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A Method to Perform a Fast Fourier Transform
With Primitive Image Transformations

Phil Sheridan, Member, IEEE

Abstract—The Fourier transform is one of the most important
transformations in image processing. A major component of this
influence comes from the ability to implement it efficiently on a
digital computer. This paper describes a new methodology to per-
form a fast Fourier transform (FFT). This methodology emerges
from considerations of the natural physical constraints imposed
by image capture devices (camera/eye). The novel aspects of the
specific FFT method described include: 1) a bit-wise reversal
re-grouping operation of the conventional FFT is replaced by
the use of lossless image rotation and scaling and 2) the usual
arithmetic operations of complex multiplication are replaced
with integer addition. The significance of the FFT presented in
this paper is introduced by extending a discrete and finite image
algebra, named Spiral Honeycomb Image Algebra (SHIA), to a
continuous version, named SHIAC.

Index Terms—Euclidean ring, hexagonal lattice, image trans-
forms.

I. INTRODUCTION

T
HE Fourier transform is one of the most important transfor-

mations in image processing in particular and signal pro-

cessing in general. Its origins date back to 1807 when Jean Bap-

tiste Joseph Fourier defined the notion of representing a function

as a trigonometric series. Until the invention of the digital com-

puter, the Fourier series was employed as a purely analytic tool.

However, with the development of the fast Fourier transform

(FFT), the notion has become a useful computational tool. One

of the most attractive computational properties of the FFT is its

ability to process signals at higher resolution with a minimal in-

crease in cost to complexity. Today, most of us use FFTs every

day, without even knowing it, as this technology is employed in

digital cameras, disc drives, and even our cell phones [1]. Since

its original inception in the early 1960s, the FFT has undergone

a multitude of mutations many of which have resulted in patents.

The motivation behind the development of these FFT variants is

the commercial advantage gained by achieving rapid creation of

a Fourier signal and a rapid reconstruction of the original signal

from it.

Primitive image transformations, translation, rotation, and

scaling, are fundamental to many image processing tasks
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because they mimic object motion in the visual world. Image

representations, which are invariant to such motion, have

added utility to both biological and computer vision systems.

Some of the most important image processing properties of the

Fourier transform result from their pseudo invariance to the

primitive object motion of the objects they represent. Hence,

it is not surprising that the Fourier transform has a strong rela-

tion to mathematical structures composed of pseudo invariant

image transformations. The Spiral Honeycomb Image Algebra

(SHIA) is one such mathematical structure that represents

images on a hexagonal lattice. In [2], it was shown that this

class of algebras is important to the field of image processing

and computer vision for two reasons. First, it facilitates lossless

image transformations for rotation, scaling and translation.

Second, it possesses computational properties pertinent to

discrete representations of images, digital image technology,

and biological vision.

The main thrust of this paper investigates extensions to SHIA

and serves the purpose of proposing a new methodology for per-

forming image transformations; one which is consistent with the

constraints imposed by image capture devices. Two outcomes

will be described: 1) a new theoretical framework that facili-

tates pattern analysis and computer vision; 2) a new method to

perform a FFT. The first outcome emerges from a distinction

between the environment in which objects move about (referred

to in this paper as the visual world) and the portion of the envi-

ronment visible to an observer at any given point in time due to

the physical constraints of the camera/eye of the observer (re-

ferred to in this paper as the visual field). It will be shown that

SHIA captures important aspects of the visual field that are un-

obtainable by other mathematical structures currently employed

to support image analysis. The extensions to SHIA will also

reveal SHIA’s relationship to the most powerful mathematical

structure (complex plane) commonly employed to represent the

visual world. The second outcome describes a new FFT algo-

rithm of type Cooley–Tukey which is peculiar to SHIA. It will

be shown that this FFT named SHIA-FFT is in general compa-

rable in efficiency to other FFTs but possesses additional effi-

ciency in certain circumstances.

The FFT presented in this paper is similar to two other FFTs

defined on a hexagonal lattice. Zapata and Ritter [3] proposed

an FFT defined on the Generalized Balanced Tree. Middleton

[4] described a FFT, named HIP-FFT, on an image represented

on a hexagonal lattice. Middleton’s paper makes two impor-

tant contributions to the theory of FFTs: 1) it provides em-

pirical evidence for the quality of the Fourier transform when

performed on a hexagonal lattice; 2) it provides the mathemat-

ical motivation underpinning the FFT on the hexagonal lattice.
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SHIA-FFT distinguishes itself from HIP-FFT in two regards.

First, the HIP-FFT employs a third coordinate system to re-

late the addresses on the hexagonal lattice to the re-grouping

process. The SHIA-FFT achieves this regrouping with the use of

a lossless primitive image transformation from SHIA. Second,

and as a consequence of the extension of SHIA to a continuous

domain, the arithmetic operations of complex multiplication and

addition are performed in SHIA in integer arithmetic without re-

sorting to the usual operations within the field of complex num-

bers. It will be shown in this paper that performing arithmetic

operations in SHIA, instead of the complex field, can result in

considerable computational savings at the cost of incurring a

user-defined degree of approximation.

Currently, SHIA is defined on a finite set of points and pos-

sesses the powerful mathematical structure of a Euclidean ring.

However, it falls short of the important mathematical structure

of a field by its lack of multiplicative commutativity. This paper

extends SHIA from a discrete and finite domain to a continuous

domain. A consequence of this extension is that the continuous

version of SHIA named SHIAC achieves the structure of a field.

More specifically, it is shown that SHIAC is isomorphic to the

field of complex numbers. It is a consequence of this isomor-

phism that permits the otherwise complex arithmetic operations

to be performed in the computational environment of SHIA.

Section II of this paper provides a brief review of the funda-

mental properties of the mathematical structure from which all

the results of this paper emerge. Section III provides a descrip-

tion of a new algorithm to perform the FFT named SHIA-FFT

and which is based on the SHIA properties presented in the pre-

vious section. Section IV describes two extensions to SHIA.

Section IV-A extends the discrete and finite nature of SHIA to

a continuous domain where it is shown that this extension pos-

sesses all of the properties of the complex plane. Section IV-B

shows how to perform all of the computations required for an

FFT with SHIA’s arithmetic operations. A case study presented

in Section IV-C describes a method to measure the computa-

tional advantages of performing the FFT in SHIA. Section IV-D

describes the minimal set of alterations to SHIA so that all of

its computational properties can be applied to signals sampled

by a rectangular lattice. Section V outlines a method that em-

ploys SHIA to perform an FFT in purely integer arithmetic and

the circumstances where this would be an advantage to do so.

Section VI presents a formal statement of three algorithms dis-

cussed in this paper. Section VII presents the conclusions of this

paper.

II. SPIRAL HONEYCOMB IMAGE ALGEBRA (SHIA)

The distribution of photoreceptors on the primate’s retina and

the distribution of cells in the human cortex [5], [6] are highly

suggestive of primitive image transformations associated with

the vision process. A natural data structure that emerges from

geometrical considerations of this distribution is the SHIA. This

class of algebras was initially described in [2] and further ex-

tended in [7] and [8]. However, as these results are critical to

the core results of this paper, we present a brief review of the

fundamental issues associated with the SHIA in this section.

The underlying geometry of the SHIA is a hexagonal lattice,

with each hexagon having a designated positive integer address

expressed in base seven. The numbered hexagons form clusters

of super hexagons of size . These self-similar super-hexagons

tile the plane in a recursively modular manner. As an example, a

super-hexagon of size and its concomitant addressing scheme

is displayed in Fig. 1(a).

This addressing scheme has associated with it a collection of

transformations, which form a powerful mathematical structure

known as a Euclidean ring. This mathematical structure pos-

sesses almost all the algebraic properties normally attributed

to the real and complex number systems. The SHIA algebraic

structure emerges from two arithmetic operations defined on

its addressing scheme, spiral addition, and spiral multiplication.

Each of these arithmetic operations defines a transformation on

its address space. When a super-hexagon also has associated

with it a discrete sampling of a 2-D signal, the arithmetic opera-

tions take on a geometrical interpretation of the sampled signal.

The spatial information embodied in the signal is captured al-

gebraically by the operations. Spiral addition is associated with

translation of the signal, and spiral multiplication is associated

with the dual transformations of rotation and scaling. A crit-

ical property of these transformations is that no information of

the originally sampled signal is ever lost under the action of the

transformations. An explanation for this property and a full dis-

cussion of the SHIA is provided in [2].

The transformation from SHIA pertinent to the FFT as dis-

cussed in this paper is denoted by M10. The symbol “ ” in this

notation refers to the application of spiral multiplication to the

address in SHIA that follows it—the number 10 in this case. Al-

though the full definition of spiral multiplication, denoted by the

symbol , is given in the Appendix, we can conveniently define

here the spiral multiplication of an address in SHIA by address

10 as the anti clockwise permutation of the digits in its repre-

sentation. That is, let represent an address

in a hexagonal SHIA, where for to .

Then

(1)

For example, in a 49-hexagonal SHIA where each address is

represented by two digits, and . The

relation between the address space of Fig. 1(a) and (b) is exactly

that of M10.

In a similar manner, the inverse operation to M10 is obtained

by performing a rotation of the digits in the opposite direction

to that which was performed to obtain M10.

Fig. 2(a)–(d) displays the effect of M10 when applied to an

image represented on an SHIA of size . Each of

the four images can be derived from successive applications of

either M10 or its inverse to any of the other images displayed in

the figure. In other words, M10 and its inverse perfectly recover

pixel information of the originally sampled image from any of

its transformations.

Another property of M10, which is observable in the images

displayed in Fig. 2, is that each transformation assembles the

image at a unique resolution. Fig. 2(a) shows multiple views

of the image at the lowest possible nontrivial resolution. That

is, the image is composed of 343 subimages, each of which is

composed of seven equally spaced pixels from the input image.
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Fig. 1. (a) Address space of a 7 = 49 Hexagon SHIA; (b) results from ap-
plying M10 of SHIA to (a); (c) frequency domain associated with the spatial
domain as displayed in (a).

If M10 is applied to this image, the resultant image is that dis-

played in Fig. 2(b), one that is composed of 49 subimages of

size . Successive applications of M10 reduce the number of

subimages by a factor of seven and increase the resolution of

Fig. 2. Four transformations of an image represented on an SHIA of size 7 =

2401 pixels. (a) Result of M10 applied to (d); (b) result of applying M10 to
(a); (c) result of applying M10 to (b); (d) input image and also results from the
application of M10 to (c).

each subimage by the same factor. Once the image of Fig. 2(d)

is achieved, one subimage of size , a further applica-

tion of M10 results in the image displayed in Fig. 2(a). In this

particular case, the modular aspect of the M10 has produced the

identical effect of applying the inverse of M10 to Fig. 2(b).

It is exactly this lossless recovery property and the partic-

ular partitioning property of M10 that facilitates the efficient

regrouping of the computations of the FFT to be described in
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this paper. This point will be returned to and explained in the

following section of this paper.

A final important point to address before we consider the FFT

on SHIA is the relation between the lattices of the spatial domain

and the frequency domain. As was reported in [3] and [9], the

relation can be described as reciprocal. That is the spatial and

frequency axis is orthogonal to one another. Fig. 1(c) illustrates

this relation where it can be observed that the frequency domain

is a rotation of the spatial domain plus a reflection about its ver-

tical axis. The mathematical derivation of this relation, provided

in [3] and [9], also indicates a scaling between the two domains.

The important point concerning this relation is that it is crucial

for the appropriate interpretation of the resulting Fourier trans-

form.

III. FFT IN SHIA

The FFT distinguishes itself from the Fourier transform, com-

monly known as discrete Fourier transform (DFT), by the order

in which the computations of the complex arithmetic operations,

addition and multiplication, are performed. The DFT for a 1-D

signal is defined as

(2)

for , where is a real value function,

represents the number of elements in the signal and .

A casual analysis of (2) reveals that the DFT algorithm is of

order in the number of complex arithmetic operations

performed. In contrast, a Cooley–Tukey type FFT regroups the

complex operations to achieve a algorithm. The

SHIA-FFT algorithm is of type Cooley–Tukey and is described

in Section III-A. Section III-B provides an analysis of the algo-

rithm. A proof of the algorithm’s correctness is presented in the

appendix.

A. Informal Statement of Algorithm

Initially, the sampled input signal is represented on an SHIA

of an appropriate size. For the purposes of the discussion in this

section, we will assume that the size is the image de-

picting the duck of Fig. 2(d). Denote this collection of values

as . Note that although is a function of a single vari-

able, it represents a 2-D signal. A three-step process: 1) local-

ization, 2) discrete Fourier transform, and 3) globalization is ap-

plied times. We refer to each of the repetitions of

the three-step process as a level of processing.

1) Level 1: At the first level of processing, the algorithm per-

forms a DFT at each of subimages each of which is

of size 7. This is achieved by applying each of the three steps

mentioned above. First, the localization process is achieved by

applying M10 to . The result is to transform the original

spatial domain into that which is observable in Fig. 2(a). In other

words, the effect is a regrouping of the spatial domain at the

lowest resolution. Second, the DFT is performed on each of the

343 subimages of size 7. Third, the globalization process is ap-

plied which in this case is the identity map. The lowest level of

the FFT is complete as seen in Fig. 3(a).

2) Level 2: At the second level of processing, the effect of

the algorithm is to produce Fourier transforms of the

49 subimages as displayed in Fig. 2(b). At this level, the local-

ization process has two components: 1) M10 is applied to the

resulting frequency domain from the previous level; 2) ss the

subimages at this level are of size 49; the 49 addresses asso-

ciated with the 49 roots of unity are mapped into an address

space. Then, M10 is applied to this address space so that the

appropriate roots of unity line up in packets of seven with the

transformed signal. The effect of M10’s application to the new

spatial domain is a re-grouping, in clusters of seven, at the next

higher level of resolution. Likewise, the effect of M10’s ap-

plication to the roots of unity is a re-grouping, in clusters of

seven, of the unit circle into seven clusters, each of which con-

tains seven addresses of equal and maximal spacing on the unit

circle. At this stage, the localization process is complete and

the DFT on each of the seven clusters is performed. In order to

complete the three-step process at this level, the globalization

process is then performed. This amounts to applying the inverse

of M10 on each super-hexagon of size 49. The effect of this

transform is a re-grouping of the frequency domain into consec-

utive super-hexagons at the second lowest resolution; subimages

of size 49. This result is observable in Fig. 3(b).

At each of the two remaining subsequent levels, this same

three-step process of localization, discrete Fourier transform

and globalization is performed. The results at each level achieve

the Fourier transform at the next higher level of resolution, the

results of which are presented in Fig. 3(c) and (d).

B. Analysis of Algorithm

The standard analysis of a Fourier transform is to count the

number of complex arithmetic operations performed. All other

computations are considered overhead and ignored. In the worst

case, M10 is linear in integer addition. In practice and as a re-

sult of the need for repeated applications of this transformation,

M10 can be preprocessed and held in memory. Consequently,

the costs associated with M10 are also ignored.

At each local execution of the DFT, the number of complex

multiplication operations required is . There are also an equal

number of complex addition operations. We denote the number

of sampled points to be transformed as , where is a

positive integer. It follows that the number of times that the local

DFT is performed at each level is . The number of com-

plex operations at each level is . As the number of

levels is , it follows that the total number of opera-

tions to be performed is . Therefore, SHIA-FFT

is of order in the number of complex operations

of multiplication to be performed. In the following sections,

we extend SHIA and show how the most expensive operation

of complex multiplication can be replaced by the relatively in-

expensive operation of integer addition and thereby achieve an

FFT, which is in integer addition.

IV. EXTENSION TO SHIA

Although SHIA was originally conceived as a collection of

lossless primitive image transformations of translation, rotation

and scaling, it also has a strong relation to complex numbers.

In particular, the address space of SHIA constitutes a subset
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Fig. 3. Four stages of the Fourier transform of the image displayed in Fig. 2(d).
(a) Result on completion of level 1; (b) result on completion of level 2; (c) result
on completion of level 3; (d) completed transform level 4.

of the complex plane and spiral addition and spiral multipli-

cation mimic their counterpart operations of complex addition

and complex multiplication. This relation can be strengthened

to an isomorphism [10]. This paper will develop the isomor-

phism by making two alterations to SHIA that will shortly be

described. However, before wading into the mathematical de-

tails of the task, it is worth considering the theoretical and com-

putational motivation for establishing the isomorphism. As a

consequence of this isomorphism: 1) the relationship between

the visual world and the visual field will be described in math-

ematical terms, and 2) we will show how the FFT can be per-

formed with purely integer arithmetic. That is, the usual floating

point operations associated with the multiplication and addition

of complex numbers can be dispensed with by performing spiral

multiplication and spiral addition on the isomorphic image of

these complex numbers. Moreover and as a further consequence

of the isomorphism, we will show how the computation of a

multiplication operation on complex numbers can be performed

at the computational cost of integer addition. This means that

we will be able to replace the most computationally expensive

operation, multiplication of the FFT, with the relatively inex-

pensive operation of integer summation. With this motivation

now established, we consider the mathematical details of the

isomorphism.

A. Continuous Spiral Honeycomb Image Algebra SHIAC

Up to this point in the discussion, SHIA consists of a finite set

of addresses, the cardinality of which is , where . As

stated earlier in this paper, SHIA has the mathematical structure

of a Euclidean ring. The mathematical proofs that the arithmetic

operations of spiral addition and spiral multiplication defined on

SHIA possess all the required algebraic properties (e.g., asso-

ciative, distributive, etc.) are provided in [11]. However, SHIA,

a Euclidean ring, falls short of the mathematical structure of a

field by virtue of the fact that its operation of modular spiral

multiplication is not fully commutative. In particular, the multi-

plication of addresses that are a power of 7 with addresses that

are not a power of 7 does not commute. In this section, we will

extend the address space of SHIA to a possibly infinite set and

remove the modular component from the multiplication opera-

tion. By doing so, this extension becomes a field. Then we will

show that this extension to SHIA is isomorphic to the field of

complex numbers.

1) Extending the Address Space of SHIA: An address in

SHIA is represented as where .

This purely integer representation of an address can be general-

ized to incorporate floating point addresses by starting the index

variable, , at a negative integer

(3)

where and , .

With (3), we can now define the address space of the SHIAC.

Definition: Let SHIAC ( , ) be the set of all addresses de-

fined in (3) for integer values of and . In this space, the

values of and may be either infinite or finite.

As a simple example of this addressing scheme, the address

space of SHIAC (1, 1) is displayed in Fig. 4.
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Fig. 4. The 49 addresses of SHIAC (1, 1).

The second change to SHIA that is required is to the defini-

tion of multiplication. The need arises due to the fact that when

either of the values of or in SHIAC ( , ) is not finite, the

notion of modular spiral multiplication and modular spiral addi-

tion is inapplicable. As a consequence, we re-define the defini-

tion of the multiplication in SHIAC to be spiral multiplication,

as presented in the Appendix. The consequence of removing the

modular component of the multiplication operation is that spiral

multiplication without modularity is commutative. The imme-

diate consequence of gaining commutativity in the multiplica-

tion operation is that all the axioms that define the mathematical

structure known as a field now hold for SHIAC.

It is asserted that SHIAC ( , ) is a field when and are

not finite. The mathematical proofs of the spiral addition and

spiral multiplication defines a field follows from the arguments

presented in [11].

As a consequence of the assertion, SHIAC has all the alge-

braic properties of the complex plane. In the following section,

it will be shown that up to the way in which the operations of

addition and multiplication are performed SHIAC and the com-

plex plane are the same.

2) Mapping Shiac to the Complex Plane: Having established

the fact that the representation for the addresses of SHIAC to-

gether with the operations of spiral addition and spiral multipli-

cation form a field, we next define a mapping from SHIAC into

the complex plane ( ) asoriginally reported in [10]and showthat

this mapping is an isomorphism. To this end, we use the fact that

the set of addresses for form a basis for SHIAC

( , ). We associate with each address of the basis, a pair of real

numbers that represent its Euclidean distance from the address 0

and the angle it subtends with the vertical axis through address

0. This means that the mapping where

assigns to each address of the basis, a point in the complex plane

representedinpolarcoordinates. Inorder todeterminetheexplicit

value of , consider the relation between the addresses 10

and 1 in SHIAC as displayed in Fig. 5.

In the figure, , , . From the Law of

Cosines

Fig. 5. (a) Geometrical relation between the hexagons containing the addresses
0, 1, 6 and 10 in SHIAC; (b) P denotes the point in the complex plane C that
corresponds to the center of hexagon of address i. The four points define three
triangles from which the mapping from the hexagons of SHIAC to the points
of C is derived.

Fig. 6. Graphical representation of the spiral f (i) = r e . The integer
values of i relate the hexagonal addresses of SHIAC to the polar coordinates
of the point in the center of hexagon of address i.

More generally, for any integer value , the distance of address

to the origin is and the angle associated with address

is . This means that the ratio of distances of address and

is the constant and the angle subtended by these addresses

with the origin is the constant for all integer values of . Fig. 6

displays a graph of the equation The addresses

in SHIAC associated with the points along the curve for integer

values of constitute the basis of SHIAC and it is this spiral

from which the “ ” in SHIA is derived.

From these relations, we define a mapping from SHIAC to

the complex plane as follows:

(4)

where if is 0 and 1 otherwise.

As a consequence of the mapping , it can also be observed

that as , , hexagons of SHIAC ( , ) converges to

points in the complex plane. In practice, this mapping can also

be used to determine the amount of error embodied in a partic-

ular approximation of an address in SHIAC under its mapping

for particular values of and . In particular, for any given tol-

erance of error, , a minimal value for that guarantees that

a point in SHIAC ( , ) approximates a desired point in the

complex plane within that tolerance is given by the following

inequality:
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Fig. 7. Isomorphic relation of the mapping , when� represents the operation
in SHIAC and � represents the operation in the complex plane.

Having established that under the mapping any number in

the complex plane can be represented in SHIAC, and vice versa,

it is asserted that the mapping is one-to-one and on-to. It can

also be shown, albeit algebraically tediously, that the mapping

is associative. That is, the relation displayed in Fig. 7 holds for

all addresses in SHIAC. To demonstrate the associativity of the

mapping, consider the result of multiplying the address 10 by

itself before and after the mapping

As a consequence of the above-mentioned algebraic proper-

ties of SHIAC and , it is asserted that the fundamental theorem

of SHIAC follows.

Theorem 1: SHIAC is isomorphic to the complex field as

defined by the mapping of (4).

Apart from the theoretical importance of the isomorphism,

there are practical implications, as well. As an example of one

such application of the isomorphism, a simple algorithm for de-

termining the multiplicative inverse of an address of SHIAC can

be derived.

Denote the multiplicative inverse of address , by . In

the context of a continuous address space, it also makes sense

to employ the fraction symbol to denote the inverse, i.e., ,

because the way in which we calculate the multiplicative in-

verse in SHIAC is analogous to the process of determining the

multiplicative inverse in the field of real numbers. That is, the

multiplicative inverse of a real number can be calculated by per-

forming the usual long division algorithm on 1 by the given real

number. Recall that the division operation on real numbers is a

compound arithmetic operation composed of multiplication and

subtraction. The isomorphism assures that the operations in the

domain and range of the isomorphism are equivalent. Conse-

quently, in the SHIAC operation of long division, the multipli-

cation operation is that of spiral multiplication and subtraction

is that of the additive inverse of spiral addition. We can demon-

strate the application of this algorithm by considering the ex-

ample of dividing address 1 by address 11. Armed with the fol-

lowing information, all of the required multiplications and addi-

tions for this problem can be determined from Fig. 1(a). Multi-

plication of addresses by scalars amount to 60 rotations of the

address about the origin

It is also a straightforward calculation to show that this is the

multiplicative inverse as follows:

where represents the multiplication operator in SHIAC.

Theorem 1 establishes the algebraic validity of performing

multiplication and addition of complex numbers in SHIAC. In

the following sections, we will demonstrate how the complex

computations associated with the Fourier transform can be per-

formed in practice and also demonstrate the computational va-

lidity for doing so.

B. Fourier Computations in SHIAC

An immediate consequence of the isomorphic relation be-

tween SHIAC and the complex field is that the arithmetic opera-

tions normally performed in the complex field can be performed

in SHIAC. Although the motivation for doing so in the infinite

SHIAC is of theoretical value only, performing these computa-

tions in a finite SHIAC can provide computational advantages

by performing computations at a degree of precision concomi-

tant with the user’s application. However, before we address this

issue in Section V, we must first establish the mathematical ma-

chinery required to do so.

Equation (2) reveals that the core computation is that of mul-

tiplying components of the input signal with the roots of unity

in the complex plane. Consequently, we now describe how to

generate the roots of unity in SHIAC. This is accomplished by

performing the following two steps. First, determine the roots

of unity in the complex plane in the usual manner, and, second,

find an address in SHIAC that maps to the point via (4), within a

desired tolerance of error. An algorithm to achieve this is named

decremental search algorithm and is described formally in Sec-

tion VI.

The algorithm inputs a complex number and a specified toler-

ance and outputs an address in SHIAC within that specified tol-

erance. The algorithm emerges naturally from considerations of

the mapping defined in (4). The decremental search algorithm

can be employed to determine both the SHIAC roots of unity

and to map the input signal into SHIAC. For an input signal

composed of points the unit circle is divide into equally

spaced addresses of magnitude one in SHIAC. If the input signal

represents light intensities, the values must be transformed into

base seven. If the input signal represents a position in Euclidean

space whereby the Fourier descriptors are desired, the algorithm

must be used to find its corresponding address in SHIAC.

The operation of multiplication of the input signal with the

roots of unity represented in SHIAC is, thus, well defined. More-

over, the mapping of (4) can be employed to control the error
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associated with the multiplication of floating point numbers,

which we will consider in the following section.

One final point associated with performing the Fourier com-

putations in SHIAC is the interpretation of the inverse Fourier

transform. As the input signal was mapped into SHIAC prior to

performing the Fourier computations, the results of the inverse

Fourier transform must be converted back to its representation

in the complex plane. Once again, (4) and the method to com-

pute and displayed in Fig. 12 can be employed to convert

the signal back to the complex plane from which the spectrum

and the phase can be obtained.

C. Case Study in Error Control

Computations associated with the execution of any Fourier

transform on a digital computer embody an approximation.

This approximation results from the error incurred in em-

ploying the finite precision of a floating point representation of

a real number. In practice, the precision provided by modern

computer languages far exceeds that which is required for many

practical applications. For example, the error incurred in the

representation of bank balances by specifying the balance with

the precision provided by two decimal places, is acceptable.

Likewise, there are many applications where the Fourier trans-

form can be computed with substantially less precision than

that available in a standard representation of a floating point

number, without compromising its interpretation. Therefore,

addressing the question, “What is the least precision in the

representation of a real number so that the resulting Fourier

transform remains useful?” can provide computational advan-

tages. In this section, we address this question by investigating

the computational requirements that must be satisfied in order

to control the error embodied in the recovery of a signal trans-

formed by FFT in SHIAC. To this end we first establish the

equations resulting from theoretical considerations of SHIAC.

Then, under two different scenarios, we apply the equations to

establish the computational requirements imposed by the duck

image displayed in Fig. 2(d).

The error embodied in a Fourier component computed in

SHIAC ( , ) results from the degree to which the SHIAC

discrete roots of unity approximate the continuous roots of

unity in the complex plane. This approximation can be made

to within any desired specification by setting the value of

in (3) appropriately. The magnitude of determines the

Euclidean distance between adjacent points in SHIAC and,

thus, determines the maximum amount of error resulting from

a product of a root of unity and the signal. The magnitude of

determines the number of times the error in the product is

added, namely, . However, in this case study, we restrict our

considerations to only the error produced by the multiplication

of the roots of unity and the signal.

Thus, in order to restrict the error in a Fourier computation

to be within a given level of tolerable error, , the following

inequality must be satisfied:

Thus, the smallest value of that satisfies the following

equation will guarantee the actual error is less than

A solution to the above inequality yields

(5)

We can now use (5) to calculate the required value of for the

cases of the gray-level and color version of the duck displayed

in Fig. 2(d). As we wish to recover integer values of light inten-

sities, an acceptable error rate is 0.5. As the maximum value of

a light intensity is 256 for an 8-bit gray-level image, the solution

to (5) for the specified level of error yields .

In the case of a color image, the maximum value of a light

intensity is an integer composed of nine significant digits. In

this case the solution to (5) yields .

D. SHIAC on a Rectangular Lattice

SHIA was originally developed to perform primitive image

transformations on a hexagonal lattice. The initial interest in a

hexagonal lattice representation of an image resulted from the

suspicion that the ubiquitous occurrence of the hexagon in bio-

logical vision systems [5], [6] may have a computational base

to it. However, the rectangular lattice (as a means to sample an

input signal) is also employed in the vision system of many an-

imals. The occurrence tends to be determined by the amount of

light available in the animal’s environment. That is, in environ-

ments where there is an abundance of light, e.g., in the sky, on

the earth’s surface and in shallow water, the hexagon is used;

this enhances the perception of form and color. In environments

where light is at a premium, e.g., in caves and underground and

in deep water, the rectangular photoreceptor tends to be em-

ployed; this enhances the perception of contrast sensitivity [12].

It turns out that the mathematical structure that underpins

SHIA is substantially more general than the particular details

that link it to the hexagonal lattice. However, commercially

available hexagonal image capture devices for digital tech-

nology are rare [13]. In the absence of such image capturing

technologies, we now describe an extension to SHIA that adapts

its mathematical structure to incorporate a rectangular lattice.

Fortuitously, the immediate consequence of this extension

pertinent to this paper is that the SHIA-FFT as presented in

Section III is easily adapted to perform Fourier transforms on

signals that are sampled on a rectangular lattice.

At the heart of SHIA’s mathematical structure is an algo-

rithm named spiral counting, as described in [14]. This algo-

rithm specifies the location of SHIA’s addresses on the lattice

(see Fig. 1); the purpose of the specification was to define spiral

addition and spiral multiplication in geometrical terms. On the

hexagonal lattice, spiral counting is performed in base seven

with sixty-degree rotations. Spiral counting is adapted most nat-

urally to a rectangular lattice by changing the base from seven to

five and the 60 rotations to 90 rotations. The results of this ad-

dressing scheme are displayed in Fig. 8, where addresses 0 to 4

define the initial fundamental cluster of the mosaic. The relative
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Fig. 8. Pixel position of the first fundamental cluster (0–4) with their corre-
sponding Cartesian coordinates and indicates center pixel of adjacent clusters
(10–40).

Fig. 9. Image derived from rectangular spiral counting of 5 = 15625 pixels.

positions of addresses 10, 20, 30, and 40 specify the recursive

step required to enlarge the cluster to five clusters.

An image represented on a mosaic created by the alterations

to spiral counting described above is displayed in Fig. 9. The

size of the SHIA was chosen so as to emphasize the distinction

between the visual world and the visual field. This is an impor-

tant distinction to make for both computer vision and biological

visions systems, as the visual processing unit operates on only

a fraction of the total amount of light energy in the environment

at any given time.

In particular, the visual world, which is the physical environ-

ment where objects move about and where the visual task is to be

performed, can be considered as infinite in both the vertical and

horizontal directions. It can also be considered infinite in resolu-

tion due to the wave nature of light. Because of these properties,

the complex plane is an ideal mathematical structure on which to

represent the visual world. The visual field is that subset of the vi-

sualworldboundedby thephysicalconstraintsof thecamera/eye.

The resolution of the visual field can be considered finite as a re-

sult of the discrete nature of the photoreceptors of the camera’s

image sensor or eye’s retinal cones. As a result of these proper-

ties, the discrete nature of SHIA has advantages over the complex

plane as a structure on which to process an image.

It is exactly SHIA’s ability to model the visual field that es-

tablishes its theoretical importance to computer vision. We will

return to this point later in the discussion to strengthen the va-

lidity of the claim.

The mosaic is composed of pixels. The gray

pixels of this figure form the border of the visual field, which

gives the appearance of viewing the duck through a fractal-like

window.

SHIA’s primitive image transformations result from two op-

erations, named spiral addition and spiral multiplication, which

are defined in terms of the spiral counting algorithm. With the

alterations to Spiral counting mentioned above, the operations

of spiral addition and spiral multiplication are defined on the

rectangular lattice. As a consequence, all of the primitive image

transformations on the hexagonal lattice have their counterpart

transformations well defined on the rectangular lattice.

Possibly, the most profound effect of spiral multiplication is

the simultaneous scaling up and scaling down of the image. This

results in a dual representation of the image after transformation

whereby the image is represented at a macro level and simulta-

neously at a micro level. This effect is important because it is ex-

actly this effect that intrinsically links the SHIA to the Fourier

transform. Although this effect of dual representation is present

in each of the transformations resulting from spiral multiplica-

tion, it is not always perceivable by the human eye. This is due

to the relative size of the scaling factor, which can be extreme.

However, we can demonstrate this effect with a careful choice of

the multiplication address. An address, which possesses a gentle

scaling with no rotation, is address 42. Observe from Fig. 8, that

the distance of address 42 from the origin is two pixels. Accord-

ingly, thisproducesascalingfactorofvalue2.0.Themacro/micro

representation phenomenon is observable in the sequence of im-

ages displayed in Fig. 10(a)–(c), which represent the results of

repeated applications of transformation M14. The first applica-

tion produces subcopies, each of which represents an

observable scaling down by a factor of pixels and a

nonobservable (due to magnitude of scaling factor) scaling up by

a factor of pixels. A repetition of M42 on the result of

its first application to the original image is displayed in Fig. 10.

This image results in a further increase in the number of subim-

ages to , each of which represents an observable scaling

down of of the original image and a nonobservable

scaling of . The last image in the sequence represents

the 6th application of M14. In Fig. 10, the number of subcopies

is and a scaling down factor is , which

causes the human vision system to perceive the macro level of the

image and lose the perception of the micro level.

This switch of perception results from the fact that the scaling

is too small for observation. However, the scaling up effect of

, is observable, whereby the pixels in the original image

of the duck have been spaced by a factor of 2. This results in

a “ghost-like” appearance of the original image of the duck.

This dual scaling up and down means that at each representa-

tion, resulting from a multiplication operation, the transformed

image consists of a macro representation of itself, which is com-

posed of microcopies of itself. Multiplication by address 1 is the

trivial case where the macro representation is the original scale

and the micro representations are one-pixel representations. All

nonunit multiplications produce macro representations that are

larger than the original image and micro representations that

are composed of more than one pixel. This effect would also

be observable in the case where multiplication is with address

10, which has a scaling factor of .

The important point about M10 for the rectangular lattice is

that it performs exactly the same role as its counterpart transfor-

mation on a hexagonal lattice.
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Fig. 10. (a) Multiplication by address 14 produces five subcopies, each of
which represents a scaling by 0.5 of the input image. (b) Multiplication by
address 14 of image resolution in Fig. 10(a) produces further replication and
scaling. (c) Repeated multiplication by address 14 of image represented in
Fig. 10(b), produces a scaling up of image.

As a consequence, the SHIA-FFT as described in Section III,

applies equally well to signals sampled by the rectangular lat-

tice.

Moreover, and in accordance with a principal set out in [15],

the following observations serve to reveal the deeper relation

between SHIA and the DFT. To this end, consider the role that

the transform M10 of SHIA plays in connecting the FFT to the

DFT. This connection can be expressed at an abstract level as

follows:

Another important issue to consider is the mapping, , of

rectangular SHIA to Cartesian coordinates.

Equation (4) provides the means by which this mapping can

be defined recursively on the row/column contribution to each

of the digits in the SHIA representation. The relations between

the first five addresses of SHIA and the Cartesian coordinate

system, as displayed in Fig. 8, provide the required information

to establish the base case of the recursion. Unlike the mapping of

the hexagonal SHIA to the Cartesian coordinate system, rectan-

gular SHIA lends itself to a one-to-one mapping in which none

of the pixels in the sampled signal need be missed. Fig. 12 dis-

plays the details of an algorithm that achieves the desired map-

ping. This mapping centers the SHIA’s origin, address 0, at the

origin of the Cartesian coordinate system, (0, 0). To shift the

SHIA origin to the center of a ( ) image, and is

added to each of the mapped values under the action of .

As a consequence of the mapping from SHIA to Cartesian

coordinates, the size of the SHIA to be used when employing

the SHIA-FFT on a standard rectangular ( ) image needs

to be considered.

Although the growth in computations in performing a

Cooley–Tukey type FFT is in the size of the image,

the size of its domain is a power of its radix. In general, one

must be prudent in the choice of the domain size to avoid

wastage of computation. Standard image row/column configu-

ration tends to be a power of 2 and so the choice of domain size

tends not to be of much concern for a radix-2 FFT. However,

the SHIA-FFT is of radix 5 (in the case of the rectangular lattice

and 7 in the hexagonal case). This requires the user to make an

optimal choice for the domain size. If the entirety of a ( )

image is required, then the minimal choice of the domain must

result in wasted computations.

For example, consider the image displayed in Fig. 8, which

contains seven columns and six rows. We are interested in de-

termining the smallest SHIA that is sufficiently large enough to

contain the forty two pixels. Clearly, a SHIA of size

is too small. The next smallest SHIA is ,

which is large enough in this case. However, in general, one

must alto that into account the dimensions of the image to be

captured. The more the desired image deviates from a square,

the more difficult the problem becomes. For example, a 25-pixel

SHIA will contain a 4 4 rectangular image but will not contain

an 8 2 image. In any case, this approach will result in substan-

tial wastage in SHIA pixels. For this problem to be controlled,

efficient algorithms need to be designed that can handle sparse

matrices.

As an alternative mapping, if only a region of interest is re-

quired of the input signal, then the SHIA can be centered appro-

priately so as to minimize the required number of pixels to be

mapped. However, this approach has its own problems. Methods

to determine the region of interest are currently ad-hoc.

V. FFT WITH INTEGER ARITHMETIC

Having established the mathematical machinery required to

perform the Fourier computations in SHIAC, we now return to

this issue and describe a method for approximating these com-

putations. The Fourier transform viewed at a higher level of
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abstraction can be described as a weighted average of funda-

mental patterns derived from the roots of unity in the complex

plane. However, the critical properties of these fundamental pat-

terns are not unique to the unit circle. In fact, the patterns can

be derived from any circle of a specified radius centered on the

origin of the complex plane. We will show that, if one employed

a circle whose radius was a function of the number of decimal

places required to recover the FFT without error, as described

in Section IV.C, then all computations could be performed in

SHIA. For example, we have previously established that if the

signal to be transformed were an 8-bit gray-level image, it would

require six decimal places in SHIAC. This is equivalent to taking

a circle whose circumference passes through the address .

The computations of the multiplication of the input signal with

these roots would be performed with purely integer addresses in

SHIA. The only factor that needs to be adjusted is the division

of the sum of the products by the number of points transformed.

In particular, the division factor must be multiplied by the radius

of the circle to bring the desired weighted average back in line.

Having outlined a method to perform the FFT in SHIA

without the need for floating point representation of addresses,

we can exploit another computational feature of SHIA that

facilitates spiral multiplication at the cost of integer addition. A

consequence of the mathematical structure of SHIA is that its

set of nonzero addresses can be partitioned into cyclic groups

(in the mathematical sense of the word) under the operation

of spiral multiplication. If for example, we consider the set

of addresses that has as its least significant digit a nonzero

digit, the address 12 can be employed as a generator of these

addresses. That is, any address, , in this set can be expressed

as for some integer .

The advantage of this representation for addresses of SHIA

is that we can employ a computational trick similar to the way

multiplication is performed on a slide-rule. That is, each address

is stored in an array at a position identified by the index that rep-

resents the discreet logarithm of the element. Then, the product

of two addresses is achieved in two steps: 1) identify the indices

of the position in the array where the elements are stored; 2) re-

turn the element stored in the position whose index represents

the sum of the two indices. With this approach to the multiplica-

tion operation of complex numbers, we achieve multiplication

at the computational cost of integer addition. We call this repre-

sentation of SHIA’s addresses the multiplicative log-space. The

immediate consequence of this Log-Space representation is that

multiplication in SHIA corresponds to addition of exponents in

the multiplicative log-space.

Exactly the same principle applies to the operation of spiral

addition. That is, the set of SHIA addresses from a cyclic group

under the operation of spiral addition where address 1 acts as

generator of the group. Likewise, each address in SHIA can be

represented as an additive power of the address 1, the conse-

quence of which is that spiral addition in SHIA corresponds

to integer addition in the additive log-space representation of

SHIA. For full details of the log-space representation of SHIA,

the reader is referred to [2].

We can apply these multiplicative and additive log-space rep-

resentations to obtain computational advantage for the FFT in

certain circumstances. All addresses of the SHIA can be held

in memory so that their positions in memory reflect their posi-

tions in the log-space. Then spiral multiplication and additions

are achieved by simply adding the positions of the inputs to ob-

tain the position of the product/sum in memory.

This method of performing the Fourier computations with in-

teger addition alone has its limitations. This method constitutes

a tradeoff between processing time and the amount of memory

required.

In circumstances requiring a lot of decimal precision, such

as in the case of the color image representation as discussed in

Section IV-C, the memory requirements would be prohibitive.

However, in the case of the 8-bit gray-level image, the memory

requirement is quite modest. In general, the ability to exploit

the computational potential of this approach is directly related to

the complexity of the signal. Consequently, before attempting to

employ this method, an analysis of the required precision, such

as described in the case study of Section IV-D, is necessary,

followed by a decision as to whether the tradeoff to memory

utilization is acceptable.

VI. FORMAL STATEMENT OF ALGORITHMS

This section presents a formal statement of critical algorithms

discussed in the paper. In particular, Fig. 11 displays a formal

statement of SHIA-FFT and is presented in a MatLab style lan-

guage as adopted in [15]. Also, the convention of not including

the scaling factor for the FFT [15], is also adopted. Fig. 12 dis-

plays a formal statement of an algorithm that achieves a map-

ping from SHIA to the complex plane. Fig. 13 displays the

decremental search algorithm.

VII. CONCLUSION

This paper presented a new methodology for performing a

Cooley–Tukey type FFT, named SHIA-FFT. The key to this ap-

proach is the employment of a lossless image transformation,

named M10, of scaling and rotation from the SHIA. A prop-

erty of M10 that is crucial to the FFT algorithm presented is its

ability to represent an image at the macro level and micro level

simultaneously. It is fundamentally this novel property that fa-

cilitates the efficient regrouping of the computations required

to achieve a FFT as reported in this paper. It was shown that

SHIA-FFT achieves considerable computational savings from

its ability to perform the arithmetic operations of complex mul-

tiplication and complex addition via conventional integer addi-

tion by approximating the computation with the Log-space rep-

resentation of SHIA. Although the computation savings are at

the cost of an approximation, it was shown how to determine

the required precision to accommodate the user-defined level of

acceptable error.

In the process of unveiling this methodology, the paper

described two important extensions to SHIA by making minor

alterations to the mathematical structure that underpins it. The

first extension was shown to be isomorphic to the complex

plane. The isomorphism facilitated the description in mathe-

matical terms of the relation between the physical spaces where

objects move about (visual world) and that subset of it (visual

field) which is sampled by an image capture device at a point

in time.
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Fig. 11. Formal statement of SHIA-FFT. 
 as defined in (1).

It was also shown that the isomorphism has computational

and theoretical consequences for the field of image analysis.

From a computational perspective, it facilitated the measure-

ment and, therefore, control of the implicit error embodied in a

representation of an image with a discrete mathematical struc-

ture such as SHIA.

Fig. 12. Mapping from SHIA to the complex plane.

Fig. 13. Decremental search algorithm.

The theoretical importance of the isomorphism is that it re-

lates all of the conventional image analysis algorithms normally

performed in the complex plane to SHIA and vice versa. The

second extension to SHIA generalized the SHIA-FFT method-

ology from signals sampled by a hexagonal lattice to signals

sampled by a rectangular lattice.
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The immediate pragmatic consequence of this extension is

that it enables the application of SHIA-FFT methodology di-

rectly to representations obtained by conventional image cap-

ture devices without having to first map the rectangular repre-

sentation to a hexagonal lattice.

In summary, the research presented in this paper advances the

practice and theory of image analysis by: 1) describing a new

FFT methodology that can be performed on either a hexagonal

lattice or rectangular lattice, 2) casting a theoretical framework

around this methodology that is in a manner compatible with

the natural constraints imposed by image capture devices.

APPENDIX

A. Section A

This section provides the proof of SHIA-FFT’s correctness.

Notation: The symbol “%” is employed to denote modular

arithmetic

Let e(u) represent the roots of unity, where

%

for and

for

%

%

The proof is by induction on . When , the SHIA-FFT

is the DFT. Assume the SHIA-FFT computes the Fourier trans-

form for all levels less than

%

We now have seven subimages, each of which is com-

posed of points. Then by the induction hypothesis, we

can apply the FFT algorithm to obtain seven individual

transforms of the seven subimages; which yields: Let

The

localized yields

%

Perform DFT on each group of seven points. The general term

is

% %

%

% %

% % %

% %

% %

% %

% %

% % %

%

The above proof was written specifically for the hexagonal lat-

tice, . However, it applies to the rectangular case,

, by replacing all occurrences of 7 with 5 and replacing

all occurrences of 6 with 4.

B. Section B

Fundamentally, the arithmetic operations of Spiral Addition

and Spiral multiplication are derived from a counting algorithm

named Spiral Counting defined in [2]. This counting algorithm

evolves naturally in a manner analogous to the way our familiar

form of counting underpins the conventional form of addition

and multiplication of integers. However, both these counting al-

gorithms are geometrical in nature and so do not lend them to

use on a computational device. To achieve a computational defi-

nition of the operations we can proceed in the following manner.

The products and sums of basic components for a rectangular

lattice as displayed in Tables I and II are derived from inter-

preting the addresses of Fig. 8 as vectors and the corresponding

operations as vector addition and vector multiplication. The cor-

responding tables for the hexagonal lattice are derived in a sim-

ilar manner from Fig. 1(a).

Notation: Let base be a variable that takes on the value 5 in

the case of a rectangular lattice and 7 in the case of a hexagonal

lattice
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TABLE I
DISPLAYS SPIRAL MULTIPLICATION ON THE FIRST FUNDAMENTAL CLUSTER

TABLE II
TABLE DISPLAYS THE SPIRAL ADDITION ON

THE FIRST FUNDAMENTAL CLUSTER

Spiral addition

%

%

Scalar spiral multiplication

General case of spiral multiplication

Example: To illustrate the use of the above algorithms, con-

sider spiral multiplication of 1.2 3.4

Modular Arithmetic in SHIA The special case of SHIAC (n, m)

when permits the definition of a modular form of the

arithmetic operations.

Notation: Let , then we can define in SHIAC (n,

0) the following:

For both operations, and , the arithmetic is performed as

specified in the algorithm for each obtaining a value say . The

mod operator is then applied to as follows.

If the arithmetic operation is or the operation is , where

the least significant digit of the multiplier is not zero, then the

result is simply the n least significant digits of , ignoring the

others. However, if the least significant digit of the multiplier is

zero, then the result is obtained by performing
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