events that were derived with the FMICLIM algorithm

using the 6 h ERA-Interim reanalysis data. The comparisons

were conducted both for the individual stations and for spa-

tially clustered stations.

In order to divide the stations into clusters, variables which

best explain the spatial differences in the total number of

observed FZRA cases in 1979–2014 were sought. There-

fore, different linear models were fitted. Strictly speaking, the

number of cases are count data (non-negative integer values

from counting) and should be modelled using the non-linear

Poisson regression, but this did not change our conclusions

and linear models are somewhat easier to understand. Finally,

the best variables were used to classify stations into sub-

groups and further analyses were performed separately for

these groups. The variables studied were the distance to the

nearest coastline (NASA, 2009), station elevation, and lon-

gitude. When modelling the number of cases with only one

variable, the distance to the coastline and elevation were the

best ones in explaining the variance (e.g. the adjusted R2 for

distance was 0.06, p ≪ 0.001). Because elevation and dis-
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tance are rather strongly correlated, using both or either in-

teraction term did not improve the results substantially; that

is, it did not change the adjusted R2. For this reason, only

the distance to the nearest coastline was used for the classi-

fication. The stations were grouped as “coastal” (0–140 km),

“semi-coastal” (140–330 km), and “continental” (> 330 km).

Boundaries of classes, shown in Fig. 1, were selected so that

each group contained an equal number of validation stations.

2.2 ERA-Interim reanalysis data

Relative humidity and temperature from 925, 850, 700 hPa

and 2 m levels, surface pressure, and precipitation of the

ERA-Interim reanalysis data set (Dee et al., 2011) were used

as predictor data. The variables were derived from the 6 h

analysis part of ERA-Interim except that for precipitation the

6 h forecasted part was used and the 12 h precipitation sums

were transformed into 6 h sums. For calibrating and validat-

ing the FZRA detection algorithm, the data were bilinearly

interpolated to station locations. The climatology of FZRA

was derived using the gridded data in the original 0.7◦ ×0.7◦

resolution.

When the predicted and observed FZRA events were com-

pared at station level, time steps without SYNOP observa-

tions of present weather codes were also excluded from the

interpolated reanalysis data, which ensured the comparabil-

ity. Even though excluding those time steps leads to an un-

derestimation of the total number of FZRA cases, the effect

is minor, because the proportion of missing data was only

10 % on average during winter months.

2.3 FMINWP algorithm

The FZRA identification part of the precipitation typing al-

gorithm (FMINWP) used at the weather service of the Finnish

Meteorological Institute for numerical weather predictions,

was adopted in this study. The algorithm uses temperature

and relative humidity from four pressure levels (surface, 925,

850, and 700 hPa), and surface air pressure. Surface pressure

is used to avoid analysing below-surface data in mountainous

regions. The FMINWP algorithm is originally used to predict

locations where FZRA is conceivable, and as such it does not

take the modelled precipitation intensity (Pr) into account.

In our analyses the precipitation intensity was included to

identify the actual FZRA cases. For FMINWP the Pr value

0.15 mm 6h−1 was selected so that the identified total num-

ber of FZRA cases, calculated as a sum over the whole study

domain and all the years, corresponds to the observed total

of 11 000 cases in the 293 stations.

A pseudo-code representation of the algorithm is shown in

Fig. 2. First, the preconditions for FZRA are checked: (1) the

near-surface air temperature T2m = Tcold has to be lower

than its predefined threshold value T thr
cold, (2) the maximum

temperature of the above-surface layers Tmax, and (3) the sur-

face precipitation rate Pr need to be higher than their thresh-

old values (T thr
melt and Prthr, respectively). In the next step the

upper level of the near-surface cold layer pcold is defined

by selecting the pressure level closest to the ground surface,

while additionally taking into account the minimum accept-

able cold layer depth hthr
cold (in hPa) which ensures that the

falling raindrops are properly supercooled. Finally the exis-

tence of a moist and warm melting layer is checked by inves-

tigating the layers above the cold layer. If temperature and

humidity RH in at least one of those layers are above their

predefined thresholds T thr
melt and RHthr

melt, FZRA is predicted.

Compared to other precipitation detection algo-

rithms, such as those presented by Ramer (1993) and

Bourgouin (2000), the FMINWP is presumably faster to

implement and run, which makes it ideal for analysing

large climatological data sets. Of these two algorithms,

FMINWP resembles Bourgouin (2000) more, mainly be-

cause the depth and temperature of the near-surface cold

layer (hcold = psurf − pcold and Tcold, respectively) together

describe the energy required to supercool the raindrops.

FMINWP assumes that the melting layer and the layer where

precipitation is generated are the same, even though in

reality they can be separated so that precipitation is formed

above the melting layer.

2.4 Calibration

In calibration, each of the threshold parameters (hthr
cold, T thr

cold,

T thr
melt, RHthr

melt and Prthr) was discretized to cover the practical,

realistic range, and the calibration was then performed in a

multiple loop, where each combination of the parameters was

tested using the algorithm and a suitable reward function.

The comparison between the algorithm results and FZRA

observations can be presented in a 2 × 2 contingency table

(Table A1 in Appendix A), so standard verification measures

(e.g. Jolliffe and Stephenson, 2012) can be used. Four candi-

dates were tested to find the appropriate reward function for

optimization, namely the proportion correct (PC), the criti-

cal success index (CSI), the Heidke skill score (HSS), and

the symmetric extremal dependence index (SEDI; see Ap-

pendix A for the definition of these and other verification

measures used in this study). All candidates are positively

oriented so that the higher the value, the better the agreement

between the predictions and observations.

When only one measure is used, the CSI is the best one,

because strongly biased solutions automatically get worse

CSI values. However, all tested reward functions tend to

favour biased solutions, either by overestimating (PC, HSS,

SEDI) or underestimating (CSI) the total number of FZRA

events over all stations and years. This is not desirable as the

main interest of the study is in the occurrence climatology

of FZRA. Therefore an additional, bias-dependent term was

added, and the final form of the reward function was

J = CSI − | log B|, (1)
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pLevels = (925, 850, 700)
for all timesteps and stations/gridcells :

    Tcold = T2m

    Tmax = max (T925 , T850 , T700)

    if (Tcold ⩽ Tcold
thr

and Tmax > Tmelt

thr
and Pr > Pr

thr) :

           pcold = nearest pressure level (among pLevels) above (psurf − hcold

thr )

           moistMeltLayer = any (T [i ] > Tmelt

thr
and RH [i] ≥ RHmelt

thr ) ; i  = [pLevels ⩽ pcold]
           if moistMeltLayer exists : FZRA = True

           else : FZRA = False

    else : FZRA = False

Figure 2. A pseudo-code representation of the FMI algorithm. See text for definitions of symbols and for a description of the logic.

where B is the bias (Eq. A7). The logarithm scales B from

−∞ to +∞, the best, unbiased value being zero. Therefore

biased solutions result a non-zero bias term that is then sub-

tracted from CSI. Adjusted values used in the algorithm are

presented in Table 1.

2.5 Climatological analysis

Climatological analysis was performed separately for

SYNOP observations, for ERA-Interim in station locations,

and for ERA-Interim in the original grid. The following

statistics were calculated.

– Total numbers, mean annual numbers, and mean

monthly numbers of 6 h FZRA events per station or grid

cell were calculated in 1979–2014. In this analysis one

FZRA event occurs when one station or grid cell en-

counters freezing rain in one time step.

– Spatially averaged annual mean numbers of FZRA

events in 1979–2014 were calculated. Spatial averaging

was performed over stations in subgroups, and over all

stations. Definition of an event is the same as above.

– Duration of FZRA events were calculated separately for

station data and for gridded data. In this analysis one

FZRA event occurs when one station or grid cell en-

counters freezing rain in one or in successive time steps.

Durations were calculated from a 1-dimensional vec-

tor containing the time series of stations or grid cells

in a row. Station data with 293 stations and 53 000 6 h

time steps comprise a total of 15 million data points.

The gridded reanalysis data consist of 4000 grid cells

and 53 000 time steps with 200 million data points alto-

gether.

– Spatial extent of 6 h FZRA events were calculated sepa-

rately for station data and for gridded data. In this anal-

ysis one FZRA event occurs when one or multiple sta-

tions or grid cells encounter freezing rain simultane-

ously. The spatial extent was calculated based on the

number of impacted stations or, for gridded data, based

on the spatial coverage of impacted grid cells over the

domain, using an approximative 6000 km2 grid cell size.

After deriving durations and spatial extents of events, em-

pirical probability distributions (containing events and non-

events) were formed.

3 Results

In the following, we first have a look at the refined threshold

values in the FMICLIM algorithm. The performance of the

algorithm in predicting FZRA cases is then assessed using

the observed weather station data, and finally, the findings

concerning climatological features of FZRA are presented.

The cross-validation results are based on calibrations in sub-

periods, while other validation results are based on the final

calibration.

3.1 Cross-validation of calibration

To study the sensitivity of the threshold values to the selec-

tion of the calibration period, a cross-validation framework

was applied, where the total of 36 years of data was divided

into five non-overlapping subperiods. The calibration was

then performed for each of them separately, using Eq. (1).

Each subperiod contained a 29-year calibration part and a 7-

year validation part so that the validation years were different

in all subperiods. The means calculated over the results from

different calibration periods were used for the climatologi-

cal analysis of FZRA: they are close to the values that were

achieved using the whole 1979–2014 period for calibration.

The calibration changed most of the threshold parameter

values only slightly (Table 1), which confirms that (1) the

FMINWP algorithm performs as designed, and (2) no strong

biases in mean values of different variables exist in the ERA-

Interim data. For example, if the mean temperatures in some

of the layers studied were far from the reality, the optimal

value would have drifted away from the physically motivated

0 ◦C limit in the calibration. As an exception, the minimum

depth of the near-surface cold layer hthr
cold was notably altered

by the calibration, as the optimal value appeared to be 69 hPa,

which is over 300 % larger than the original value, 15 hPa. In

the lower troposphere these correspond roughly to the depths

of 600 and 130 m respectively. The observed range of the

minimum cold layer depth varies considerably between sta-
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Table 1. Uncalibrated (upper row) and calibrated (bottom), optimal values of threshold parameters in the 29-year calibration periods. Mean

values of the optimal values are shown, computed for calibration periods using the sample variance of period values. Mean values are

used in the final analysis of the gridded data set. hthr
cold = minimum cold layer depth; RHthr

melt and T thr
melt = minimum humidity and minimum

temperature in the melting layer; T thr
cold = maximum cold layer temperature; and Prthr = minimum surface precipitation rate.

hthr
cold (hPa) > RHthr

melt (%) > T thr
melt (◦C) > T thr

cold (◦C) < Pr thr (mm 6h−1) >

FMINWP 15 90 0 0 0.05

FMICLIM 69 89 −0.64 0.09 0.39

tions, as shown by Bernstein (2000), being between 100 and

900 m; 600 m is thus likely to be more representative than

130 m over all European stations. The bias-dependent part

of the reward function (Eq. 1) was useful in stabilizing the

calibration and excluding the less credible combinations of

threshold values. Without it, calibration introduced new bi-

ases (not shown) either in the annual number of the FZRA

cases in subgroups (Fig. 3), or in the total number of cases

per station (Fig. 1).

As Table 2 shows, the calibration enhanced all validation

metrics except bias and F . On average, the hit number a was

slightly improved, and the false alarm b and miss c numbers

were both reduced. While H slightly improved, the variabil-

ity of b was rather large, and the change of F is not statisti-

cally significant. CSI was improved by 8 %, HSS by 7 % and

SEDI by 2 % in calibration, and these changes were statis-

tically significant. The absolute values of CSI and HSS are

rather modest, but it is well known (Jolliffe and Stephenson,

2012) that these measures tend to zero when the base rate is

very low, as is the case of FZRA. SEDI is designed for the

evaluation of rare events and gives much higher values. Still,

only one event in five is correctly detected (H ≈ 0.20).

3.2 Performance of the freezing rain detection

algorithm

3.2.1 SYNOP weather code classification

The algorithm-based (FMICLIM) classifications of weather

situations to FZRA events were compared with SYNOP ob-

servations of present weather at the validation stations. In

Fig. 6a, the distribution of observed SYNOP codes when

an event was classified as FZRA is presented. The distri-

bution shows that only 22 % of classified events coincide

with SYNOP codes for FZRA (codes 24, 66, and 67). About

32 % of classifications coincide with codes when no rain

of any kind was observed at the SYNOP stations (codes 2

and 10), although reanalysis data did imply rain of at least

0.4 mm 6 h−1 (Table 1). Codes associated with light precipi-

tation of other types (drizzle, rain and snow, codes 56, 61, and

71) coincide with FZRA classification, light rain about 6 %

and other two about 7 % each. However, most of these codes

occur much more often than codes associated with FZRA.

In order to illustrate how the relative numbers of false alarms
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Figure 3. Annual, spatially averaged mean number of FZRA cases

per station in all 293 stations and in groups based on distance to

the nearest coastline according to SYNOP observations (black), the

FMINWP (red), and the FMICLIM (blue) algorithm. Definitions of

groups can be seen in Fig. 1. Statistics calculated from the numbers

presented here are shown in Table 3. Note the different y axis scales.

deviate between different SYNOP present weather codes, the

proportion of classified FZRA events in each code is shown

in Fig. 6b. For SYNOP codes associated with FZRA, this

proportion can be interpreted as the hit rate H (Eq. A5). For

SYNOP codes not associated with FZRA, this proportion

can be interpreted as the false alarm rate F (Eq. A6). En-

couragingly, the largest proportions are for codes that are for
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Table 2. The cross-validation measures and scores in 7-year validation periods when the predicted 6 h FZRA result is compared with observed

6 h events. Mean values and standard errors, computed for validation periods using the sample variance of period values, are shown. See text

and Appendix A for definitions of measures and scores.

FMINWP FMICLIM FMICLIM − FMINWP

CSI 0.109 ± 0.005 0.118 ± 0.004 0.009 ± 0.001

SEDI 0.65 ± 0.01 0.66 ± 0.01 0.014 ± 0.002

HSS 0.196 ± 0.009 0.211 ± 0.007 0.014 ± 0.002

a 430 ± 40 460 ± 40 30 ± 7

b 1730 ± 150 1690 ± 160 −40 ± 60

c 1720 ± 100 1690 ± 100 −30 ± 7

H 0.197 ± 0.013 0.212 ± 0.015 0.015 ± 0.003

F 0.00063 ± 0.00005 0.00062 ± 0.00006 −0.00011 ± 0.00002

B 1.00 ± 0.05 1.00 ± 0.07 0.00 ± 0.03

Table 3. Statistics calculated from numbers presented in Fig. 3. Correlation coefficient of algorithm results compared to the observations (r),

mean value (x), standard deviation (s), and rms error of annual mean numbers of FZRA cases per station averaged over all stations, averaged

over groups based on distance to the nearest coastline, and in individual stations are shown.

FMINWP FMICLIM Observations

r x s rms r x s rms x s

All stations 0.90 1.03 0.52 0.25 0.88 1.03 0.51 0.26 1.03 0.36

Coastal 0.84 0.71 0.39 0.23 0.86 0.72 0.37 0.20 0.80 0.30

Semi-coastal 0.90 1.01 0.53 0.24 0.86 1.01 0.54 0.28 1.02 0.41

Continental 0.83 1.26 0.69 0.41 0.83 1.26 0.72 0.44 1.20 0.44

Individual stations 0.38 1.03 1.55 1.65 0.38 1.03 1.58 1.66 1.03 1.40

light FZRA (codes 66, H = 27 %), and moderate to heavy

FZRA (code 67, H = 31 %). The proportion of FZRA ob-

served during the previous hour (code 24) is somewhat lower

(H = 9 %) but still non-zero. Other clearly non-zero propor-

tions are for codes of freezing drizzle (codes 56, F = 6 %,

and 57, F = 8 %) and ice pellets (code 79, F = 16 %) that

physically resemble FZRA.

3.2.2 Number of freezing rain events at weather

stations

The total number of FZRA events at each station accord-

ing to the observations was compared with the number of

FZRA events according to FMICLIM (Fig. 5). The compar-

isons were performed for all the 293 stations in the calibra-

tion set and separately for the three subgroups of the stations.

In each case the root mean square (rms) error and the mean

error (ME) were calculated, and the FMICLIM was modelled

as the function of observations using the local polynomial

regression method, loess (Venables and Ripley, 2002). The

mean number of events calculated with FMICLIM is almost

the same (ME = 0.0) with those observed for “all stations”

(Fig. 5a). However, the distributions are rather different, the

distribution of the FMICLIM result is somewhat symmetric

around the mean, but in the case of the observations the num-

ber of stations with a small number of FZRA events is higher,

and the tail of stations with a high frequency of events is

much longer. For “all stations” and small numbers of events,

FMICLIM models the average number of events well with

some overestimation, and the loess curve is very near the di-

agonal line. However, for larger values, the loess curve is

nearly horizontal, implying that FMICLIM cannot properly

model the stations where the large values occur. In the conti-

nental group (Fig. 5d), the curve is horizontal, or even nega-

tively correlated, for all values. In the coastal group the rms

error is the smallest but there is an underestimation (ME < 0),

while for the continental group the rms error is the largest

and there is an overestimation (ME > 0). Smaller rms error

in coastal areas can be partly explained by the lack of large

values that would contribute to rms.

The spatial averages were computed over all the 293 sta-

tions in the calibration set and separately for the stations

in the coastal, semi-coastal, and continental subgroups. Be-

cause of the uncertainties in the SYNOP weather station ob-

servations or in the ERA-Interim reanalysis, calibration had

only a minor effect on the spatially averaged annual numbers

of FZRA events inside the subgroups or over the whole sta-

tion network (Fig. 3 and Table 3). Compared to the observa-

tions, the calibrated and uncalibrated algorithms both slightly

underestimate the coastal mean number and overestimate the

continental mean number of events, the semi-coastal group

being better modelled. Both versions of the algorithm over-
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Figure 4. Logarithm of bias B of the FMICLIM results in differ-

ent 12-year periods. Blue (red) shows the overestimation (underes-

timation) of predicted total number FZRA events compared to the

observations. Sizes of markings indicate the magnitude of bias.

estimate the standard deviation in all groups and at individual

stations. The annual numbers of FZRA events are reproduced

better as spatial averages across the weather stations than at

individual sites. The rms error of spatial averages is smaller

than the standard deviation of observations, except for the

continental group, implying that results in general are better

using FMICLIM or FMINWP than just using the climatology.

For individual sites, however, the rms error is slightly worse

than the standard deviation of observations.

An area of underestimation can be seen, e.g. in Germany,

Czech Republic, and in most stations of Poland, while over-

estimation mostly happens in the eastern validation stations

(Figs. 1 and 4). These biases are spatially homogeneous, in-

dependent of algorithm versions (not shown), and do not

change with time. The lack of freezing rain, mostly seen in

coastal stations, is modelled well, assuming that observations

are correct.

3.2.3 Validation of near-surface predictor variables

In addition to the distance to the coastline, orography is likely

to affect the occurrence of FZRA (Sect. 2.1). This suggests

that highly variable terrain might cause strong local max-

ima in the observed occurrence, as the fringe areas of large

plains surrounded by mountains are more prone to FZRA.

For example, the slopes and valleys surrounding the Great

Hungarian Plain might experience cold air damming, a phe-

nomenon which is associated with ice storms in North Amer-

ica (Forbes et al., 1987). This phenomenon can also happen

on smaller scales, but presumably it cannot be resolved in

our work due to the coarse spatial resolution of the reanaly-

sis data. To explore the possible effects of resolution on the

accuracy of reanalysis variables, the correlation coefficients

between SYNOP observations and ERA-Interim reanalysis

surface variables were calculated at the validation stations.

Indeed, correlations for near surface temperature and humid-

ity of low-altitude stations (0.81 and 0.65 for temperature and

humidity) are higher than at high altitudes (0.52 for temper-

ature, 0.44 for humidity). Presumably, the highest stations

are usually located in highly variable terrain, and rather large

grid cells of the reanalysis do not represent the observed vari-

ability of these stations well. No strong differences in ob-

served and ERA-Interim mean values of the variables were

found, but the differences are again larger in the highest sta-

tions, so that ERA-Interim overestimates, for example, the

temperatures by 1.6 ◦C at higher and only 0.3 ◦C at lower al-

titudes.

3.2.4 Vertical profiles of temperature and humidity

Figure 7 shows vertical temperature and humidity profiles of

ERA-Interim in the validation stations during the observed

and predicted FZRA events. As intended, the FMICLIM al-

gorithm picks the cases for which well-defined melting and

freezing layers exist (Fig. 7c). However, as the wider vari-

ability ranges in Fig. 7a show, FZRA was observed in much

more diverse temperature profiles than predicted. The same

feature can be seen in the humidity profiles (Fig. 7b, d). The

FMICLIM algorithm selects cases where the melting layer hu-

midity is high, even though in reality the precipitation can

be formed above the melting layer and thus humidity in the

melting layer can be low during the FZRA events. The ob-

served and predicted number of FZRA cases (Fig. 7a–e) is

11 000, but only 2300 events happened simultaneously in the

observations and prediction (Fig. 7e, f).
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Figure 5. The total number of FZRA events according to the observations compared with the number of FZRA events according to FMICLIM

for stations in the calibration set, using (a) all 293 stations and stations in (b) coastal, (c) semi-coastal, and (d) continental groups. The curves

superimposed in the scatter plots show FMICLIM as the function of observations using the loess method (Venables and Ripley, 2002) together

with the 95 % confidence interval. Note that plotting symbols for groups in (b), (c), and (d) are used also in (a). The bar diagrams present

relative frequency distributions.

3.2.5 Duration and spatial extent of freezing rain

events

The probability of the most common FZRA events, those de-

tected during a single 6 h time step only, is predicted sim-

ilarly as in observations by both FMI algorithms (Fig. 8a).

For longer-lasting events the algorithms produce overesti-

mates that increase towards the extreme tail of the durations;

at the 10−6 probability level the overestimation is about 6 h.

The spatial extent of FZRA is also overestimated in the ex-

treme tail (Fig. 8b) so that the algorithms overestimate the

number of simultaneously impacted stations by about 30 %

at the 10−4 probability level. Additionally the most frequent

events, i.e. one impacted station, are slightly underestimated

by both algorithms. Durations are modelled better at conti-

nental stations than at coastal and semi-coastal stations, and

number of impacted stations is modelled almost correctly at

coastal stations but poorly at continental stations, with over-

estimation of almost 100 % by FMICLIM at the lowest 10−5

probability level (not shown).

3.3 Climatology of freezing rain in Europe

The spatially averaged observed annual mean number of

FZRA events in different subgroups varies from 0.8 in

coastal stations to 1.2 in continental stations as seen in Ta-

ble 3. Figure 3 shows that the interannual variability of FZRA

events is substantial. Even more importantly, the coefficient

of variation – standard deviation divided by mean – is large

especially in the continental subgroup: there are years with

less than 0.5 FZRA events per station, and years with more

than two events on average. Large coefficient of variation

may hamper the anticipation and allocation of resources in

road maintenance, for example. Weak positive lag 1-year au-

tocorrelations were found in the annual numbers, ranging
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Figure 6. (a) The distribution of observed SYNOP present weather

codes when an event was classified as FZRA by the FMICLIM al-

gorithm. The distribution sums up to 100 %. (b) The proportion of

cases classified as FZRA in each observed SYNOP present weather

code. Each code can have a proportion from 0 to 100 %.

from 0.20 in semi-coastal stations to 0.32 at coastal stations,

which indicates weak but non-zero predictability of the an-

nual FZRA number based on the number of the previous year.

The spatial distribution of the annual mean number of

events (Fig. 9a) shows that FZRA is most frequent in east-

ern Europe. Large areas in Belarus, Ukraine and Russia en-

counter 2–3 6 h FZRA events per year. The maximum an-

nual number of FZRA cases is situated near the Carpathian

mountains, where locally over five events were found on av-

erage. The spatial distribution of maximum durations of the

events (Fig. 9b) follow qualitatively the mean occurrence dis-

tribution in general, but some areas where FZRA is relatively

rare, for example the Benelux countries and the Oslo Fjord,

have encountered at least one prolonged event. Almost re-

gardless of the latitude, the coastal and marine areas do not

experience FZRA as often as the other regions, apparently

because warm water bodies effectively prevent the occur-

rence of near-surface cold layers. An exception is the north-

ern Baltic Sea, having a long ice cover season and relatively

frequent FZRA cases.

The FZRA season begins in northern parts of the

Fennoscandia as early as September, which can be seen in

the monthly climatology maps (Fig. 10). In that area the phe-

nomenon is experienced most frequently in November. After

that, in December–February, the temperatures drop so low

that the melting layer seldom forms. It is probably for this

reason that the total number of FZRA events in northern Eu-

rope is rather small, even though the season is the longest,

lasting until May. In central Europe and especially in east-

ern Europe the season is shorter but much more intense, so

15 10 5 0 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
e
ig

h
t 

(k
m

)

a) Obs FZRA: T

65 70 75 80 85 90 95100
0.0

0.5

1.0

1.5

2.0

2.5

3.0
(b) Obs FZRA: RH

15 10 5 0 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0
(c) FMI FZRA: T

65 70 75 80 85 90 95100
0.0

0.5

1.0

1.5

2.0

2.5

3.0
(d) FMI FZRA: RH

15 10 5 0 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0
(e) Obs & FMI FZRA: T

65 70 75 80 85 90 95100
0.0

0.5

1.0

1.5

2.0

2.5

3.0
(f) Obs & FMI FZRA: RH

(

Figure 7. Vertical profiles of temperature (◦C, left column) and

relative humidity (%, right column) of ERA-Interim at weather

station locations. 5–95 % range (cyan), 25–75 % range (blue) and

mean (red) are shown. Top row: profiles when FZRA was reported

in SYNOP messages (11 000 events in total). Middle row: FZRA

profiles according to the calibrated FMICLIM algorithm (11 000

events). Bottom row: profiles where both the FMICLIM algorithm

and observations indicated FZRA (2300 events).

that the annual number of FZRA events is larger than in the

northern parts of the continent.

The most widespread (Fig. 8b, d) FZRA events at the

10−4 probability level covered over 600 000 km2 and im-

pacted over 10 % of the weather stations simultaneously.

The longest-lasting events below the 10−7 probability level

lasted over 30 h (Fig. 8a, c). It is worth noting that the

longest-lasting cases are not necessarily the same as the most

widespread events. The proportion of simultaneously im-

pacted stations in the subgroups varies from 13 % (coastal)

through 16 % (semi-coastal) to 30 % (continental stations) at

the 10−4 probability level (not shown).
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Figure 8. Probability of duration (left column) and spatial extent

(right column) of FZRA events at station locations (top row) and

in all grid cells (bottom row) according to the detection algorithms

(blue, red) and observations (black).

4 Discussion

In this paper a freezing rain detection algorithm has been in-

troduced with a method to calibrate it. After validation the

algorithm was applied to a reanalysis in order to construct

the European occurrence climatology of freezing rain. So far,

no complete gridded climatologies of freezing rain have been

presented for Europe in the literature. A physically justified,

statistically adjusted algorithm, which is mainly based on the

vertical temperature profile of the atmosphere, was used in

the study to ensure the credibility of the result. Subdaily,

quality-controlled Europe-wide SYNOP weather station data

were used in the statistical adjustments.

In validation, the gridded meteorological data set is com-

pared with the point-like surface observations. Each grid cell

represents spatial means in the 0.7◦ resolution, while weather

stations represent more local variability of the atmosphere. It

is possible that in some cases FZRA has not been observed at

a station even though it has occurred nearby. Although hypo-

thetical, this suggests that our estimates, derived from ERA-

Interim, might at least occasionally represent the occurrence

of FZRA inside the 0.7◦ grid cells better than the stations do.

4.1 Possible sources of uncertainty

Potential sources of uncertainty in the gridded climatology

of freezing rain in Europe, besides the detecting algorithm

itself, include human errors in observing FZRA, deficiencies
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Figure 9. (a) Mean annual number of FZRA events and (b) maxi-

mum duration of events in the 1979–2014 study period. FMICLIM

algorithm is applied to the ERA-Interim reanalysis data. The high-

est elevations were excluded (grey) because of larger uncertainties

in FZRA detection.

in the ERA-Interim reanalysis data, and effects of subgrid-

scale orography. These issues are discussed in more detail in

the following.

Observing FZRA correctly remains a challenge for ob-

servers, as the phenomenon can be easily confused with or-

dinary, non-freezing rain. Particularly minor cases are diffi-

cult to detect for two reasons: firstly, they do not necessar-

ily cause significant ice accretion on structures, which would

help the identification of FZRA, and secondly, confusion of

FZRA with freezing drizzle or ice pellets might happen, es-

pecially by inexperienced observers. Additionally, short-term

events, which are more common than longer ones (Ressler

et al., 2012; Cortinas, 2000), might not be recorded in the 6 h
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Figure 10. The monthly climatology of FZRA in 1979–2014 ac-

cording to the FMICLIM algorithm, applied to the ERA-Interim.

The average annual number of 6 h FZRA cases is shown. The high-

est elevations were excluded (grey) because of larger uncertainties

in FZRA detection.

observations. Short-term events are difficult to predict using

spatially and temporally smoothed 6 h reanalysis data.

A large number of SYNOP stations was used in the study,

which is believed to average out random errors in calculation

of spatially or temporally aggregated results, such as mean

annual numbers of events in subgroups (Fig. 3). Addition-

ally, the stations having the most complete time series and

regular, high-frequency manual observations were included.

Still, the effect of human errors can not be totally removed

by applying selection techniques to the existing observations.

The strongest difference between observations and algorithm

results were identified in eastern Europe (algorithm overes-

timation and/or observational underestimation, as discussed

in Sect. 2.1 and as seen in Fig. 4) and in continental cen-

tral Europe (algorithm underestimation and/or observational

overestimation). Whether the reason for these differences is

in the reanalysis data or in the SYNOP observations remains

unclear.

The low-level wintertime temperature inversions in the

ERA-Interim reanalysis data are known to be lacking at Arc-

tic latitudes as shown by Serreze et al. (2012). Arguably

their result might be valid at least to some extent outside

the Arctic. This uncertainty was considered by calibrating

the original FMINWP algorithm instead of using it as such,

but apparently the impact of the bias can not be fully com-

pensated by simple adjustments of the threshold values in

FMICLIM. In our analysis the mean temperature profile (red

line in Fig. 7a) of the ERA-Interim reanalysis do not show

a clear near-surface freezing layer below the melting layer,

which either indicates problems in the above-surface temper-

atures of the reanalysis, or highlights the importance of the

warm rain formation mechanism of FZRA compared to the

melting layer – cold layer mechanism; FMICLIM is not able

to see the former cases.

Locally, near the mountainous regions, a potentially major

source of uncertainty is caused by the orography, which is

strongly smoothed in the 0.7◦ resolution of the ERA-Interim.

The results may be especially biased in subgrid scale valleys,

where prolonged FZRA events might be caused by trapped

cold air mass. It is possible that the optimal value of hthr
cold,

found here for FMICLIM, differs from the corresponding un-

calibrated value because high-elevation or mountainous sta-

tions were included in the calibration, and the original, un-

calibrated version is mostly used to predict FZRA over the

mostly flat terrain of Finland, where smaller hthr
cold might work

well or well enough.

In the algorithm, two thresholds were used to detect situ-

ations favouring subcooling of raindrops, namely, minimum

required depth and the maximum allowed temperature of the

near-surface cold layer. However, fulfilling both criteria men-

tioned above does not totally guarantee the liquid phase: a

too cold or a too deep cold layer refreezes the hydrometeors,

which is not taken into account in the current version of the

algorithm. This could explain, at least partly, the occasional

misclassifications to ice pellets.

4.2 Future work

Further exploration of existing data, i.e. observations and the

reanalysis, is needed to deepen the knowledge of the phe-

nomenon, including synoptic analysis of the most extreme

cases, calculating the precipitation amounts, and studying

other freezing phenomena, i.e. freezing drizzle and ice pel-

lets. In addition to these, the following are the key issues for

improving the credibility of the current occurrence results.

The list is ordered so that the most important tasks are pre-

sented first.

1. If the bias structure between the eastern and central Eu-

ropean SYNOP stations (Fig. 4) is caused by observa-

tional uncertainties and not by reanalysis or algorithm-

dependent uncertainties, identification and rejection of

low-quality stations could enhance the calibration and

validation processes. Slightly better validation scores

between the observations and prediction were achieved

when eastern stations were excluded from the calibra-

tion (not shown).
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2. Increasing the vertical resolution of the FMINWP algo-

rithm would be helpful, as small differences in vertical

layers easily affect the result (Stewart et al., 2015).

3. Validation of the vertical temperature profile of the re-

analysis data against observational soundings would

allow the division of the uncertainty into method-

dependent and data-dependent components.

4. The description of the near-surface cold layer in the al-

gorithm could be enhanced by defining a closed range

in which the parameter hthr
cold (or T thr

cold) should hit, in-

stead of considering lower (or upper) limits alone. Ad-

ditionally, separating the moist and melting layers to be

independent from each other should be tested, as well as

using wet bulb temperatures instead of air temperatures

as predictors in the algorithm.

5. In addition to the FMI algorithm, a new identifica-

tion methodology could be developed or adopted and

tested, including statistical classification methods and

more complex but well-performing physical methods,

such as ones which more explicitly simulate the melting

and freezing of descending hydrometeors (e.g. Ramer,

1993).

6. Small uncertainties in the location, in space and time,

of the moving precipitation patterns in the reanalysis in-

crease the uncertainty of algorithm-based FZRA detec-

tion because of the typically short duration of the FZRA

events. To some extent, this uncertainty could be stud-

ied by taking into account the preceding and following

time steps in the observational records, as the original

SYNOP data are 3 h. Additionally, preliminary analyses

(not shown) indicate that 1- or 5-day averaging could

also enhance the correlation of the results with similarly

averaged SYNOP observations.

New predictor data sets need to be tested when available,

for example the ERA-5 of the ECMWF, which is designed to

be the successor of ERA-Interim. The most important crite-

ria when selecting new predictor data would be the accuracy

of the vertical temperature structure and high temporal and

spatial resolutions. Additional observational in situ data sets,

such as METAR aviation weather reports and atmospheric

soundings, could be used in further development of the FMI

algorithm.

As discussed above, neither the observations of FZRA nor

methods to predict it are perfect; that is, the ground truth

is missing. The methods of then estimating the real base

rate of a phenomenon and the verification results of detec-

tion are much discussed in social and medical sciences (see,

e.g. Lewis and Torgerson, 2012), but are little-known in at-

mospheric sciences (see Hyvärinen et al., 2015 for the first

steps). Ideally, these methods require more than two inde-

pendent sources of data, for example, different observations

and method results. For FZRA this requirement can be dif-

ficult to fulfil, as there are not many different sources of ob-

servations available and methods are usually developed using

all available observations. However, exploring these methods

would contribute to the better estimation of the occurrence of

FZRA.

5 Conclusions

A method for detecting FZRA in gridded meteorological data

sets is presented, followed by a climatological Europe-wide

mapping for the occurrence of FZRA. The objective of this

paper was to develop an algorithm that is simple enough to

be applicable on spatially, vertically, and temporally coarse

public gridded climate data sets such as output from climate

models, and on the other hand is physically sensible enough

to model the complicated conditions leading to FZRA. The

low validation results at station locations indicated that un-

certainties related to the observations, to the identification

method, and to the temporal and spatial resolution of the

reanalysis, deteriorate the algorithm-based identification of

FZRA events. However, it is not clear which uncertainties

are the most important, and it is likely that their relative im-

portance can vary in space and even in time.

The freezing rain detection algorithm selected for this

study was originally developed in numerical weather pre-

diction. The physically motivated internal thresholds of the

algorithm were calibrated using the ERA-Interim reanaly-

sis and SYNOP weather station observations. Values of the

thresholds did not change considerably in the calibration pro-

cess, and the simple calibration did not reveal strong biases

in the reanalysis, showing that the original thresholds are al-

ready adequate for climatological analysis of freezing rain in

ERA-Interim.

According to the algorithm-based analysis of the grid-

ded reanalysis data, freezing rain is more common in cen-

tral and eastern Europe than in the northern parts and over

the coastal regions. The FZRA season begins in September

and lasts until May in northern Europe. In central and east-

ern Europe the season is shorter, beginning in October and

lasting until April, but much more intense, leading to more

yearly events (typically 1–2 events yr−1) than in northern

countries (typically 0.5–1.5 events yr−1). In 1979–2014, the

longest-lasting FZRA events lasted over 30 h and the most

widespread events covered over 600 000 km2 in Europe.

Spatially and temporally coherent information about oc-

currence of FZRA in Europe has been lacking thus far. The

gridded output of this study is a preliminary approach to an-

swer this demand, and as such, the current work can be used

as a basis for risk analyses if the underlying uncertainties are

carefully kept in mind. For example, questions such as what

year contained the most freezing rain events in continental

regions of Europe can be answered reliably using the current

data and method. Analysing spatially aggregated FZRA re-
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sults from climate model output with the presented method-

ology should be feasible as well. Station level analyses, how-

ever, require further studies to be carried out.

6 Data availability

Members of the ECMWF can access the MARS archive for

the SYNOP weather station data used in this study. ERA-

Interim reanalysis data can be obtained from the public

server of the ECMWF. Processed data files and Python code

are available on request from the corresponding author.
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Appendix A: Verification measures

Results of the comparison of two binary data sources can be

presented in a 2 × 2 contingency table (Table A1). If one of

these data sources represents the true values, the cells can

be named as follows: a the number of hits, b false alarms,

c misses and d correct rejections. In this study, these two

data sources are the SYNOP observations and algorithmic

classifications of FZRA, and the true values are SYNOP ob-

servations. The terminology follows Jolliffe and Stephenson

(2012).

The simple measure of performance is proportion correct

(PC), defined as

PC =
a + d

a + b + c + d
. (A1)

The critical success index (CSI) is similar, but ignores the

cell d:

CSI =
a

a + b + c
. (A2)

Many different skill scores have been developed and in this

study two of them are used: the Heidke skill score (HSS),

HSS =
2(ad − bc)

(a + c)(c + d) + (a + b)(b + d)
, (A3)

and the symmetric extremal dependence index (SEDI),

SEDI =
lnF − lnH + ln(1 − H) − ln(1 − F)

lnF + lnH + ln(1 − H) + ln(1 − F)
, (A4)

Table A1. Contingency table of the comparison between observa-

tions and the algorithm. The symbols a–d represent the different

number of FZRA events observed to occur in each category.

Observation

Algorithm Freezing rain No freezing rain

Freezing rain a (Hit) b (False alarm)

No freezing rain c (Miss) d (Correct rejection)

where the hit rate (H ), the ratio of correct FZRA classifi-

cations to the number of times the FZRA weather code was

observed, is

H =
a

a + c
, (A5)

and the false alarm rate (F ), the ratio of false FZRA classifi-

cations to the number of times the FZRA weather code was

not observed, is

F =
b

b + d
. (A6)

Finally, the bias is defined as the ratio of FZRA classifica-

tions to the number of times the FZRA weather code was

observed

B =
a + b

a + c
. (A7)
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