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Abstract. A new method to generate various family of distributions is in-
troduced. This method introduces a new two-parameter extension of the
exponential distribution to illustrate its application. Some statistical and re-
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the moments, quantiles, mode, moment generating function, mean residual
lifetime, stochastic orders, order statistics and some entropies are discussed.
Maximum likelihood method is used to estimate the unknown parameters
and the Fisher information matrix is given. The obtained results are vali-
dated using a real data set and it is shown that the new family provides a
better fit than some other known distributions.
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1 Introduction

Many researchers are interested to expand family of distributions in order
to obtain better fit for data analyzing. In the last few years, numerous
distributions have been proposed based on an extension of known distribu-
tions. So, several ways for generating new distributions from classic ones
were developed. Among these generators, we point out the class of Beta-G
distributions that was introduced by Eugene et al. (2002). Alexander et al.
(2012) defined a new generalized class of McDonald distributions. Cordeiro
and de Castro (2011) defined the Kumaraswamy-G class of distributions
and Zografos and Balakrishnan (2009) and Ristić and Balakrishnan (2012)
proposed a family of univariate distributions generated by gamma random
variables.

These generators were applied to create new distributions such as beta
modified Weibull (Silva et al., 2010), beta Weibull geometric (Cordeiro et al.,
2013), McDonald Gumbel (de Brito et al., 2016), Kumaraswamy modified
Weibull (Cordeiro et al., 2014), Gamma-Generated Logistic (Castellares et
al., 2015), gamma Birnbaum-Saunders (Cordeiro et al., 2016) distributions.

In this paper, we propose the new generator that work with the cumula-
tive distribution function (CDF) of truncated random variable U on (0, 1).
We expect that it will attract wider applications in biology, medicine and
reliability, and other areas of research.

Based on this generator, we introduce a new distribution, so called the
truncated exponential-exponential (TEE) distribution which can be used
quite effectively in analyzing several lifetime data, particularly in place of
Weibull distribution. The Weibull distribution which contains the exponen-
tial and Rayleigh distributions, as special cases, is a very popular distribution
for modeling lifetime data and for modeling phenomenon with monotone fail-
ure rates. For modeling monotone hazard rates, the Weibull distribution may
be an initial choice because of its negatively and positively skewed density
shapes.

We consider a classic analysis for the TEE distribution. The inferen-
tial part is carried out using the asymptotic distribution of the maximum
likelihood estimators (MLEs).

The rest of the paper is organized as follows. In Section 2, we introduce
truncated method to generate distributions. In Section 3, we introduce the
TEE distribution. A range of mathematical properties of the new distribu-
tion is considered in Sections 4. These include quantile function, simulation,
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mode, moments, mean residual lifetime and order statistics. Stochastic or-
ders are discussed in Section 5. The Rényi and Shannon entropies are cal-
culated in Section 6. The maximum likelihood estimate and their properties
are discussed in Section 7. In Section 8, we provide a real data set in order
to indicate the capacity of the proposed model. Finally, concluding remarks
are provided in Section 9.

2 Truncated Method

Let U be a random variable with support (a, b), where a ⩽ 0 and b ⩾ 1, and
CDF F . Then the CDF of truncated random variable U on (0, 1) is given by

FUt(u) =
F (u)− F (0)

F (1)− F (0)
. (1)

Using (1), we introduce the new truncated F-G family of distributions. For
each absolutely continuous G distribution (here and henceforth “G” denotes
the baseline distribution), we associate the TF-G distribution. The CDF of
the TF-G class of distributions is defined by

GX(x) =
F (G(x))− F (0)

F (1)− F (0)
, (2)

where G is the CDF of random variable V which is used to generate a new
distribution.

The probability density function (PDF), f(x), survival function, S(x),
and the hazard rate function (HRF), h(x), using (2), are

fX(x) =
g(x)f(G(x))

F (1)− F (0)
,

SX(x) =
F (1)− F (G(x))

F (1)− F (0)

and
hX(x) =

g(x)f(G(x))

F (1)− F (G(x))
,

where f and g are the PDFs of random variables U and V, respectively.
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3 Truncated Exponential-Exponential Distribution

Now, we introduce new family of distributions called Truncated exponential-
exponential (TEE) distribution by taking F (x) and G(x) in (2) as CDFs of
exponential distributions with means 1/α and 1/λ, respectively.

The non-negative random variable X has the TEE distribution denoted
by TEE(α, λ), with the shape and scale parameters as α > 0 and λ > 0 ,
respectively, if the CDF of X is

FX(x) =
eα − eαe

−λx

eα − 1
, x > 0. (3)

Note that even if α < 0, then (3) is still a bona fide CDF. Hence, we can
consider R − {0} as the space of the parameter α. Therefore, in order to
receive more flexibility from the distribution in question we consider α ̸= 0
and λ > 0 as the shape and scale parameters in the rest of the paper. The
PDF of TEE distribution is given by

fX(x) =
αλe−λxeαe

−λx

eα − 1
, x > 0.

It is easy to show when α converges to 0, then TEE distribution converges
to exponential distribution with mean 1/λ. The survival and hazard rate
functions for the TEE distribution are given in the following forms

SX(x) =
eαe

−λx − 1

eα − 1
, x > 0,

hX(x) =
αλe−λxeαe

−λx

eαe−λx − 1
, x > 0.

Figure 1 shows some of the different shapes of TEE(α, λ) for selected
values of α and λ. Figure 2 shows some of the different shapes of HRF
for selected values of α and λ. If α > 0, then the hazard function is a non-
increasing function which converges to λ as α tends to infinity. If α < 0, then
it is a non-decreasing function which converges to λ as α tends to infinity.
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Figure 1. (a): The PDF of TEE distribution with various shape parameter and fixed scale
parameter λ = 1. (b) and (c): The PDF of TEE distribution with various scale parameter
and fixed shape parameter α = 1 and α = −5, respectively.

4 Statistical Properties and Order Statistics

4.1 Quantile Function and Simulation

The quantile function of TEE distribution is given by

xp =
−1

λ
log

[
1

α
log {eα(1− p) + p}

]
. (4)

One of the advantages of the TEE distribution is that its CDF has a closed
form which helps us to generate random variables by using the following
simple formula

X =
−1

λ
log

[
1

α
log {eα(1− U) + U}

]
,

where U is a uniformly distributed random variable on (0, 1).

4.2 Mode and Median

The mode of TEE exists for any α < −1 in point of

M =
−1

λ
log

(
−1

α

)
.
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Figure 2. (a): The HRF of TEE distribution with various shape parameter and fixed scale
parameter λ = 1. (b) and (c): The HRF of TEE distribution with various scale parameter
and fixed shape parameter α = 1 and α = −5, respectively.

The median can be derive from (4) by considering p = 0.5 as

m =
−1

λ
log

(
1

α
log

eα + 1

2

)
.

It is not possible to compute the mean of the TEE distribution explicitly,
but from Figure 3 (a) it is observed that

mode < median < mean, if α < −1,

and
median ⩽ mean, if α ⩾ −1.

Figure 3 (b) shows the variance of TEE distribution for different values of
α, when λ = 1. It is observed that the mean and the variance are decreasing
functions of α.

4.3 Moment-Generating Function and Moments

Using the series representations

eu =
∞∑
k=0

uk

k!
, (5)
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Figure 3. (a): The mean, median and mode of TEE distribution for different values of α,
when λ = 1. (b): The variance of TEE distribution for different values of α, when λ = 1.

and ∫
un(log u)mdu = un+1

m∑
k=0

(−1)k
m!(log u)m−k

(m− k)!(n+ 1)k+1
, (6)

(Gradshteyn and Ryzhik, 2014, p. 238, formula. 2.722) we derive two infinite
expansions for the moment-generating function (MGF) and the n-th moment
as

MX(t) =
λ

eα − 1

∞∑
k=0

αk+1

(kλ− t+ λ)k!
, t < λ,

and
E(Xn) =

n!

λn(eα − 1)

∞∑
k=1

αk

k!kn
.

4.4 Mean Residual Lifetime

The expected additional lifetime given that a component has survived until
time t is called mean residual life (MRL). It describes the aging process.
Therefore, it plays an important role in reliability and survival analysis. The
MRL function, µ(t), for random variable X is defined as

µ(t) =
1

S(t)

∫ ∞

t
S(x)dx, t ⩾ 0. (7)
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Using (7) the MRL function of X ∼ TEE(α, λ) is given by

µ(t) =
1

λ(eαe−λt − 1)

∞∑
k=1

αk

k!k
e−kλt, t ⩾ 0, α ̸= 0, λ > 0.

Ghai and Mi (1999) have shown that if HRF is increasing (decreas-
ing), then MRL function is decreasing (increasing). Therefore, the function
µ(t), t ⩾ 0 is increasing in t for α > 0 and it is decreasing in t for α < 0.

4.5 Order Statistics
Order statistics make their appearance in many areas of statistical theory
and practice. We now give the PDF of the k-th order statistic Y = Xk:n in
a random sample of size n from the TEE distribution as follows

fY (y) =
n!

(k − 1)!(n− k)!
F k−1(y){1− F (y)}n−kf(y)

=
n!αλ

(eα − 1)n(k − 1)!(n− k)!
e(αe

−λy−λy)(eα − eαe
−λy

)k−1(eαe
−λy − 1)n−k.

Using (5) and (6) and binomial expansion, the q-th moment of Y can be
expressed as

E(Y q) =
n!q!

λq(eα − 1)n

k−1∑
l=0

n−k∑
m=0

∞∑
r=0

(−1)n+l−m−keα(k−l−1)αr+1(l +m+ 1)r

l!m!r!(k − l − 1)!(n− k −m)!(r + 1)q+1
.

5 Stochastic Orders
Let us give a quick review of stochastic orders and some notions which are
relevant in the context of this paper. Let X and Y be two random vari-
ables with distribution functions F and G and density functions f and g,
respectively.

Usual stochastic order (denoted by X ⩽st Y ): X is said to be stochasti-
cally smaller than Y if for all x, F (x) ⩾ G(x).

Hazard rate ordering (denoted by X ⩽hr Y ): X is smaller than Y in
hazard rate ordering if hX(x) ⩾ hY (x), where hX(x) and hY (x) are the
hazard rate functions of random variables X and Y , respectively.
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Likelihood ratio ordering (denoted by X ⩽lr Y ): X is smaller than Y in
likelihood ratio ordering if g(x)

f(x)
is an increasing function of x.

The following implications hold among these stochastic orders: X ⩽lr

Y ⇒ X ⩽hr Y ⇒ X ⩽st Y . For further results see Shaked and Shanthikumar
(2007).

Suppose random variables X and Y are distributed according to
TEE(α1, λ1) and TEE(α2, λ2), respectively. If λ1 = λ2, then it is easy
to show that g(x)

f(x)
is a decreasing function of x if and only if α1 < α2. So,

Y ⩽lr X implies Y ⩽hr X and hence we see that Y ⩽st X for α1 < α2. If
α1 = α2 = α then

g(x)

f(x)
=
λ2
λ1
h(x), (8)

where
h(x) = e(λ1−λ2)xeα(e

−λ2x−e−λ1x).

Hence, we have
∂ log h(x)

∂x
= q(λ1)− q(λ2),

where
q(λ) = λ(1 + αe−λx). (9)

It can be shown that if α > −1 then (9) is an increasing function of λ
(see Appendix A for more details) and it follows that (8) is a decreasing
function of x if λ1 < λ2. So, Y ⩽lr X implies Y ⩽hr X and hence we see
that Y ⩽st X for any α > −1 and λ1 < λ2.

6 Entropies

Entropy has been used in various situations in Science and Engineering. The
entropy of a random variable X with PDF f(x) is a measure of variation
of the uncertainty. There exist many entropy definitions and they are not
equally good for all applications. While the most famous (and most liberal)
Shannon (1951) Entropy, which quantifies the encoding length, is extremely
useful in information theory. Shannon showed important applications of this
entropy in communication theory and many applications have been used in
different areas such as Engineering, Physics, Biology and Economics. Using
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(5) and (6), we obtain the Shannon entropy as

E{− log f(X)} = log

(
eα − 1

λα

)
+

1

eα − 1

∞∑
k=1

{
αk

k!k
− αk+1

(k − 1)!(k + 1)

}
.

A generalized definition of entropy that stems from modifying the additivity
postulate and results in a class of information measures that contain Shan-
nons definitions as special cases is Rényi (1961) entropy. If X has the PDF
f(x) then Rényi entropy is defined by

IR(ρ) =
1

1− ρ
log

{∫
f(x)ρdx

}
, (10)

where ρ > 0 and ρ ̸= 1. Using (5), the integral in IR(ρ) for the TEE
distribution can be reduced to∫ ∞

0
f(x)ρdx =

(
α

eα − 1

)ρ
λρ−1

∞∑
k=0

(ρα)k

k!(ρ+ k)
.

So, one obtains the Rényi entropy as

IR(ρ) =

(
ρ

1− ρ

)
log

(
α

eα − 1

)
− log λ+

1

1− ρ
log

{ ∞∑
k=0

(ρα)k

k!(ρ+ k)

}
.

7 Maximum Likelihood Estimation

We now determine the MLEs of the parameters of the TEE distribution
from complete samples only. Let x1, x2, . . . , xn be a sample from TEE(α, λ)
distribution. Then, the log-likelihood function is

logL = n logα− n log(eα − 1) + n log λ− λ

n∑
i=1

xi + α

n∑
i=1

e−λxi .

The first order derivatives of logL are

∂ logL

∂α
=
n

α
− neα

eα − 1
+

n∑
i=1

e−λxi , (11)
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and
∂ logL

∂λ
=
n

λ
−

n∑
i=1

xi − α

n∑
i=1

xie
−λxi . (12)

The MLEs of the parameters can be obtained in the following manner. First,
we solve Equation (12) for α and obtain

α =
n− λ

∑n
i=0 xi

λ
∑n

i=0 xie
−λxi

= A(λ). (13)

Now, by substituting Equation (13) in Equation (11), we obtain the equation

0 =
n

A(λ)
− neA(λ)

eA(λ) − 1
+

n∑
i=1

e−λxi .

By solving this non-linear equation for λ, we obtain the MLE of λ denoted
by λ̂. Finally, replacing λ̂ in Equation (13), we obtain the MLE of the
parameter α denoted by α̂. In this paper we use the optim function from
the statistical software R (Team, 2013) to maximize the logarithm of the
likelihood function.

Under conditions that are fulfilled for the parameters in the interior of the
parameter space, the asymptotic distribution of (α̂, λ̂) as n→ ∞ is bivariate
normal with mean (α, λ) and variance co-variance matrix I−1(α̂, λ̂),

(α̂− α, λ̂− λ) −→ N2(0, I
−1(α̂, λ̂)),

where I(α, λ) is the Fisher information matrix. Using (11) and (12) the
elements of I = (Iij) are given by

I11 =
n

α2
− neα

(eα − 1)2
,

I22 =
n

λ2
− 2n

λ2(eα − 1)

∞∑
k=0

αk+2

k!(k + 2)3
,

and
I12 = I21 =

n

λ(eα − 1)

∞∑
k=0

αk+1

k!(k + 2)2
.

The 100(1 − γ)% two sided asymptotic confidence intervals for α and λ are
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given, respectively, by α̂±Z γ
2
ŝe(α̂) and λ̂±Z γ

2
ŝe(λ̂), where ŝe(·) is the square

root of the diagonal element of I−1(α̂, λ̂) corresponding to each parameter,
and Z γ

2
is the upper (γ2 ) th percentile of a standard normal distribution.

8 Application: Coal-Mining Dataset
The following 109 data points represent the intervals in days between 109
successive coal-mining disasters in Great Britan, for the period 1875-1951,
published by Maguire et al. (1952). The sorted data are given as follows: 1
4 4 7 11 13 15 15 17 18 19 19 20 20 22 23 28 29 31 32 36 37 47 48 49 50 54
54 55 59 59 61 61 66 72 72 75 78 78 81 93 96 99 108 113 114 120 120 120 123
124 129 131 137 145 151 156 171 176 182 188 189 195 203 208 215 217 217
217 224 228 233 255 271 275 275 275 286 291 312 312 312 315 326 326 329
330 336 338 345 348 354 361 364 369 378 390 457 467 498 517 566 644 745
871 1312 1357 1613 1630.

In order to identify the shape of the hazard function, we shall consider
a graphical method based on the Total Time on Test (TTT) plot. In its
empirical version the TTT plot is given by

T (r/n) =
(
∑r

i=1 Yi:n + (n− r)Yr:n)∑r
i=1 Yi:n

,

where r = 1, 2, . . . , n and Yi:n represents the ith order statistic of the sample.
If the empirical TTT transform is convex, concave, first convex then concave,
and first concave then convex, the shape of the corresponding hazard rate
function is, respectively, decreasing, increasing, bathtub, and unimodal (for
more details, see Aarset, 1987). Figure 4 shows the empirical TTT plots for
the coal-mining disasters data, which is convex indicating a decreasing failure
rate function, which can be properly accommodated by TEE distribution.
We compare TEE distribution with four other two-parameter models

• Gamma distribution with PDF f(x) = λα

Γ(α)x
α−1e−λx, α > 0, λ >

0, x > 0.

• Weibull distribution with PDF f(x) = αλ(λx)α−1e−(λx)α , α > 0, λ >
0, x > 0.

• Generalized exponential distribution (GE) introduced by Gupta and
Kundu (1999) with PDF f(x) = αλ(1 − e−λx)α−1e−λx, α > 0, λ >
0, x > 0.
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• Weighted exponential distribution (WE) proposed by Gupta and Kundu
(2009) with PDF f(x) = α+1

α λe−λx(1− e−αλx), α > 0, λ > 0, x > 0.

To see which one of these models is more appropriate to fit data. The MLEs
of parameters, Kolmogorov-Smirnov statistics and p-values are obtained.
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Figure 4. Empirical TTT plot for the coal-mining data.

The results are given in Table 1. By comparing the log-likelihood val-
ues and p-values based on the Kolmogorov Smirnov test, we see that TEE
distribution gives a satisfactory fit to data. The relative histogram and the
fitted TEE distribution are plotted in Figure 5 (a). In order to assess if the
model is appropriate, the plots of the fitted survival functions and empirical
survival functions for fitted models are displayed in Figure 5 (b)-(f).
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Table 1. The maximum likelihood estimates, the corresponding standard errors are given in
parentheses and Kolmogorov-Smirnov statistics and p-values for coal-mining data.

The model MLEs of the parameters Log-likelihood K-S statistic p-value
gamma α̂ = 0.8555, λ̂ = 0.0037 -702.4007 0.0823 0.4517

(0.100670, 0.000575)

Weibull α̂ = 0.8848, λ̂ = 0.0046 -701.7724 0.0784 0.5135
(0.0633, 0.0005)

GE α̂ = 0.8605, λ̂ = 0.0039 -702.5524 0.0830 0.4402
(0.1051036589, 0.0005061644)

WE α̂ = 704.9214, λ̂ = 0.00429201 -703.2087 0.0836 0.4313
(232.9913, 0.00003390085)

TEE α̂ = 2.0594, λ̂ = 0.0024 -700.6492 0.0725 0.6154
(1.60496444, 0.00118128)

9 Conclusion

In this paper, we propose a new method to generalize family of distributions,
based on truncated continuous random variable on support (0, 1). As an
application a new two-parameter family of distributions, namely TEE distri-
bution, is introduced which may sometimes be a competitor to the Weibull,
gamma and other two-parameter life time models. Various properties of the
new distribution are obtained. These properties include moments, quantiles,
mode, moment generating function, mean residual lifetime, stochastic orders,
order statistics and some entropies. We discuss maximum likelihood estima-
tion of the model parameters and derive the observed information matrix.
An application of the TEE family is demonstrated in a real dataset. The
development and investigate the behavior of the proposed method to expand
other family of distributions will be taken up in a future work.
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Figure 5. (a): The histogram and the fitted TEE distribution. (b)-(f): The fitted survival
functions and empirical survival functions for fitted models.
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Appendix A

∂q(λ)

∂λ
= 1 + αe−λx − αλxe−λx,

by taking u = λx
∂q(λ)

∂λ
= 1 + αe−u − αue−u.

It follows that ∂q(λ)
∂λ

> 0 if

α >
−eu

1− u
; 0 < u < 1,

or
α <

eu

1− u
; u > 1.

By considering following equations

lim
x→0+

(
eu

1− u
) = 1,

lim
x→1−

(
eu

1− u
) = +∞,

lim
x→+∞

(
eu

1− u
) = −∞,

and
lim
x→1+

(
eu

1− u
) = −∞,

it follows that ∂q(λ)
∂λ

> 0 for α > −1.
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