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A Method to Recover Counting Distributions 
from Their Characteristic Functions 

John A. Gubner, Member, IEEE, and Majeed M. Hayat, Member, IEEE 

Abstruct- A method that does not use numerical integra- 
tion is presented for approximating the cumulative distribution 
of integer-valued random variables from their characteristic 
functions. Bounds on the approximation error are also given. 
The method is then used to compute photomultiplier counting 
distributions. 

1. INTRODUCTION 
HE design of systems with photonic components of- 
ten requires the calculation of false-alarm and detection 

probabilities of the form P ( X  2 n) or P ( X  5 n) where 
X is an integer-valued random variable. Examples include 
optical communication systems [3], optical neural networks 
[4], and photomultipliers [5] .  In these cases, one typically 
has a simple formula for the characteristic function of 
Xcp(u) := E[eyux], but not for P ( X  2 n) and P ( X  5 n) .  

The most obvious method to recover these probabilities 
from (p, which is 27r periodic, is to recall that P ( X  = k )  is 
the kth Fourier coefficient of cp. Then note that P ( X  5 n)  = 
C:=-,P(X = k )  and P ( X  2 n) = Cp=”=,P(X = k ) .  
The two sources of error here are the numerical integration 
error in computing the Fourier coefficients P ( X  = k )  and the 
error incurred by truncating the infinite sums. A less obvious 
method involves numerical contour integration in the complex 
plane using saddle-point techniques [51, 161. 

In this paper we present a new method for approximating 
P ( X  2 n)  and P ( X  5 n)  using p . Our method, given in 
the theorem below and proved in Section 11, includes simple 
error bounds and does not involve numerical integration. Also, 
the method can take advantage of the fast Fourier transform 
if several probabilities are needed at the same time, e.g., for 
graphical or optimization purposes. 

Theorem: If X is an integer-valued random variable with 
characteristic function p, then 

P ( X  2 n) = lim pk(n) 
L-00 
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where 

I 2L-1 

k a multiple’ of 2L 

otherwise. 

Furthermore, we have the error bounds 

p?,(n) - P ( X  2 n)  5 P ( X  < -L + n) ( 3 )  

and 

pk(n) - P ( X  2 n)  2 - P ( X  2 L + n). (4) 

Remarks: 
1) By defining Z = -X and noting that P ( X  5 n) = 

P ( Z  2 -n), the theorem easily implies that (since 
P ( X  5 n) is real, and since the characteristic function 
of 2 is the complex conjugate of p) 

(5) 
Equation (1) can be interpreted as a sampling theorem 
for the periodic “waveform” p with discrete “spectrum” 
P ( X  = n). If X is a bounded random variable, i.e., the 
spectrum is bandlimited, then P ( X  2 n)  = pk(n) for 
sufficiently large but finite L ; this can be seen by noting 
that the error bound in (3) is zero if -L + n is smaller 
than the minimum possible value of X; similarly, the 
bound in (4) is zero if L +n is greater than the maximum 
possible value of X .  For unbounded random variables, 
P ( X  2 n) does not exactly equal p k ( n )  for finite L due 
to aliasing, and the bounds (3)-(4) quantify the aliasing 
error. 
As shown in the proof of the theorem, ,L~L is the discrete 
Fourier transform (DFT) of a discrete-time periodic 
pulse train. 
Formulas analogous to (1) have been derived for random 
variables with a continuous cumulative distribution in 
[I] and 121. 

‘since L = o is a multiple of 2 ~ ,  L~, (o )  = L . See also (10) 
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Fig. 1. P ( X  2 x )  approximated using &4(71) 

and proceeding as in the derivation of (6), we have 

For the calculations we are considering, the worst-case bound 
occurs at n = 250, and the bound improves as n increases. 
Some caution is needed in minimizing the bound in (7); from 
the definition of f ( z ) ,  we must restrict IzI < 1/v,  and this 
implies 0 < s < ln(1 - (lnv)/G). The value of s that 
minimizes (7) and the corresponding value of the bound can 
then be found by plotting the bound as a function of s in the 
above range. For n = 250 and L = 6000, the bound in (7) is 
less than 8 x when s = 0.00262. For n = 2000 and L 
still equal to 6000 , the bound in (7) is less than 7 x lop7  when 
s = 0.00278. The approximate probabilities are, respectively, 
0.0l502,0.08133,0.20906,0.36937,0.67210 0.860256, which 
agree to the number of digits shown with column labeled 
“Exact” in [5, p. 315, Table VII]. 

In applications, one is generally interested in a finite range 
of n, and so one can take L finite and then use a fast Fourier 
transform to compute the approximations p f ( n )  all at once. 
If the moment-generating function of X exists, the Chemoff 
bound can be used to give numerical bounds on the right-hand 
sides of (3) and (4). Note that if X is nonnegative, the upper 
bound in (3) is zero for n 5 L, and the worst-case lower 
bound in (4) occurs at n = 0. 

Example I :  Let X be a Poisson random variable with 
mean A. Then its moment-generating function is given by 
E [ e s X ]  = exp[A(e” - l)]. To bound the right-hand side of 
(4), note that for n 2 0 

P ( X  2 L f n )  5 P ( X  > L )  
= P(sX > sL) ,  
5 eCSLE[eSX],  by Markov’s ineq. 

f o r s  > 0 

= exp[A(e” - 1) - sL].  (6) 

The bound in (6) is minimized by taking s = ln(L/A). We 
now take A = 20 and L = 64. With s = ln(64/20), the 
bound in (6) is less than 7 x Using $64 to approximate 
P ( X  2 IC), we obtain the graph shown in Fig. 1. 

Example 2: Consider a photomultiplier with a single stage 
of multiplication. Assume that the number of secondary elec- 
trons ejected by a single primary electron is Poisson with 
probability-generating function g(z)  = eG(z-l); G is called 
the gain. Let the number of primary electrons have a nega- 
tive binomial distribution with probability-generating function 
f ( z )  = [(I - v ) / ( l  - uz)]”, where v := N p / ( N p  + M ) ;  Np 
is the expected number of primaries, and M is the number 
of degrees of freedom [5, pp. 297-2981. Let X represent 
the total number of secondary electrons produced by all of 
the primaries. Then the moment-generating function of X 
is f ( .q(e ‘ ) )  , and p(u) = f(g(e”)). To compare (5) with 
the exact results in [ 5 ] ,  we took Np = 18, G = 72, and 
M = 5, and then considered the approximation of P ( X  < n) 
for n = 250,500,750,1000,1500, and 2000. Since P ( X  < 
n) = P ( - X  2 -(n - 1)), and - X  is a nonpositive 
random variable, the relevant error bound comes from ( 3 ) ,  

11. PROOF OF THE THEOREM 
First note that since the right-hand sides of (3)-(4) go to 

zero as L -+ 00, the convergence in (1) is immediate once 
(3)-(4) is established. 

Fix any integer n, and set Y = X - n. Then P ( X  2 n) = 
P(Y 2 O), and the characteristic function of Y is p(u)e-jnlL. 
Let L be any positive integer, and define the discrete-time 
periodic pulse train PL with period 2L by specifying its values 
on (0 , .  . . ,2L - l} to be / ? ~ ( m )  = 1 for m = 0 , .  . . , L - 1 
and P L ( ~ )  = 0 for m = L, . . . ,2L - 1. We show below that 

P;.(n) = E[PL(Y) I .  (8) 

Hence, the theorem will be proved if we can show that the 
difference 

(9) 

is upper bounded by the right-hand sidie of (3) and lower 
bounded by the right-hand side of (4). 

We begin by proving (8). Let p ^ ~  denote the DFT of PL. 
Then 

2L-1 L-I 

m=O m = O  

This last sum is clearly given by (2) if we use the identity 
2 / (1-  e-je) = 1 - j  cot(8/2). By the DIT inversion formula 

- 2L-I 

and, hence, E [ / ? h ( Y ) ]  = pk(n), which is exactly (8). 

bounds. For any set A, let 1 ~ ( m )  = 1 for m E A 
1 ~ ( m )  = 0 otherwise. Observe that for all m 

To conclude the proof, we show that’(9) satisfies the error 
and 

and 
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Since E [ l p m ) ( Y ) ]  = P(Y 2 0), the above inequalities easily 
imply that (9) is upper bounded by P(Y < -L)  = P ( X  < 
-L + n) and lower bounded by -P(Y 2 L )  = - P ( X  2 
L + n), thus proving (3)-(4). 
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