
Proceedings ACM First International Workshop on Data
Warehousing and OLAP (DOLAP 98), Nov. 7, 1998,
Washington, D.C., USA.

A Methodological Framework
for Data Warehouse Design

Matteo Golfarelli
DEIS - University of Bologna

Viale Risorgimento, 2
40136 Bologna, Italy

+39-547-642862

golfare@csr.unibo.it

Stefano Rizzi
DEIS - University of Bologna

Viale Risorgimento, 2
40136 Bologna, Italy

+39-51-6443542

srizzi@deis.unibo.it

ABSTRACT
Though designing a data warehouse requires techniques
completely different from those adopted for operational
systems, no significant effort has been made so far to develop a
complete and consistent design methodology for data
warehouses. In this paper we outline a general methodological
framework for data warehouse design, based on our
Dimensional Fact Model (DFM). After analyzing the existing
information system and collecting the user requirements,
conceptual design is carried out semi-automatically starting
from the operational database scheme. A workload is then
characterized in terms of data volumes and expected queries, to
be used as the input of the logical and physical design phases
whose output is the final scheme for the data warehouse.

Keywords
Data warehouse, design methodology, conceptual model.

1. INTRODUCTION
The database community is devoting increasing attention to
the research themes concerning data warehouses (DWs);
nevertheless, the crucial issues related to DW design have not
been deeply investigated yet [14].

Designing a DW requires techniques completely different from
those adopted for operational information systems. While most
scientific literature on the design of DWs focuses on specific
issues such as multidimensional data models [1] [8],
materialization of views [2] [9] and index selection [7] [10], no
significant effort has been made so far to develop a complete
and consistent design methodology [12]. In [3] the different
phases in DW design are described informally, but no ad hoc
conceptual model to support them is devised.

In this paper we outline a general methodological framework
for DW design, based on the conceptual DW model we
developed, called Dimensional Fact Model (DFM). The
methodology we propose features 6 phases, briefly sketched in
Table I and examined in Sections from 2 to 7. The issues we
have already addressed are discussed in more detail; in
particular, Subsection 4.1 formalizes the DFM, while
Subsection 5.1 includes the definition of workload on the
DFM. As to the issues we are currently investigating, an
overview of the main research topics is provided.

2. ANALYSIS OF THE INFORMATION
SYSTEM

The aim of this phase is to collect the documentation
concerning the pre-existing operational information system. It
involves the designer, in tight collaboration with the people
involved in managing the information system and, if possible,
with its designers, and produces in output the (conceptual or
logical) schemes of either the whole or part of the information
system.

Typically, this phase entails integration of heterogeneous
views. This topic has been largely dealt with in the database
literature, see [15] for a comprehensive survey.

3. REQUIREMENT SPECIFICATION
This phase consists in collecting and filtering the user
requirements. It involves the designer and the final users of the
DW, and produces in output the specifications concerning the
choice of facts on the one hand, preliminary indications
concerning the workload on the other.

In particular, the choice of facts is based on the documentation
on the information system produced at the previous step. Facts
are concepts of primary interest for the decision-making
process, and typically correspond to events occurring
dynamically in the enterprise world. If the operational
information system is documented by E/R schemes, a fact may
be represented either by an entity or by an n-ary relationship;
conversely, if it is represented by relational schemes, facts
correspond to relation schemes. In general, entities or relation
schemes representing frequently updated archives are good
candidates for defining facts; those representing structural
properties of the domain, corresponding to nearly-static
archives, are not.

The preliminary workload is expressed in pseudo-natural
language and is aimed at enabling the designer to identify
dimensions and measures during conceptual design; for each
fact, it should specify the most interesting measures and
aggregations.

4. CONCEPTUAL DESIGN
This phase is carried out starting from the schemes of the
operational information system and considering the facts and
the preliminary workload defined at the previous step. It
produces a dimensional scheme, structured according to the
DFM, which consists of a set of fact schemes, one for each fact.

In [5] we proposed a semi-automated technique to carry out
conceptual modelling starting, respectively, from the E/R
schemes and from the logical relational schemes describing the
operational information system. In both cases, the following
steps must be executed to produce each fact scheme:

Step Input Output Involves

Analysis of the information
system

existing documentation database scheme designer; managers of the
information system

Requirement specification (database scheme) facts; preliminary workload designer; final users
Conceptual design database scheme; facts;

preliminary workload
dimensional scheme designer

Workload refinement, Dim.
scheme validation

dimensional scheme;
preliminary workload

workload designer; final users

Logical design dimensional scheme; target
logical model; workload

logical DW scheme designer

Physical design logical DW scheme; target
DBMS; workload

DW physical scheme designer

Table I. The six phases in the DW design methodology.

state

SALE

product

category

type

quarter month

store

city county

sales manager

address

fact

dimension

hierarchy

non-dimension
attributemeasure

dimension
attribute

year

phone

sale district

date

holiday
day of week

season

manager
marketing

group
department

weight

brand
diet

manager

non-additivity

qty sold
revenue
no. of customers

city

Figure 1. The SALE fact scheme.

a. Building the attribute tree.

b. Pruning and grafting the attribute tree.

c. Defining dimensions.

d. Defining measures.

e. Defining hierarchies.

Steps b, c and d are supported by the preliminary workload
declared by the final users.

4.1 The Dimensional Fact Model
The representation of reality built using the DFM is called
dimensional scheme and consists of a set of fact schemes
whose basic elements are facts, dimensions and hierarchies.

Definition 1. Let g=(V,E) be a directed, acyclic and weakly
connected graph. We say g is a quasi-tree with root in v0∈ V
if each other vertex vj∈ V can be reached from v0 through at
least one directed path. We will denote with pathij(g)⊆ g a
directed path (if it exists) starting in vi and ending in vj; we
will denote with sub(vi)⊂ g the quasi-tree rooted in vi≠v0.

Definition 2. A fact scheme is a six-tuple

f = (M, A, N, R, O, S)

where:
¥ M is a set of measures; each measure mi∈ M is defined by a

numerical or Boolean expression which involves values
acquired from the information systems.

¥ A is a set of dimension attributes. Each dimension
attribute ai∈ A is characterized by a discrete domain of
values, Dom(ai).

¥ N is a set of non-dimension attributes.

¥ R is a set of ordered couples, each having the form (ai,aj)
where ai∈ A∪ {a0} and aj∈ A∪ N (ai≠aj), such that the graph
qt(f)=

.
(A∪ N ∪ {a0},R) is a quasi-tree with root a0. a0 is a

dummy attribute playing the role of the fact on which the
scheme is centred. The couple (ai,aj) models a -to-one
relationship between attributes ai and aj. We call
dimension pattern the set Dim(f)=

.
{ai∈ A | ∃ (a0,ai)∈ R};

each element in Dim(f) is called a dimension. When we
need to emphasize that a dimension attribute ai is a
dimension, we will denote it as di. We call hierarchy on
dimension di∈ Dim(f) the quasi-tree sub(di).

¥ O⊂ R is a set of optional relationships.

¥ S is a set of aggregation statements, each consisting of a
triple (mj, di, Ω) where mj∈ M, di∈ Dim(f) and Ω is an
aggregation operator. Statement (mj, di, Ω)∈ S declares
that measure mj can be aggregated along dimension di by
means of Ω. If no aggregation statement exists for a given
pair (mj, di), then mj cannot be aggregated at all along di.

In the following we will discuss the different components
introduced above with reference to the fact scheme SALE ,
shown in Figure 1, which describes the sales in a chain store.

From a graphical point of view, a fact scheme is structured as a

quasi-tree whose root is a fact. A fact is represented by a box
which reports the fact name and, typically, one or more numeric
and continuously valued measures (in the sale scheme,
quantity sold, revenue and no. of customers).

Dimension attributes are represented by circles and may
assume a discrete set of values. Each dimension attribute
directly attached to the fact is a dimension ; dimensions
determine the granularity adopted for representing facts. The
dimension pattern of the sale scheme is {date, product, store}.

Subtrees rooted in dimensions are hierarchies, and determine
how fact instances may be aggregated and selected
significantly for the decision-making process. The dimension
in which a hierarchy is rooted defines its finest aggregation
granularity; the dimension attributes in the vertices along each
path of the hierarchy starting from the dimension define
progressively coarser granularity. The arc connecting two
attributes represents a -to-one relationship between them (for
instance, there is a many-to-one relationship between city and
county); thus, every directed path within one hierarchy
necessarily represents a -to-one relationship between the
starting and the ending attributes. We denote with α i.aj the
value of aj determined by value α i∈ Dom(ai) assumed by ai (for
instance, Venice .state denotes Italy).

The fact scheme may not be a tree: in fact, two or more distinct
paths may connect two dimension attributes within a
hierarchy, provided that still every directed path represents a
-to-one relationship. Consider for instance the hierarchy on
dimension store: states are partitioned into counties and sale
districts, and no relationship exists between them;
nevertheless, a store belongs to the same state whichever of the
two paths is followed (i.e., city determines state). Thus,
notation α i.aj explained above is still not ambiguous even if
two or more paths connect ai to aj. Whenever two or more arcs
enter the same attribute, arrows are used to convey the
direction of the -to-one relationships.

Some terminal vertices in the fact scheme may be represented by
lines instead of circles (for instance, address in Figure 1);
these vertices correspond to the non-dimension attributes. A
non-dimension attribute contains additional information about
an attribute of the hierarchy, and is connected to it by a -to-one
relationship; differently from the attributes of the hierarchy, it
cannot be used for aggregation.

The arcs marked by a dash express optional relationships
between pairs of attributes. For instance, attribute diet takes a
value only for food products.

A measure is aggregable on a dimension if its values can be
aggregated along the corresponding hierarchy by at least one
operator; an aggregable measure is additive if its values can be
aggregated by the sum operator. Since most measures are
additive, in order to simplify the graphic notation in the DFM,
only the exceptions are represented explicitly. In particular, if
mj is not additive along di, mj and di are connected by a dashed
line labelled with all operators Ω (if any) such that (mj, di,
Ω)∈ S (for instance, in Figure 1, measure no. of customers is not
aggregable along dimension product).

4.2 Fact instances
Given a fact scheme f, each n-ple of values taken from the
domains of its n dimensions defines an elemental cell where
one unit of information for the DW can be represented. We call
primary fact instances the units of information present within
the DW, each characterized by exactly one value for each

measure. We denote with pf(α1,...αn) the primary fact instance
corresponding to the combinat ion of values
(α1,...αn)∈ Dom(d1)×... ×Dom(dn). In the sale scheme, each
primary instance describes the sales of one product during one
day in one store.

Since analysing data at the maximum level of detail is often
overwhelming, it may be useful to aggregate primary fact
instances at different levels of abstraction, each corresponding
to an aggregation pattern.

Definition 3. Given a fact scheme f with n dimensions, a v-
dimensional aggregation pattern is a set P of v dimensional
attributes such that no directed path exists within qt(f)
between each pair of attributes in P (that is, each attribute in
P is functionally independent of the others). A dimension
di∈ Dim(f) is said to be hidden within P if no attribute of its
hierarchy appears within P. An aggregation pattern P is
legal with reference to measure mj∈ M if

∀ dk | ∃/ (mj, dk, Ω)∈ S dk∈ P

Examples of aggregation patterns in the sale scheme are
{product ,county ,month}, {state ,date} where product is
hidden, {} where all dimensions are hidden. Pattern
{brand,month} is illegal with reference to no. of customers
since the latter cannot be aggregated along the product
hierarchy.

An aggregation pattern declares how primary fact instances
should be aggregated. If a given dimension is not interesting
for the current analysis, aggregation is carried out over all the
possible values the corresponding dimension can assume. Let
P={a1,...av} be an aggregation pattern, and dh* denote the
dimension whose hierarchy includes ah∈ P. The secondary fact
instance sf(β1,...βv) corresponding to the combination of
values (β1,...βv)∈ Dom(a1)×...×Dom(av) aggregates the set of
primary fact instances

{ pf(α1,...αn) | ∀ k∈ {1,...n} αk∈ Dom(dk) ∧ ∀ h∈ {1,...v}
αh*.ah=βh }

and is characterized by exactly one value for each measure for
which P is legal. This value is calculated by applying an
aggregation operator to the values that measure assumes
within the primary fact instances aggregated. In the sale
scheme, an example of secondary instance is the one describing
the sales of products of a given category during one day in a
city. Figure 2 shows the corresponding primary fact instances;
measure no. of customers is not reported since it is non-
aggregable along the product dimension.

qty sold = ...
revenue = ...
no. of customers = ...

date
product

store

qty sold = Σ...
revenue = Σ...

category

city

Figure 2. The primary fact instances aggregated by a
secondary fact instance.

In the following, we will use sometimes the term pattern to
denote either the dimension pattern or an aggregation pattern.

4.3 Overlapping fact schemes
In the DFM, different facts are represented in different fact
schemes. However, part of the queries the user formulates on

the DW may require comparing measures taken from distinct,
though related, schemes (drill-across). In this subsection we
show how two related fact schemes may be combined into a
new scheme; since the same attribute ai may appear within
different fact schemes, possibly with different domains, we will
denote with Domf(ai) the domain of ai within scheme f.

Definition 4. Two fact schemes f'=(M',A',N',R',O',S') and
f"=(M",A",N",R",O",S") are said to be compatible if they share
at least one dimension attribute: A'∩ A"≠∅ . Attribute ai is
considered to be common to f' and f" if, within the two
schemes, it has the same semantics and if
Domf'(ai)∩Domf"(ai)≠∅ .

Definition 5. Given a quasi-tree t=(V∪ {a0},E) with root a0,
and a subset of vertices I⊆ V, we define the contraction of t
on I as the quasi-tree cnt(t,I)=

.
 (I∪ {a0},E*) where

E* = {(ai,aj) | ai∈ I∪ {a0} ∧ aj∈ I ∧ ∃ pathij(t) ∧
∀ ak∈ I−{ai,aj} ak∉ pathij(t)}

The arcs of cnt(t,I) are the directed paths which, inside t,
connect pairs of vertices of I without including other
vertices of I.

Figure 3 shows a quasi-tree and its contraction on a subset of
the vertices.

1 2 3

4 5 6 7 8

10 119

5 7

3

109
(a) (b)

Figure 3. A quasi-tree (a) and its contraction on the grey
vertices (b); the root is in black.

Definition 6 . Let two compatible fact schemes
f'=(M',A',N',R',O',S') and f"=(M",A",N",R",O",S") be given,
and let I=A'∩ A". Schemes f' and f" are said to be strictly
compatible if cnt(qt(f'),I) and cnt(qt(f"),I) are equal.

Two compatible schemes f' and f" may be overlapped to create a
resulting scheme f; if the compatibility is strict, the inter-
attribute dependencies in the two schemes are not conflicting
and f may be defined as follows.

Definition 7. Given two strictly compatible schemes f' and
f", we define the over lap of f' and f" as the scheme
f'⊗ f"=(M,A,N,R,O,S) where:

M = M'∪ M"
A = A'∩A"
∀ ai∈ A (Domf'⊗ f"(ai) = Domf'(ai)∩Domf"(ai))
N = N'∩N"
R = {(ai,aj) | (ai,aj)∈ cnt(qt(f'),A)}
 = {(ai,aj) | (ai,aj)∈ cnt(qt(f"),A)}
O = {(ai,aj)∈ R | ∃ (aw,az)∈ O' | (aw,az)∈ pathij(qt(f'))

∨ ∃ (aw,az)∈ O" | (aw,az)∈ pathij(qt(f"))}
S = {(mj,di,Ω) | di∈ Dim(f'⊗ f") ∧ (∃ (mj,dk,Ω)∈ S'
∧ di∈ sub(qt(f'),dk)) ∨ (∃ (mj,dk,Ω)∈ S" ∧ di∈ sub(qt(f"),dk))}

Figure 4 shows the overlapping between the two strictly
compatible schemes INVENTORY and SHIPMENT , which
share the time and the product dimensions. The scheme

resulting from overlapping can be used, for instance, to
compare the quantities shipped and stored for each product.

5. WORKLOAD REFINEMENT AND
SCHEME VALIDATION

This phase is primarily aimed at refining the preliminary
workload by reformulating it in deeper detail on the
dimensional scheme; Subsection 5.1 defines a simple language
to denote queries according to the DFM. Another significant
aspect, discussed in Subsection 5.2, concerns the computation
of the expected data volumes. Both the query workload and the
data volumes will have a crucial role in guiding logical and
physical design.

This phase is also aimed at validating the conceptual scheme
produced at the previous step; in fact, the query workload can
be exhaustively and correctly expressed only if the dimensions
and measures have been properly identified and hierarchies are
well-structured.

5.1 Queries
Within our framework, a typical DW query can be represented
by the set of fact instances, at any aggregation level, whose
measure values are to be retrieved. In this subsection we
discuss how sets of fact instances can be denoted by writing
fact instance expressions having the general form:

<fact instance expression> ::=
<fact name> (<pattern clause> ; <selection clause>)

<pattern clause> ::= comma-list of <pattern elements>
<pattern elements> ::= <dimension name> |

<dimension name>.<attribute name>
<selection clause> ::= comma-list of <predicate>

The pattern clause describes a pattern. The selection clause
contains a set of Boolean predicates which may either select a
subset of the aggregated fact instances or affect the way fact
instances are aggregated. If an attribute involved either in a
pattern clause or in a selection clause is not a dimension, it
should be referenced by prefixing its dimension name.

The value(s) assumed by a measure within the fact instance(s)
described by a fact instance expression is(are) denoted as
follows:

<measure values> ::= <fact instance expression>.<measure>

Given a fact scheme f having n dimensions d1,...dn, consider the
fact instance expression

f(d1,...dp,ap+1,...av ; e1(bi1),...eh(bih)) (1)

where we have assumed, without loss of generality, that the
first p aggregation statements involve a dimension and the
other v−p involve a dimension attribute. Each Boolean
predicate ej involves one attribute bij belonging to the
hierarchy rooted in dij*, which may also be hidden.

If p=v=n (i.e., the pattern clause describes the dimension
pattern), expression (1) denotes the set of primary fact instances

{ pf(α1,...αn) | ∀ k∈ {1,...n} αk∈ Dom(dk) ∧
∀ j∈ {1,...h} ej(αij*.bij) }

For instance,

SALE(date, product, store; date.year>='1995',
product='P5').qtySold

denotes the quantities of product P5 sold in each store during
the days of the years since 1995.

state
SHIPMENT

product

qty shipped
.....

category

type

quarter month
ship to city

address

year

corporate

customer

date

season

department

weight
package size brand

diet

manager

deal

terms
incentive

ship from

address

contact person
ship mode

address
allowance

type
carrier

order date
invoice number

(a)

state

INVENTORY

product

qty

category

type

month warehouse city

address

year week

season

weight
package size brand

AVG,
MIN

units per palletpackage type

SHIPMENT
⊗

INVENTORY

product

qty shipped
inventory qty
.....

category

type

month

year

season

weight
package size brand

AVG,
MIN

(b) (c)
Figure 4. The SHIPMENT scheme (a), the INVENTORY scheme (b) and their overlap (c).

Otherwise (p<v and/or at least one dimension is hidden), let P
be the aggregation pattern described by the pattern clause. Let
bij be the attribute involved by ej; we say ej is external if
∃ aij* ∈ P | aij* ∈ path0ij(qt(f)), internal otherwise. External
predicates restrict the set of secondary fact instances to be
returned, while internal predicates determine which primary
fact instances will form each secondary fact instance. Let e1,...er
and er+1,...eh be, respectively, the external and the internal
predicates (0≤r≤h); in this case, expression (1) denotes the set
of secondary fact instances

{ sf(β1,...βv) | ∀ k∈ {1,...v} βk∈ Dom(ak) ∧
∀ j∈ {1,...r} ej(βij*.bij) }

where each sf(β1,...βv) aggregates the set of primary fact
instances

{ pf(α1,...αn) | ∀ k∈ {1,...n} αk∈ Dom(dk) ∧
∀ h∈ {1,...v} αh*.ah=βh) ∧ ∀ j∈ {r+1,...h} ej(αij*.bij) }

For instance, the expressions

SALE(date.month, product.type ; date.month='JAN98',
product.category='food').qtySold

SALE(date.month, product.type ; date.month='JAN98',
product.brand='General').qtySold

denote, respectively, the total sales of each type of products of
category 'food' for January 1998 and the total sales of each type
of products of brand 'General' for January 1998. The predicates
on month and on category are external, whereas that on brand
is internal.

The DW workload will typically include drill-across queries,
that is, queries formulated on the overlap of two or more
schemes. Let q be defined by the fact instance expression
f(P;<sel>) where f=f1⊗ ...⊗ fm. Each fact instance returned by q is
the concatenation of m fact instances returned by the m queries
q1,...qm, where qi=fi(P;<sel>,d1∈ Domf(d1),... dn∈ Domf(dn)) and
d1,...dn are the dimensions of f. An example of drill-across query
is:

SHIPMENT⊗ INVENTORY(month,product ;
month.year='1997').inventoryQty−qtyShipped

Definition 8. The workload W on a dimensional scheme is a
set of pairs (qi,ν i), where qi denotes a query and ν i its
expected frequency. Each query is represented by a fact
instance expression f(P;<sel>).M where f is a fact scheme
(elemental or overlapped), M is a set of measures of f, <sel> is
a selection clause and pattern P is legal with reference to
every measure m∈ M.

5.2 Data volumes
Primary data volumes are computed for each fact scheme f by
considering the sparsity of facts and the cardinality of the
dimension attributes. Let nkai denote the domain cardinality of
attribute ai within f; the maximum number of primary fact
instances is

cp = nkd i
d i∈Dim (f)

∏

We denote with np the actual number of primary fact instances,
which we assume to be known; typically, np<<cp.

In most DW cost models (see for instance [8]), the cost of a
query q is assumed to be proportional to the number of n-ples
in the view on which q is executed. Since views may be
materialized at any level of abstraction, it is necessary to
estimate the number of secondary fact instances corresponding
to an aggregation pattern P. The maximum number of secondary
fact instances corresponding to P is

cs(P) = nka i
a i∈P
∏

The actual number of secondary fact instances, ns(P), may be
estimated using the Yao formula [16]:

ns(P) = cs(P) ×

 



 



1Ê−Ê
 


 
cpÊ−Ê

cp
cs(P)

np

()cp
np

When cp/cs(P) is sufficiently large, this formula is well
approximated by the Cardenas formula [4]:

ns(P) ≈ cs(P) ×
 


 
1Ê−Ê

 


 
1Ê−Ê

1

cs(P)Ê
np

In the following we consider a numerical example from the
SALE scheme. Let nkproduct=1000, nkdate=1000 (about 3
years) and nkstore=100, which implies cp=108; let np=106.
Consider the aggregation pattern P={product .type ,date ,
store.city}, where nktypte=100 and nkcity=50, which implies
cs(P)=5×10 6. In this case, the Cardenas formula yields
ns(P)=906347.

6. LOGICAL DESIGN
Several issues must be addressed in order to obtain a correct
definition of the DW logical scheme. Logical design receives
in input a dimensional scheme, a workload and a set of
additional information (update frequencies, total disk space
available, etc.) to produce a DW scheme which should
minimize the query response times by respecting the disk space
constraint. In this context, we believe that update queries
should be considered separately from the workload. In fact,
DWs are typically updated only periodically, in an off-line
fashion, and during this process the warehouse is unavailable
for querying. Thus, the update process does not affect directly
the DW performance, and it is sufficient to ensure that it is
properly bounded in time.

At this time, it is necessary to choose the target logical model,
relational or multidimensional; in this paper, we consider only
the relational case. A dimensional scheme can be mapped on
the relational model by adopting the well-known star scheme
[11]; it may be convenient to snowflake one or more

dimensions, depending on the cardinality of the domains.

The definition of an accurate cost model has a primary role in
correctly evaluating the system performance. During logical
design, adopting a simplistic model may cause gross mistakes
while adopting one too accurate could make the design very
complex. In our approach, different cost models at increasing
levels of detail will support the different design steps.

In the following subsections we outline the sequence of the
logical design steps.

6.1 View materialization
A technique commonly used in order to reduce the overall
response time is to pre-compute (consolidate) the information
that can be useful to answer frequent queries. Fact tables
reporting data consolidated from other fact tables are often
called views; each view allows the costs for a set of queries to
be reduced but leads to additional update costs and disk space
occupancy.

A massive work has been done in the literature on view
materialization; see for instance [6] and [2] where a
multidimensional lattice is defined for each fact, based on a
partial ordering relationship between the aggregation patterns.
In general, the materialization problem is faced by considering
each single lattice separately. On the other hand, we claim that
the whole dimensional scheme should be involved; in fact,
drill-across queries may weigh significantly upon the
workload and cannot be optimized on one lattice at a time.
Typically, a drill-across query executed by retrieving data from
two or more views defined on the same pattern though on
different fact schemes; on the other hand, if some of these views
were unified into a single fact table, the access costs could be
significantly reduced.

The cost model adopted at this step is based on the number of
logical accesses made to both fact and dimension tables in
order to solve a query; the access technique adopted for each
query (e.g., indices vs. sequential scan) is not taken into
account.

6.2 Translation into tables
During this phase, the fact and dimension tables are created
starting from the dimensional scheme and according to the
logical model adopted. In the simplest case, in which the
classic star scheme is adopted, each fact scheme f =
(M,A,N,R,O,S) having Dim(f)={d1,...dn} and M={m1,...mz} is
translated into one fact table

FT_f(k1,... kn,m1,...m z)

and n dimension tables

DT_d1(k1,a 11,...a 1v1,a' 11,...a' 1u1)
............
DT_dn(kn,a n1,...a nvn,a' n1,...a' nun)

(where the hierarchy on di includes the dimension attributes
ai1,...aivi and the non dimension attributes a'i1,...a'iui).

The star scheme for the SALE example turns out to be:

FT_SALE(prodKey, dateKey, storeKey,qtySold,
revenue,noOfCustomers)

DT_PROD(prodKey,product,weight,diet,brand,city,
type,category,department,deptManager,...)

DT_DATE(dateKey,date,dayOfWeek,holiday,month,..)
DT_STORE(storeKey,store,phone,address,

salesManager,city,county,state,saleDistrict)

6.3 Vertical partitioning of fact tables
Fact schemes usually include several measures that describe
the same fact but, in practice, are seldom requested together.
Vertical partitioning aims at reducing the global query
response time by optimizing the queries requiring a subset of
measures. Given a fact table FT_f(k 1,... k n,m1,...m z) ,
vertical partitioning is carried out by defining a partitioning of
the set of measures M={m1,...mz} into α subsets (α≥2) and by
splitting accordingly FT_f into α tables each containing the
complete key k1,...k n and one of the measure subsets.

The problem of determining the optimal partitioning given a
workload has been widely investigated within the context of
centralized as well as distributed database systems [13].
Unfortunately, the results reported in the literature cannot be
applied to the DW case since the redundancy introduced by
materializing views binds the partitioning problem to that of
deciding on which view each query should be executed.

The cost function used here takes into account the reduced cost
in accessing shorter tuples as well as the overhead in
accessing multiple tables.

6.4 Horizontal partitioning of fact tables
Horizontal partitioning aims at reducing the query response
time by considering the selectivity of each query. In fact, most
queries will not access all the n-ples within the fact table, but
only a subset determined by a selection predicate involving
one or more dimension attributes. Given a fact table FT_f ,
horizontal partitioning is carried out by determining an
optimal set of dimension attributes and by reallocating the n-
ples in FT_f to a set of tables FT_f 1,...FT_f β each having the
same relation scheme as FT_f and associated to a given element
of the Cartesian product between the domains of the dimension
attributes involved.

The problem of horizontal partitioning for relational databases
is addressed in [13]. Also in this case, the problem is made
more complex by the presence of views; the cost function takes
into account the reduced cost in accessing smaller tables.

7. PHYSICAL DESIGN
The main issue in physical design concerns the optimal
selection of indices, which is based on both the logical scheme
and the workload and requires the specific access structures
provided by the DBMS to be taken into account. Index
selection has a crucial role in determining the DW
performance; due to its high complexity, it is usually solved
heuristically [7] [10].

Since DWs are updated off-line, the indices may be
periodically reorganized in an optimal clustered form.
Maintaining indices in the presence of concurrent updates is
not necessary, and adopting more complex access structures
becomes possible. In particular, besides traditional value-list
indices such as B-trees, data warehousing systems usually
support bitmap index, join index and projection index.

The index selection phase is aimed at determining the best
subset of indices for a given workload and considering, for
each type of index, an appropriate cost function. The best
subset is the one that minimizes the access cost for the queries
in the workload under a space constraint varying form
application to application. Since DW queries usually require
one or more joins to be executed, index selection should
consider the different join algorithms, the most used being
nested loop, sort merge and simple hash join. As to update

queries we believe that, similarly to logical design, an upper
bound should be placed on the total update time.

8. CONCLUSION
In this paper we outlined a general methodological framework
for DW design, based on the Dimensional Fact Model. While
conceptual design and workload definition have already been
achieved and tested on a set of sample applications, we are
currently studying effective algorithms for logical and physical
design.

REFERENCES
[1] Agrawal, R., Gupta, A., and Sarawagi, S. Modeling

multidimensional databases. IBM Research Report, 1995.

[2] Baralis, E., Paraboschi, S., and Teniente, E. Materialized
view selection in multidimensional database, in Proc.
23rd VLDB (Athens, Greece, 1997), 156-165.

[3] Cabibbo, L., and Torlone, R. Un quadro metodologico per
la costruzione e l'uso di un data warehouse, in Proc.
Sesto Convegno Nazionale sui Sistemi Evoluti per Basi
di Dati (Ancona, Italy, 1998), 1, 123-140.

[4] Cardenas, A.F. Analysis and performance of inverted
database structures. Comm. ACM, 18, 5, 253-263, 1975.

[5] Golfarelli, M., Maio, D., and Rizzi, S. Conceptual design
of data warehouses from E/R schemes, in Proc. HICSS-31,
VII, (Kona, Hawaii, 1998), 334-343.

[6] Gupta, H. Selection of views to materialize in a data
warehouse, in Proc. Int. Conf. on Database Theory
(Athens, Greece, 1997).

[7] Gupta, H., Harinarayan, V., and Rajaraman, A. Index
selection for OLAP, in Proc. Int. Conf. Data Engineering
(Binghamton, UK, 1997).

[8] Gyssens, M., and Lakshmanan, L.V.S. A foundation for
multi-dimensional databases, in Proc. 23rd VLDB
(Athens, Greece, 1997), 106-115.

[9] Harinarayan, V., Rajaraman, A., and Ulman, J.
Implementing Data Cubes Efficiently, in Proc. of ACM
Sigmod Conf. (Montreal, Canada, 1996).

[10] Johnson, T., and Shasha, D. Hierarchically split cube
forests for decision support: description and tuned
design. Bullettin of Technical Committee on Data
Engineering, 20, 1, 1997.

[11] Kimball, R. The data warehouse toolkit. John Wiley &
Sons, 1996.

[12] McGuff, F. Data modeling for data warehouses.
http://members.aol.com/fmcguff/dwmodel/dwmodel.htm,
1996.

[13] �zsu, M.T., and Valduriez, P. Principles of distributed
database systems. Prentice-Hall Int. Editors, 1991.

[14] Widom, J. Research Problems in Data Warehousing, in
Proc. 4th Int. Conf. on Information and Knowledge
Management, 1995.

[15] Wiederhold, G. et al. Integrating artificial intelligence
and database technologies. Journal of Intelligent
Information Systems, Special issue: Intelligent
Integration of Information, 6, 2/3, 1996.

[16] Yao, S.B. Approximating block accesses in database
organizations. Comm. ACM, 20, 4, 260-261, 1977.

