
A methodology and tool support for generating
scheduled native code for real-time Java applications?

Christos Kloukinas Chaker Nakhli Sergio Yovine

VERIMAG
Centre Equation, 2 Ave. Vignate, 38610 Gières, France

{Christos.Kloukinas,Chaker.Nakhli,Sergio.Yovine }@imag.fr

1 Introduction

Current trends in industry are leading towards the use of Java [5] as a programming
language for implementing embedded and real-time applications. From the software
engineering perspective, the Java environment is indeed a very attractive development
framework. Object-oriented programming provides encapsulation of abstractions into
objects that communicate through clearly defined interfaces. Dynamic loading eases
the maintenance and improvement of complex applications with evolving requirements
and functionality. Besides, Java provides built-in support for multi-threading.

However, the semantics of Java do not guarantee a predictable run-time behavior,
which is an essential issue in embedded real-time software. To overcome this problem,
work has been done to extend the language and the platform to accommodate to the
requirements of real-time systems by focusing on current practices. Among such work,
we should mention the Real-Time Specification for Java [11], and the Real-Time Core
Extension for the Java Platform [12], that provide support for real-time programming
(timers, clocks, handlers, priorities, . . .). Still, these extensions leave some important is-
sues unspecified, like the scheduling algorithm to be used, allowing an implementation
to resolve them at will.

In order to obtain more precise semantics, domain-specific profiles have also been
defined, such as the Ravenscar-Java [8] high-integrity profile for safety-critical sys-
tems. This profile settles an execution model based on a two/three-phase program ex-
ecution, comprising an initialization phase and a mission phase (possibly followed by
a termination phase), and multi-threading semantics relying on fixed priority preemp-
tive scheduling and priority ceiling inheritance. Though designed to ease analysis and
programming, this profile still has some drawbacks. For instance, it does not directly
support threads which synchronize and communicate using thewait and notify
methods of Java. Besides, the underlying schedulability analysis is pessimistic by na-
ture and not well adapted for systems with heterogeneous tasks and constraints.

The other important issue is performance. Though there are efforts to produce effi-
cient implementations of Java Virtual Machines (e.g., [1,15]), the slowdown due to the
VM remains an argument against adopting Java for real-time applications. Real-time
systems can afford neither the overhead nor the non-determinism of using a Just-In-
Time (JIT) compiler (e.g., [3,14]). An alternative approach consists in using an Ahead-

? Partially supported by the RNTL project Expresso (http://www.irisa.fr/rntl-expresso).

http://www.irisa.fr/rntl-expresso

of-Time (AOT) compiler (e.g., [10,17]) to generate executable code for a run-time sys-
tem and to provide a native implementation of the real-time primitives. A major advan-
tage of AOT compilation is that it allows performing sophisticated analysis techniques
to produce highly optimized code.

In this paper we present an approach that takes into account the demands of both
precise semantics and performance. Our work is based on the two/three-phase execution
model and API of the Expresso High-Integrity Profile [4], which itself inherits concepts
from the Ravenscar-Java profile and the RTSJ API. However, the semantics proposed by
the profile do not fit the needs of applications that would demand alternative schedul-
ing and synchronization paradigms, and handling quality of service requirements. To
accommodate to such demands, our approach focuses primarily on the application.

Model
Automata

Timed Scheduler
Synthesis

Table of
Dynamic
Priorities

Program

Java

Information

WCET

Instrumented
Java

Program

Compiler
Java

TurboJ

Executable
Native

Run−Time

RT OS

(POSIX / eCos)

(per state)

Model
Generator

Scheduler

Support Library

Fig. 1.Code analysis & generation chain

Following [13], we first extract a formal model of the behavior of the application
program as an extended automaton (see Fig. 1 & section 2). Then, we synthesize an
application-dependent scheduler (see sections 3–4) which issafe(i.e., it is deadlock
free and meets all timing constraints) andQoS extendible(i.e., it can be extended to
handle QoS requirements, such as reducing response jitter, power consumption or con-
text switches). This synthesized scheduler is meant to be used with an appropriate native
run-time support we have developed, which itself uses the underlyingR-T OS’s primi-
tives (see section 5). Our scheduler also needs an instrumented version of the original
Java code (also produced by our model extracting tool), so as to be able to follow

the changes of thread states (i.e., the instrumentation implements an abstract program
counter). The test-bed we have developed has been integrated together with the Ex-
presso High-Integrity API and the TurboJ [17] Java-to-native compiler.

This framework provides a complete analysis and compilation chain for embedded
real-time systems based on Java, allowing one to substitute RMA/EDF & PCP with a
scheduler which is still safe but not as pessimistic. In this article, we describe the model
generator, the scheduler architecture and synthesis methodology, and the prototype test-
bed implemented using POSIX [6] primitives.

We will illustrate our approach throughout the paper with a case study inspired
by the robotic arm system described in [9] (see Fig. 2). The arm is programmed to
take objects from a conveyor belt, to store them in a buffer shelf, and to put them
into a basket. The arm is controlled by threads running on a single processor. The
TrajectoryControl thread reads commands from a shared buffer and issues set-
points to the low-level arm controllerControler . If there are no commands to pro-
cess, it holds, otherwise reads sensor values and computes the new set-point. Its ex-
ecution time is between 5ms and 6ms. TheLifter thread is activated periodically
every 40ms. Its role is to command the arm to pick objects from the conveyor belt.
Upon termination, it issues a command to theTrajectoryControl and activates
thePutter . Its execution time is between 4ms to 8ms. ThePutter thread sends com-
mands to take the object from the buffer shelf and put it into the basket. Its execution
time is between 4ms to 8ms. TheSensorReader thread reads sensors every 24ms. Its
execution time is 1ms. The results of the sensors are used byTrajectoryControl .
Controler is a periodic thread with period 16ms. Notice in Fig. 2 how, according
to the Expresso HIP-API,waitForPeriod returns a boolean value which isfalse if the
thread misses its period. In such a case, the application ends the mission phase and
goes into a termination phase which is omitted here. In this paper we only consider the
problem of synthesizing a scheduler for the mission phase.

The paper is organized as follows. Section 2 presents the technique we use to gen-
erate models from Java source code. Section 3 explains the scheduler architecture and
execution semantics, while section 4 describes our methodology for synthesizing an
application-dependent scheduler. Section 5 discusses our test-bed implementation.

2 Model Generation

We consider real-time Java applications made up of a fixed number of threads that
synchronize and communicate through a fixed set of global shared objects. There is a
distinguished thread, namelyMain , which is the first thread to wake up at application
startup and the unique entry-point of the application. We assume thatMain is pro-
grammed according to the Expresso HIP, that is, all the shared objects and threads are
created during the initialization phase.

The model of a Java program is a transition system which abstracts program actions
and states. Each state in the model is an abstraction of a program state at run-time. Tran-
sitions are associated with source code and capture the change that its execution makes
to the program state. More formally, letΘ = {thi} be a finite set of threads,Ω = {Oi}
be a finite set of shared objects, andA be a set of labels. Labels may correspond to

Tr
aj

ec
to

ry
C

on
tr

ol
Li

fte
r

Pu
tte

r

C
on

tr
ol

le
r

Se
ns

or
R

ea
de

r

if
 (!

 x
)

if
 (x

)

[4
,8

] l
if

te
rC

om
m

an
d

C
.lo

ck

[0
,1

] T
:=

tr
ue

 ;
P:

=t
ru

e

C
.n

ot
if

yA
ll

C
.u

nl
oc

k

x:
=w

ai
t_

fo
r_

pe
ri

od
(4

0)

P_
0 if

 (t
ru

e)

P_
2C

.lo
ck

P_
3

if
 (P

)

P_
1

if
 (

! P
)

P_
4

[0
,1

] P
:=

fa
ls

e

C
.u

nl
oc

k

C
.w

ai
t

C
.lo

ck

P_
5

C
.u

nl
oc

k

P_
6 [4

,8
] p

ut
te

rC
om

m
an

d

P_
7 C

.lo
ck

P_
8 [0

,1
] T

:=
tr

ue

P_
9

P_
10

P_
11

P_
12

C
.n

ot
if

y

C
.u

nl
oc

k

C
_4

S_
4

S_
5

C
_5

if
 (!

z)

if
 (!

y)

C
_2

S_
2

if
 (z

)

if
 (y

)

C
_0

S_
0

L
.lo

ck

S.
lo

ck

C
_1

S_
1

[0
,1

] c
on

tr
ol

[0
,1

] u
pd

at
e

C
_3

S_
3

L
.u

nl
oc

k

S.
un

lo
ck

z:
=w

ai
t_

fo
r_

pe
ri

od
(1

6)

y:
=w

ai
t_

fo
r_

pe
ri

od
(2

4)

if
 (t

ru
e)

C
.lo

ck

if
 (

T
)

T
_4

T
_5

T
_1

if
 (

! T
)

[0
,1

] T
:=

fa
ls

e
C

.w
ai

t

C
.u

nl
oc

k

C
.lo

ck

C
.u

nl
oc

k

S.
lo

ck

L
.lo

ck

[0
,1

] r
ea

d

[5
,6

] s
et

Po
in

t

S.
un

lo
ck

L
.u

nl
oc

k
T

_1
0

T
_1

0

T
_0

T
_2

T
_3

T
_6

L
_7

L
_0

T
_9

T
_9

L
_1

T
_7

L
_2

T
_8

T
_8

L
_3

L
_4

L
_5

L
_6

Fig. 2.Robotic arm system architecture
Intervals preceding computations give their minimum & maximum execution duration.

TransitionsT 9 → T 10 (setPoint), L 1 → L 2, P 8 → P 9, S 2 → S 3 andC 2 → C 3
correspond to code which has been sliced away.

large blocks of source code or to specific statements, such as:lock (corresponding
to the Java-bytecodemonitorEnter), unlock (monitorExit), wait, waitTimed (the
Javawait method with a timeout parameter), andwaitForPeriod (the method of the
classPeriodicThread in the Expresso profile, which blocks a thread until its next
period). The model is a tupleP = (S, A, T) where:S is a finite set of states, and
T ⊆ S × A × S is a transition relation. We defineTH : T −→ Θ to be the function
mapping each transition to the corresponding executing thread.

For each threadth we defineΣth : S −→ 2Ω × 2Ω , whereΣth(s) = (Σ+, Σ−)
is called thesynchronization contextof th at the states. Σ+ contains the set of objects
which are locked byth, whenth is at states. Σ− is either the empty set or a singleton
containing the object that cannot be synchronized byth at s (and thus cannot be added
to Σ+) which corresponds to the lock released whenwait or waitTimed are invoked
on that object. This is done to keep the synchronization context consistent during the
model extraction process. LetΣ = (Σ+, Σ−) be a synchronization context, andω ⊂ Ω
a set of global objects. We define:

Σ Add ω = (Σ+ ∪ (ω \Σ−), Σ−)
Σ Remove ω = (Σ+ \ ω, Σ− ∪ ω)

TheAdd operation appends objects to the synchronization context by adding them to
the Σ+ set, as long as these objects are not in theΣ− set. TheRemove operation
removes objects from the set of locked ones, and records them in theΣ− set.

beginsynch

endsynch

Σ

Σ

Body

}

synchronized(O) {
Body

endsynch

beginsynch

Σ

Σ

O.lock

O.unlock

ΣAdd{O}

ΣAdd{O}

Th Th

Th

Th

(a) synchronized block

?O

endwait

beginwait

Σ

Σ

O.unlock

O.lockTh

Th

Th

ΣRemove{O}

ΣRemove{O}

O.wait();

endwait

beginwait

Σ

Th

Σ

(b) wait() statement

Fig. 3.Graph rewrite rules for the generation of models

Our model generator constructs a model from the source code by applying graph
rewriting rules on the control flow graph. A segmentP of sequential source code is
modeled by a state labelledbeginP denoting the control state preceding the execution
of P , a transition labelled byP , and a state labelledendP denoting the control state
following P . The translation could be kept at this abstraction level or may be refined
recursively. Therefore, the granularity of the model can be controlled by the designer.
The translation of control-flow statements (e.g., ; , if - then- else, while, . . .) is done
according to standard rewriting rules. Synchronization statements are treated specially
though. Thesynchronized statement (characterized by the requested objectO) is
translated as shown in Fig. 3(a). Entry in thesynchronized block is modeled by
a transition labeled with alock on objectO, while the exit is modeled by a transition
labeled with anunlock. The fact that the threadTh holds the lock ofO is recorded by
adding{O} to theΣ of thesynchronized statement. An invocation ofwait on O
is translated by three transitions (Fig. 3(b)): one modeling the lock release and leading
to a waiting state, another labelled by areception-of-notificationaction, and a final
transition modeling the lock request. These graph-rewrite rules allow us to obtain an
extended automaton at the desired level of abstraction for each application thread. The
information encoded in the synchronization contextΣ of each state of these automata is
used for informing the scheduler synthesis program about the resources which are used
at the states of a thread. They are also used for constructing aresource allocation graph
which is subsequently used for deriving a set of initial constraints against the deadlocks
of the system. These constraints can be used as an initial scheduler, so as to decrease
the possible behaviors of the system.

3 Scheduler Architecture and Semantics

3.1 Architecture

The architecture of the schedulers we synthesize consists of two three-layered stacks [7],
as shown in Fig. 4. The left stack selects a thread for execution. The right stack selects
a thread for the reception of a notification. Being able to control which thread will be
notified for a particular event is something that other scheduling policies do not offer,
since they concentrate only on the selection of threads for execution. After one of the
scheduler stacks is finished, it passes control to an underlyingR-T OSwhich provides
low-level kernel mechanisms such as thread creation, suspension and resumption, and
timeout enabling/disabling.

Controlling the Executing Thread The left stack takes control of the system when the
application calls one oflock, unlock, waitForPeriod, wait andwaitTimed. In these
cases, it must choose one of the available threads as the thread which should be executed
next. It does this in three steps, each one performed at a different layer. In the first layer,
referred to as theReady-Execscheduler, it calculates the set of threadsRexec which
are ready to execute without directly blocking due to mutual exclusion. TheSafe-Exec
scheduler layer is responsible for calculating the subsetSexec of Rexec, consisting of
those threads which cansafelyexecute, that is, their execution will not cause a deadlock

Application Tasks
Application

Guarantee Deadlines

Avoid Deadlocks

Assure the QoS

CANDIDATES FOR EXECUTION

Provide low−level mechanismsR−T OS

Assure the QoS
Scheduler

Mutual Exclusion Rules

READY TASKS

Scheduler

SAFE TASKS

Avoid Deadlocks

Guarantee DeadlinesScheduler

Execution Scheduler Stack

EXECUTING TASKS

CANDIDATES FOR NOTIFICATIONS

Condition Var. Notification Rules Scheduler

Scheduler

Scheduler

Notification Scheduler Stack

SAFE TARGETS

READY TO BE NOTIFIED

TASKS TO WAKE UP

CnotifCexec

Choose one amongQexec for execution Notify tasks inQnotif

Rexec ⊆Cexec

Ready-Exec

Sexec ⊆Rexec

Safe-Exec

QoS-Exec

Rnotif ⊆Cnotif

Snotif ⊆Rnotif

Ready-Notif

Safe-Notif

QoS-Notif

Qexec ⊆Sexec Qnotif ⊆Snotif

Fig. 4.Scheduler architecture

nor a deadline miss. The third layerQoS-Execcalculates the setQexec ⊆ Sexec, con-
sisting of thosesafethreads which also respect the QoS requirements of the application.

Controlling the Notified Thread The right stack is passed control when the appli-
cation callsnotify or notifyAll . The reason for this is that the threads which will be
notified (if any) cannot ever be selected for execution. This is because they will im-
mediately try to re-enter the monitor after being notified and thus get blocked by the
notifier (which is already in the monitor). Nevertheless, we can control which among
the threads waiting for the notification should receive the notification, if there are more
than one threads waiting and we are not performing anotifyAll . Thus, the top layer
Ready-Notifcalculates the setRnotif of threads waiting on the condition variable being
notified. The middle layerSafe-Notif, calculates the subsetSnotif of Rnotif consisting
of those threads which, if notified, will not cause the system to enter into a deadlock
state or to miss a deadline. TheSafe-Notif layer passes theSnotif set to the bottom
QoS-Notif layer, which calculates the subsetQnotif of Snotif , consisting of the threads
which can be safely notified and also respect the QoS requirements.

QoS PoliciesThe complexity of the QoS layer is controlled by the application designer.
In choosing a QoS policy (or policies, since these are composable) the designer can
balance between the execution time and extra memory space needed by the policy and
the gains to the overall system quality the particular policy can offer. A QoS policy is,

for example, theminimization of the response jitter of some thread(e.g., if it controls
a physical device), or thelocal minimization of context switches(LMCS) in order to
speed-up the execution and (hopefully) minimize cache misses/flushes and, thus, also
energy consumption. This latter policy can be implemented quite easily, since all one
needs to examine is whether the currently executing threadTExec is in the setSexec of
threads which are safe to execute next. If this is the case, then we can let it continue its
execution, by setting the setQexec equal to the singleton{TExec}.

Other, more complex policies may take their decisions by examining application
variables and/or (parts of) the execution history.

3.2 Semantics

The model of the system we construct is the parallel composition of:(i) an automaton
which is responsible for advancing time and firing timeouts,(ii) one automaton for each
of the application threads, and(iii) two more automata, for theQoS-Execand theQoS-
Notif scheduler layers respectively. The application automata are those obtained from
the Java source code, appropriately annotated with the timing constraints modeling the
execution times of the code that has been abstracted away.

The state of the system model comprises of:

– a program counter (PCi) for each of the application threads,
– a local clock (Ci) for each thread, which is used for their computations and the

timeouts if they execute awaitTimed,
– a global clock (CSystemi) for modeling the periods of each periodic thread,
– a variable (TExec) holding the currently executing thread,
– two boolean variables (ExecSchedEnabled& Notif SchedEnabled) for control-

ling whether it is one of the scheduler automata (and which one of them), or the
time (when they are bothtrue) or the time and application automata (when they are
both false) which should execute, and

– thebooleanvariables of the application threads used in conditionals associated with
waiting statements.

The system goes through three different modes of execution, as shown in Fig. 5(c).
In the “Time Only” mode (whereExecSchedEnabled = Notif SchedEnabled =
true) the automaton responsible for advancing time and firing timeouts (shown in
Fig. 5(a)) is the sole automaton enabled in the system and it can fire one or more time-
outs, if any is enabled, corresponding to the expiration of awaitTimed orwaitForPeriod.
If a timeout is fired then the execution mode changes to “Schedulers Only” (where
ExecSchedEnabled= ¬Notif SchedEnabled), so that our scheduler can handle it. If
there is no timeout to be fired then the execution mode changes to “Time and Appli-
cation” (whereExecSchedEnabled= Notif SchedEnabled= false). At this mode,
both the time automaton and the automata of the application are enabled. If the appli-
cation automaton needs to execute a time guarded action (i.e., a computation), then it
blocks, allowing time to advance. The time automaton then performs a tick (i.e., a time
step) and we pass back to the “Time Only” mode, so as to check if a timeout has now
been enabled. If, however, an application automaton needs to perform an action which
causes re-scheduling, then it passes control back to the schedulers (i.e., the mode now
becomes “Schedulers Only”).

A

Timeout
timeout

=⇒ change state & pass control to the scheduler

¬ Timeout∧ ¬ (Compute∨ wait)
appli
=⇒ allow application to run

¬ Timeout∧ (Compute∨ wait)
tick
=⇒ advance clocks

(a) Time automaton

ti ∈ Rexec ∩ Sexec ∩Qexec
Chooseti=⇒ T ′

Exec = ti

A

(b) QoS-ExecScheduler automaton

New tick, so check timeouts

No Timeouts⇒ Allow Application to run

Re-
Sch

ed
ule

Tim
eout(s) fired

Check
tim

eouts

Schedulers
Only

Time
Only

Time
and

Application

(c) Model execution modes

Fig. 5.Time & Scheduler automata and system execution modes

4 Scheduler Synthesis

In order to synthesize theSafe-ExecandSafe-Notifscheduler layers, we first construct
the set of reachable states and, thus, identify the deadlocks. These are the states where
the application threads are deadlocked, or the states where some thread has missed its
deadline or period (since in that case we block the system explicitly). The existence of
these states indicates that the predicate we are currently using to describe the setSexec

(resp.Snotif) needs to be constrained even further. This predicate starts with the value
of true, thus accepting initially all threads in the setRexec (resp.Rnotif) as safe, where
Rexec has been calculated during the extraction of the model from the source code.
Having obtained the deadlocked states, we do a backwards traversal of the whole state
space starting from the deadlocked states, until we reach a state which corresponds to
a choice of one of the scheduler automata. There, we identify the choiceTExec = ti
which allowed the path leading to a deadlock state(s) and create a new constraint for
the layerSafe-Exec(resp.Safe-Notif). This constraint is constructed by changing the
setSexec (resp.Snotif) to be:

S ′exec(
−−−→state) = Sexec(

−−−→state) \ {ti}

If at some point we find thatS ′exec(
−−−→state) is equal to the empty set, then we add the

current state to the set of deadlocks and continue the synthesis procedure.

4.1 State-Space Reduction and Application Analysis

Even though the basic idea of synthesizing theSafe-ExecandSafe-Notifscheduler lay-
ers is simple, it is evident that in practice it suffers from the state explosion problem.
Therefore, it is imperative that we use techniques to minimize the size of the state space.
Our method consists of synthesizing schedulers for successively more detailed models,

adding thus complexity to a model only when we have already calculated how we can
constrain the more abstract one. The scheduler synthesis is performed in five major
steps.

Compositional SynthesisFirst, we decompose the system and synthesize constraints
independently for each of the components. We then apply the synthesis algorithm again
on the parallel composition of the already constrained models. In the case study, we
decided to decompose the application in two sub-systems, one consisting of 4 threads,
namely,Lifter , Putter , SensorReader , andTrajectoryControl , and an-
other one comprising theControler thread. The decision was mainly taken because
of the size of the corresponding models (see Table 1). This approach allows us to start
the synthesis with a model about 84% smaller than the original one.

Table 1.Model abstractions and optimizations

In the “original” models theIDLE task is allowed to execute only when no other task is safe.
Otherwise, the state-spaces explode - the 5-thread system has more than 404 M states.

Model kind States Red. Trans. Red. Dead.

Model Abstractions & Optimizations for 4 threads

T original (i.e., P) 92382 0.00%103658 0.00% 61
U 3320 96.41% 4680 95.49% 0
T NP 74650 19.19% 83018 19.91% 61
T P, bbe 20866 77.41% 25020 75.86% 1
T NP, bbe 18304 80.19% 21738 79.03% 1

Model Abstractions & Optimizations for 5 threads

T original (i.e., P) 600086 0.00%695653 0.00% 1814
U 5080 99.15% 8232 98.82% 0
T NP 445979 25.68%511809 26.43%1579
T P, bbe 221750 63.05%271429 60.98% 1
T NP, bbe 171238 71.46%206655 70.29% 1

Abstraction of Time Second, we consider the issue oftime. We examine theuntimed
model (U) of the system and search for constraints which can guarantee theabsence of
deadlocks. Searching for deadlocks in the untimed model allows us to examine a much
smaller search space. In the case study we observed a reduction of 96% for the 4-thread
subsystem and 99% for the whole system (see Table 1). More importantly, finding and
removingall deadlocks in the untimed model means that the application islogically
correct. An initial set of deadlocks can actually be obtained during the generation of
the model from the source code by applying standard analysis techniques for deadlock
detection (typically a search for loops in a dependency graph). Our model generator
implements such an analysis as well.

Having found all the potential deadlocks in the untimed system, we add the synthe-
sizedSexec andSnotif scheduler sets obtained so far to thetimedmodel (T), in order to

search for thetimelinessconstraints, which can guarantee that all threads will meet their
deadlines. In order to make the problem more tractable, we reduced the timed model
modulo thebranching bisimulation equivalence (bbe) reduction[16], which eliminates
“unobservable” actions (in our case the Tick action) but only when doing so preserves
the branching structure of processes. Given a set of equivalent states under thebbere-
duction, we elect as a representative of this set the state which has the maximum global
clock value.

Execution Model Third, we analyze the behavior of the system for two different ex-
ecution models, namelypreemptiveandnon-preemptive. We first consider that the ap-
plication threads cannot be preempted while they are computing. The non-preemptive
execution model hypothesis reduces the state space, since it removes all the cases where
the execution of a thread is suspended so as to handle an interrupt. Once we can indeed
safely schedule the system under the hypothesis that threads are never preempted, then
we can use the constraints obtained during this step toreduce even furtherthe state
space that we have to construct and analyze when we do allow threads to be preempted.
The non-preemption of threads is easily added to our modelsthrough the use of a QoS
policy that forbids the schedulers from choosing a thread for execution, when another
thread is already in a state where it is performing a computation:

Qexec(
−−−→state) = {t . t ∈ Sexec(

−−−→state) ∧ ¬∃t′ 6= t . computes(t′)}

In the case study, the combination of the non-preemptive execution model (NP) with
thebbeleads to a reduction of about 80% for the 4-thread subsystem and 70% for the 5
threads. However, we cannot safely schedule all systems when we do not allow threads
to be preempted. This means that for these systems we will not obtain any scheduling
constraints and, therefore, will be obliged to examine the larger, unconstrained state
space of the timed model, which corresponds to a preemptive execution model.

Observability of Clocks Having synthesized a safe scheduler for an application does
not necessarily mean that we can implement it easily with an existingR-T OSthough.
The difficulty of implementing it as is, arises from the fact that the constraints we pro-
duce during the synthesis use the state of the system to decide what are the safe choices
at each point during the execution and, therefore, also make reference to the values of
the local clocks of the threads. However, these clocks do not really exist in the appli-
cation but were only introduced as a way to model the computations of the threads.
Introducing them in the final code means that we will have to add for each thread an
additional timer object and reset and activate (resp. deactivate) the timer before (resp. af-
ter) each computation and read its value when making a scheduling decision. As using
timers may substantially increase the execution time of the scheduler, we investigate
the possibility of synthesizing a clock-free one, which only examines thePCs of the
threads. This will make the scheduler itself faster to execute, since in order to make a
scheduling decision it now only needs to examine then values of the differentPCs and
not the2n + 1 values of thePCs, the local thread clocks and the global clock.

On the other hand, removing the clocks from the constraints can introduce states
where the scheduler will take the wrong decision and cause a thread to miss its deadline.

These states are those where a scheduler gets called at the same configuration of thread
PCs but at different time instances. Since the time instances (and therefore the clock
values) are different, the safe setsSexec of these states can be different themselves
as well. When we decide to not observe the clock values while scheduling, we are
effectively unable to differentiate among these different sets and all these states become
equivalent, as far as our scheduler is concerned. Therefore, if we wish our scheduler
to always make a decision which issafe, then theSexec set of thisequivalence classof
states should be theintersectionof theSexec sets of the states which belong to the same
equivalence class.

Sexec(
−−−→classj) =

⋂
statei∈classj

Sexec(
−−−→statei)

Sometimes, theSexec(
−−−→classj) set will be empty, if the scheduler decisions at the mem-

bers of this equivalence class were conflicting. When encountering such an equivalence
class whoseSexec set is the empty set, we need to add its members to the set of dead-
locked states and continue the synthesis algorithm, until we find a set of constraints
which helps us to avoid the whole class, if any.

Other QoS Policies Once we have synthesized a safe scheduler, we can compose it
with other QoS policies to choose among the safe threads those which better realize the
QoS requirements of the system. Actually, as Altisenet al. [2] showed, a QoS policy
can also be used from the start of the synthesis as an initialscheduling policy, so as
to reduce the size of the model we want to analyze. In this case, the QoS policy used
should give preference to tasks of the system which have a higher probability to miss
their deadlines.

Table 2.Synthesis steps

Model kind States Red.Trans. Red. Dead.Constr.

Synthesis Steps for 4 threads

U 3320 96.41% 4680 95.49% 0 0
U, No Deadlocks 3320 96.41% 4680 95.49% 0 0
T NP, bbe, No Deadlocks 18304 80.19%21738 79.03% 1 0
T NP, bbe, Safe 13830 85.03%16196 84.38% 0 15
T P, bbe, No Clocks 16807 81.81%20003 80.70% 1 15
T P, bbe, No Clocks, Safe 16249 82.41%19245 81.43% 0 23

Synthesis Steps for 5 threads

T LMCS, bbe, 4 threads Safe 23302 96.12%26515 96.19% 1 23
T LMCS, bbe 15742 97.38%17584 97.47% 0 38
T LMCS, bbe, No Clocks (Safe)15742 97.38%17584 97.47% 0 38

Table 2 shows the results obtained when applying our methodology on the case
study. First we synthesized a safe scheduler consisting of 15 constraints for the 4-thread

subsystem, considering that the execution mode is non-preemptive. Then we used these
constraints to render the state space smaller once we choose a preemptive execution
mode and we no longer observe clocks. This lead to another 8 constraints, with which
the 4-thread subsystem is indeed always safe. Then, we used the 23 constraints we
synthesized for the 4-thread subsystem, to minimize the 5-thread one. In parallel, we
also used a QoS policy which locally minimizes context switches (LMCS), so as to
render the state space even smaller. This produced another 15 constraints, under which
the 5-thread system is safe, when it is running with the LMCS QoS policy.

5 Scheduler Implementation

Once the scheduler has been synthesized using the model, it has to be implemented and
integrated with the code generated by the TurboJ compiler. The structure of the exe-
cutable code is depicted in Fig. 6. The generated code consists of two parts, namely,
the application code and the synthesized scheduling predicates. The application code
is instrumented to call the application-level scheduler calledJ_Scheduler when
an application thread executes the code corresponding to the Java-bytecode statements
monitorEnter or monitorExit , and the methodsnotify , notifyAll , wait, waitTimed
andwaitForPeriod. J_Scheduler calls the functionSynthesized_Predicates
which evaluates the synthesized predicates corresponding to the different scheduler lay-
ers. The application-level scheduler is implemented on top of an accompanying run-
time library, which offers an implementation in native code of the aforementioned state-
ments and methods.

Application code

Expresso HIP−API

POSIX RT OS

J_lock(), J_unlock(), ... scheduler constraints
synthesized

Fig. 6.System decomposition

More precisely, our implementation uses a subset of POSIX, i.e., it uses mutexes
(without any priority inheritance protocol), condition variables & priorities. Indeed, it
does not use real-time timers, since one of the underlying OS’s we needed to support
(in the context of the Expresso project) does not provide any. More specifically, we use
a single mutex (sched mx) and provide to each application thread a unique condition
variable. These condition variables are all associated with the aforementioned mutex
(a capability which exists in POSIX but not in Java). Finally, we use three different

Table 3.Pseudo-code of the application scheduler

1 void J_Scheduler(int tc, bool in_notify, timespec &deadline) {
2 bool finished = true, level_super = false;
3 int tn;
4 /* tc is the current thread (tc) & tn the next one (tn) */
5 do {
6 tn = Synthesized_Predicates(THREADS_TABLE); // calculate Ready, Safe & QoS sets
7 if (tn != tc) {
8 if (in_notify) {
9 if (-1 != tn) { // -1 means no thread is waiting

10 J_Set_Priority(tn, BLOCKED); // Don’t allow tn to preempt you
11 notify(THREADS_TABLE[tn].cv);
12 }
13 } else { // ! in_notify
14 J_Set_Priority(tn, EXEC);
15 THREADS_TABLE[tn].position = THREADS_TABLE[tn].pos_after_notif;
16 notify(THREADS_TABLE[tn].cv);
17

18 if (NULL == deadline) { // Not a waitTimed or waitForPeriod
19 // Release CPU here
20 wait(THREADS_TABLE[tc].cv, sched_mx);
21 /* Here I have been signaled */
22 } else { // NULL != deadline
23 J_Set_Priority(tc, SUPER); // Release CPU here
24 timed_wait(THREADS_TABLE[tc].cv, sched_mx, deadline);
25 /* Here I have been signaled or I have timed-out.
26 Must re-schedule to be safe, if I timed-out. */
27 if (THREADS_TABLE[tc].position != THREADS_TABLE[tc].pos_after_notif) {
28 finished = false;
29 THREADS_TABLE[tc].position = THREADS_TABLE[tc].pos_after_timeout;
30 }
31 level_super = true ; deadline = NULL;
32 }
33 }
34 }
35 } while (! finished);
36 if (level_super) J_Set_Priority(tc, EXEC);
37 }
38

39 void J_lock(int tc, int curr_pos) { // J unlock is exactly the same
40 lock(sched_mx);
41 THREADS_TABLE[tc].position = curr_pos;
42 J_Scheduler(tc, false, NULL);
43 unlock(sched_mx);
44 }

priority levels, namely,BLOCKED , EXEC & SUPER (from lowest to highest) and
theSCHED_FIFOPOSIX scheduling policy (i.e., priority based, FIFO, non-preemptive
execution of tasks having the same priority).

The pseudo-code of this implementation is shown in Table 3. Before callingJ_ -
Scheduler , the running application thread lockssched mx and changes the la-
bel used for marking its position in the model.J_Scheduler calls the function
Synthesized_Predicates (generated by the synthesis tool) passing it the cur-
rent labels of all the application threads. If the thread chosen to be executed next (tn) is
different from the current one (tc) andtc is not doing a notification, we set the priority
of tn to EXEC, we notify the condition variable oftn (cv tn

) and finish by havingtc
wait on its own condition variable (cv tc

). This final action releasessched mx just be-
fore blocking, thus allowing the notified threadtn to resume execution. Iftn happens
to be the same astc, then the application scheduler returns normally andtc unlocks
sched mx.

The algorithm changes somewhat when calling the application scheduler because
of a waitTimed or a waitForPeriod. In this case, we also pass to our scheduler the
time that the current thread should wait. The scheduler then performs a timed wait on
cv tc using as timeout the absolute deadline passed as an argument, instead of doing
a simple wait. In addition, it also increases the priority oftc to SUPER just before
performing the timed wait, so thattc has the chance to get the CPU as soon as it time-
outs. If tc does indeed timeout, it re-calculates the scheduler predicates so as to find
out if it is indeed safe to continue execution. FunctionsJ_timed_wait andJ_wait
set the fieldTHREADS_TABLE[].pos_after_notif right before calling function
J_Scheduler to be the label corresponding to the internal state of the wait where the
thread has been notified but has not yet reacquired the mutex of the object on which
it was waiting. In a similar manner, the fieldpos_after_timeout is set by the
functionsJ_timed_wait , andJ_wait_for_period to the label corresponding
to the internal state of thewaitTimed, or the label corresponding to the first statement
following the beginning of a new period.

We have successfully executed our implementation over two different combinations
of hardware architecture and embedded OS’s, namely an Intel Pentium II (333MHz)
runningeCos over Linux and a PowerPC simulator (PSIM) using the proprietary OS of
an industrial partner of the Expresso project. The experiments we performed witheCos
showed that the execution time of the synthesized predicates (i.e., the execution time of
functionSynthesized_Predicates called byJ_Scheduler) is comparable to
the execution time of locking an (unlocked) mutex, having a WCET of the order of 4µs.

Besides, we have a non-POSIX prototype implementation overeCos that uses alarms
and alarm handlers, thus allowing us to support deadline and period miss handlers as
proposed by the RTSJ, but disallowed by the Expresso and the Ravenscar-Java profiles.

6 Conclusions

We have presented a complete application-driven scheduler synthesis chain that allows
to automatically generate native code for embedded real-time systems based on Java.
In addition, it allows one to substitute RMA/EDF & PCP with a scheduler which is
still safe but not as pessimistic and which can be easily extended with QoS scheduling
policies. We are not aware of any other similar chain. The full integration of the model-

generation and scheduler-synthesis tools with the compiler is under test as it requires a
close collaboration with the TurboJ development team.

References

1. AICAS. http://www.aicas.com/jamaica.html. JamaicaVM.
2. K. Altisen, G. G̈oessler, and J. Sifakis. Scheduler modeling based on the controller synthesis

paradigm.Real-Time Systems, 23(1), 55–84, July 2002.
3. B. Delsart, V. Joloboff, and E. Paire. JCOD: A Leightweight Modular Compilation Technol-

ogy for Embedded Java. InEMSOFT’02, Grenoble, France, October , 2002.
4. L. Gauthier and M. Richard-Foy. Expresso RNTL Project - High Integrity Profile, 2002.

Available from http://www.irisa.fr/rntl-expresso/docs/hip-api.pdf
5. J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-Wesley, Read-

ing, MA, USA, 1996.
6. IEEE. POSIX.1. IEEE Std 1003.1:2001. Standard for Information Technology - Portable

Operating System Interface (POSIX). The Institute of Electrical and Electronic Engineers,
2001.

7. Ch. Kloukinas and S. Yovine. Synthesis of Safe, QoS Extendible, Application Specific
Schedulers for Heterogeneous Real-Time Systems. InProceedings of 5th Euromicro Con-
ference on Real-Time Systems (ECRTS’03), Porto, Portugal, July 2003.

8. J. Kwon, A. J. Wellings, and S. King. Ravenscar-Java: A High-Integrity Profile for Real-
Time Java. InJava Grande, pp. 131–140, 2002.

9. M. Lusini and E. Vicario. Static analysis and dynamic steering of time-dependent systems
using Petri Nets. Technical Report # 28.98, University of Florence, 1998.

10. G. Muller, B. Moura, F. Bellard, and Ch. Consel. Harissa: A flexible and efficient Java
environment mixing bytecode and compiled code. InProc. of Usenix COOTS’97, Berkeley,
1997.

11. Real-Time for Java Expert Group. The Real-Time Specification for Java, 2001. Available
from http://www.rtj.org

12. Real-Time Java Working Group. Real-Time Core Extensions, revision 1.0.14, 2001. Avail-
able from http://www.j-consortium.org/rtjwg.

13. J. Sifakis, S. Tripakis, and S. Yovine. Building models of real-time systems from application
software. InProceedings of the IEEE, Special issue on modeling and design of embedded
software, 91(1):100-111, January 2003. IEEE.

14. Sun Microsystems. The Java HotSpot Performance Engine Architecture.
http://java.sun.com/products/hotspot/whitepaper.html, April 1999.

15. TimeSys. http://www.timesys.com. JTime.
16. R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation

semantics.JACM, 43(3), 1996.
17. M. Weiss, F. de Ferrière, B. Delsart, Ch. Fabre, F. Hirsch, E. A. Johnson, V. Joloboff,

F. Roy, F. Siebert, and X. Spengler. TurboJ, a Java bytecode-to-native compiler. InProc.
of LCTES’98, volume 1474 ofLNCS, 1998.

http://www.aicas.com/jamaica.html
http://www.irisa.fr/rntl-expresso/docs/hip-api.pdf
http://www.rtj.org/rtsj-V1.0.pdf
http://www.rtj.org
http://www.j-consortium.org/rtjwg/rtce.1.0.14.pdf
http://www.j-consortium.org/rtjwg
http://java.sun.com/products/hotspot/whitepaper.html
http://www.timesys.com

	Christos Kloukinas Chaker Nakhli Sergio Yovine

