
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 1

A Methodology for Constraint-Driven Synthesis of

On-Chip Communications
Alessandro Pinto, Member, IEEE, Luca P. Carloni, Member, IEEE, and

Alberto L. Sangiovanni-Vincentelli, Fellow, IEEE

Abstract—We present a methodology and an optimization
framework for the synthesis of on-chip communication through
the assembly of components such as interfaces, routers, buses and
links, from a target library. Models for functionality, cost, and
performance of each element are captured in the library together
with their composition rules. We develop a mathematical frame-
work to model communication at different levels of abstraction
from the point-to-point input specification to the library elements
and the final implementation.

Index Terms—Communication synthesis, System-on-chip, In-
terconnect synthesis, Performance optimization.

I. INTRODUCTION

W ITH the advances of IC technology, global intercon-

nects have become the dominant factor in determining

chip performance: they are not only becoming responsible for

a larger fraction of the overall delay and power dissipation

but exacerbate also design problems such as noise coupling,

routing congestion, and timing closure, thereby imposing

severe limitations on design productivity [1], [2]. Because of

these characteristics, most VLSI circuits can be considered

distributed systems, a fact that challenges traditional design

methodologies and the electronic design automation tools that

are based on them [3]. Systems-on-Chip (SoCs) are typically

designed by assembling intellectual property (IP) components

from different vendors and/or different divisions of the same

company in the attempt of reducing time-to-market by reusing

pre-designed and pre-verified elements. However, since these

components are designed independently, the assembly step

is often a challenging problem that requires the design of

communication interfaces to match different protocols and data

parallelism, and the routing of global interconnect wires to

meet the constraints imposed by the target clock period.

The Open Core Protocol (OCP) [4] tackles this problem by

defining a standard open-domain interface with which IP cores

should comply to allow fast integration using appropriate inter-

connect architectures. While there is no intrinsic limitation on

This work was partially supported by the GSRC Focus Center, one of
five research centers funded under the Focus Center Research Program, a
Semiconductor Research Corporation program, and by the National Science
Foundation (Award #: 0644202).

A. Pinto is with United Technologies Research Center, East Hartford, CT,
most of this work was carried out while at the Dept. of EECS, U.C. Berkeley,
CA 94720, (apinto@eecs.berkeley.edu).

L.P. Carloni is with Department of Computer Science, Columbia University
New York, NY 10027 (luca@cs.columbia.edu).

A. Sangiovanni-Vincentelli is with the Dept. of EECS, U.C. Berkeley, CA
94720, (alberto@eecs.berkeley.edu). Manuscript received November 15,
2007; revised April 28, 2008. Copyright c©2008 IEEE. Personal use of this
material is permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending an email to pubs-
permissions@ieee.org.

the interconnect architecture for OCP, most designers rely on

traditional bus architectures so that pre-designed components

can be used. In this domain, proprietary protocols such as the

ARM AMBA BUS and the IBM CORECONNECT are popular

among SoC designers making the adoption of a universal

standard difficult at best.

We argued that SoCs are distributed systems. For this

reason, bus architectures may not be always ideal; in fact,

a set of seminal papers has proposed scalable, multi-hop,

packet-switched Networks-on-Chip (NoCs) as a solution for

the integration of IP components as an interesting alterna-

tive [5]–[7]. Borrowing from the communication networks

literature, an NoC can be built through the combination of

heterogeneous elements such as interfaces, routers, and links.

The NoC design is a challenging problem because there are

many degrees of freedom (e.g. network topologies, routing

protocols, flow-control mechanisms, positions of the commu-

nication components and core interfaces) as well as multiple

optimization goals (e.g. performance, power, area occupation

and reliability). Hence, the problem had been simplified by

limiting the number and types of components considered, by

focusing on a subset of the relevant objectives, by constraining

NoC topology and components positions, and by dividing the

optimization process in successive stages. Limiting the degrees

of freedom has also the important side effect of reducing

implementation and layout complexity.

In [8] Bertozzi et al. propose NETCHIP, a synthesis flow to

derive an application-specific NoC by mapping the application

cores on standard topologies (e.g torus, mesh, hypercube) in

an optimal way. In [9], Hu and Marculescu perform mapping

and routing on the NoC with optimal energy and performance.

Lahiri et al. use standard topologies consisting of sets of

channels (point-to-point links or shared busses) connected by

bridges [10]. Ogras et al. propose a perturbation method that

starting from the mapping of an application on a standard

topology optimizes performance and cost by inserting custom

long links between routers [11]. In [12] Murali et al. synthesize

NoCs that, albeit being more general than the approaches

that start from a regular topology, are still constrained to be

“two-level structures”, where star topologies are connected

by links to satisfy inter-cluster communication requirements.

In [13] Srinivasan et al. synthesize an application-specific

NoC without assuming any pre-existing interconnection fabric.

The synthesis problem is linearized and solved via integer

linear programming (ILP) that, due to its complexity, yields

running time of the order of several hours even for relatively

small instances. In [14] the same authors propose an efficient

approximation algorithm that is strongly tied to the cost model



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 2

and that does not consider constraints on the router size (i.e.

number of inputs and outputs).

While a rich set of interesting results exists in the literature,

few are the examples of practical applications of NoCs. In fact,

the debate between those who favor standard bus architectures

or variations thereof and those who advocate the adoption

of NoC approaches ranging from constrained architectures to

custom ones is vibrant. We do not take sides even though

the NoC approach has undisputable fundamental merits that

may make it successful in the long run. Instead, we propose a

general methodology for the design of on-chip communication

that can explore a large number of alternatives including as

special cases NoCs, bus architectures and hybrid ones. Thanks

to its generality our approach can be used to build a framework

where different constrained solutions are compared using a

number of evaluation factors.

We address the synthesis of optimal heterogeneous networks

by assembling components from a fine-grained library without

enforcing any constraint on their topology other than the ones

formally captured in the library. In particular, the network that

we obtain need not be direct and not even connected if these

constraints are not captured in the composition rules of the

communication components.

Our approach is detailed in the rest of the paper as follows:

In Section II, we introduce formally the SoC design specifi-

cation (i.e. the function), the target technology process with

the library of communication components and the final com-

munication implementation. At a first glance, the formalism

used in this section may seem overly complex. However, in

our opinion, the benefits it offers in terms of generality (the

same formalism applies independent of the communication

synthesis problem being investigated) outweigh its complexity.

In Section III, we show how to use this formal framework

to formulate a general optimization problem for a general

class of libraries. In Section IV, we use our framework to

formulate the communication synthesis problem in the specific

case of NoCs. and provide a heuristic algorithm to solve the

resulting complex integer optimization problem. The algorithm

is independent from the specific input constraints and the

target platform. We do report a customization of the algorithm

that takes into account bandwidth and latency constraints, ex-

pressed as hop count, to synthesize a minimal-power NoC. The

general algorithmic framework can be customized in several

other ways by changing the cost function and constraints.

The material presented in this paper is the theoretical foun-

dation of COSI-OCC , a design flow for on-chip communication

synthesis design that is part of the COmmunication Syn-

thesis Infrastructure (COSI). COSI is a public-domain design

framework for the analysis and synthesis of interconnection

networks [15]. Our goal has been to provide an infrastructure

that can be used by researchers and designers as a basis

for developing new design flows by integrating additional

models, library elements, analysis tools and synthesis tools 1.

In Section V, we briefly describe COSI-OCC together with

the results we obtain by applying it to a number of test

1This approach is similar to the one our group followed in developing
MIS that has been used for years as a platform to invent and test new logic
synthesis algorithms [16].

PAD1

PAD2 PAD3

PAD4

(0.2, 2.44)
1.44

0.650.2

0.46

124

10

1525

538
207

34 34 297

0.55

0.55

Mutually 

exclusive

constraints

dem

(OCP)

aud

(OCP)
vid

(OCP)

mem

(OCP)

HDTV

(OCP)

CPU

(AMBA)

N
stb

C

Area ( )
Position

Fig. 1. The system-level specification of a simplified Set-Top Box. Each
core in the specification is annotated with and area in mm2 and each arrow
is annotated with a bandwidth constraint in MB/s.

cases for NoC design. We present more details on COSI and

COSI-OCC in [17] and we provide a detailed comparison of

our approach with other on-chip communication design tools

in [18].

II. THE METHODOLOGY AND ITS MATHEMATICAL

REPRESENTATION

A. The Methodology

The general approach is based on Platform-Based Design

(PBD) [19] where the design specification and the imple-

mentation alternatives are kept separate. The methodology is

recursive: the functional specification is implemented on a

particular architecture through a series of refinement steps. At

each step, which corresponds to a specific level of abstraction,

the implementation alternatives are characterized by a set of

components, called library, that can be instantiated, config-

ured, and assembled according to specific rules, to derive a

more complex structure. The set of components together with

their compositional rules define a platform which is a family

of admissible solutions. The task of the synthesis process is

then to select one out of this family (a platform instance) and a

mapping of the specification onto the components that satisfy

the requirements and possibly optimize the objectives of the

design. The implementation refines both requirements and

platform instance and is defined at a lower level of abstraction.

In this process, it is essential to formalize how requirements

are specified, how the library is described, and how the

composition rules are defined and applied to generate the space

of admissible solutions. The composition rules can be used to

encode constraints related to the topology that the designer

wishes to consider while the components in the library de-

termine which kind of “nodes” can be selected. To select a

platform instance using an optimization algorithm we must

associate to each library component (and to the hierarchical

composition of two or more of them) a “characterization” in

terms of cost, performance, power, and “type” (e.g., number of

ports and interface type of a router) that allows us to evaluate

metrics associated with the objectives and constraints of the

design.

To illustrate our approach, consider, for instance, the simpli-

fied Set-Top Box System shown in Fig. 1. This design will serve

as an example throughout the paper. The SoC specification

contains six IP cores that exchange messages through a

dozen of point-to-point channels and interact with the external



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 3

IF
1 OCP

OCP

OCP

OCP

OCP

R

OCP

OCP

OCP

OCP
R

IF
3 OCPAMBA

IF
2 OCP

IF
4 OCPAMBA

G1

G2

P

P

Can be placed 

only on chip 

boundaries

Can be placed 

anywhere

Distance ≤ lst

Bandwidth ≤ bmax

Energy per flit: 8.2pJ

Leakage @ 1GHz: 0.85mW

Area: 5888µm
2

Energy per flit: 35.2pJ

Leakage @ 1GHz: 5.1mW

Area: 31488µm
2

Fig. 2. A library of predefined on-chip communication components.

environment through four major I/O connections (pads). The

data input stream is processed by the demux core (dem) that

sends an audio stream to the audio decoder and a video stream

to the video decoder. The video decoder accesses the external

memory through a memory controller. The memory is used

both as an intermediate storage and to send the decoded stream

to the display controller and HDTV encoder. Finally, a master

CPU controls the operation of all the blocks and handles the

interaction with the environment. Additional non-functional

constraints are often part of the specification: e.g, the dem

core must occupy position (0.2, 2.44) (in millimeter); the cpu

communicates with the other cores, one at the time.

Fig. 2 shows a library of on-chip communication compo-

nents that contains a set of communication templates including

interfaces IF1 and IF2 to connect pads with OCP cores, and

interface IF3 and IF4 to connect AMBA cores with OCP

cores. The library also contains various OCP routers that differ

by the number of I/O ports. Each component is characterized

by performance metrics, cost functions, and composition rules.

Possible characterizations include: a link in a given metal layer

can sustain up to a certain bandwidth bmax and span a distance

no greater than lst; a parameterized synthesizable router may

not have more than a maximum number of I/O ports, and an

IP core may feature only a specific protocol interface.

A communication structure that serves as the communica-

tion backbone for an SoC is constructed by instantiating com-

munication templates (i.e. components from the library) and

composing them. For example, PAD4 is Fig. 3 is connected to

the memory controller by instantiating templates G1 and G2.

Fig. 3 shows two alternative NoC implementations of the same

specification. Network G1
P is obtained by instantiating the

necessary interfaces plus one 8×8 router while G2
P is obtained

by instantiating only 2× 2 routers. The performance and cost

of the communication structure depend on the performance

metrics and the cost functions of each component.

B. Basic Definitions

The basic element of our formal framework is the com-

munication structure. A communication structure is a set of

interconnected components with associated quantities such as

latency, bandwidth and position. A quantity q takes on values

from a domain Dq that is partially ordered by a relation �q.

The ordering relation captures the notion of a value being

“better” than another value. We assume that ⊥, which denotes

no values, always belongs to the domain of a quantity Dq.

Also, ⊥ �q ν for all ν ∈ Dq. A quantity q is finite if Dq is a

P4

Demux

P1

P2

Audio Video

HDTV

Mem 

Ctrl

CPU

P4

Demux

P1
P2

Audio

Video
HDTV

Mem 

Ctrl

CPU

P3

P3

Instantiation of

 G1

Instantiation of 

G2

Platform Instance G1

P
Platform Instance G2

P

Fig. 3. Two NoC instances obtained by instantiation and composition of
communication components.

finite set, and it is bounded if there exists an element ν̄ ∈ Dq

such that ν �q ν̄ for all ν ∈ Dq. Bandwidth, for instance,

is modeled by a quantity b. Its domain Db can either be the

set of natural numbers, or it can be a discrete set of values

like Db = {10, 100} (in MB/s). Ordering relation �b is the

same as the ordering relation ≤ defined on natural numbers.

The domain Dh of the quantity h representing latency can

be defined as a finite set of integer numbers, but the ordering

relation �h is now reversed, i.e. 100(ns) �h 10(ns).

Given a vector of quantities q = (q1, . . . , qk), the domain

of q is the cross product Dq1
×. . .×Dqk

. It is partially ordered

by a relation �q point-wise induced by the relations �qi
. We

use the notation ⊥n to denote a n-tuple of ⊥ values. [X → Y ]
denotes the set of all functions from set X to set Y .

Definition 1. A communication structure is a tuple N(C,q, L)
where C = {c1, . . . , cn} is a set of components, q =
(q1, . . . , qk) is a vector of quantities, and L ⊆ [C → Dq]
is a set of communication configurations. Set C is partitioned

into the set of nodes V ⊆ UV and the set of links E ⊆ V ×V .

The set L of communication configurations captures the

different ways in which quantities can be associated to com-

ponents. The set UV is called the node universe. Similarly, the

component universe is UC = UV ∪ U2
V , and the configuration

universe is Uq = ∪C⊆UC
[C → Dq], the union of all possible

configurations for any subset of components. Let Gq be the

set of all communication structures with quantities q.

For a given subscript σ, and vector of quantities q, let Nσ ∈
Gq be a communication structure. Then, we use Cσ ,Vσ , Eσ

and Lσ to denote the sets of components, nodes, links, and

configurations of Nσ , respectively.

Example 1. (Communication structure): Consider the vector of
quantities q = (x, y) representing the horizontal and vertical co-
ordinates of a component. The domain Dq is the set of points where
nodes can be placed. This domain can be described, for instance,
by a discrete set of points or by union of rectangles. If there are no
preferred positions, the elements of Dq are not comparable, therefore
the order �q is a flat one, with ⊥ being the minimum element. Given
a communication structure N(C,q, L), the set of configurations L
captures all the admissible placements of the nodes in V . Since we
do not assign any position to the links, for all l ∈ L and for all
links e ∈ E, l(e) =⊥2. The additional constraint that no two nodes
occupy the same position requires that for all l ∈ L, and for all pair
of nodes u, v ∈ V , l(u) 6= l(v).



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 4

We introduce two scoping operators on configurations.

Given a communication structure N(C,q, L), the restriction

of a configuration l ∈ L to a subset of components C′ ⊆ C,

denoted by l|C′ , is a function f : C′ → Dq such that

f(c) = l(c) for all c ∈ C′. In particular, l|V and l|E are the

restrictions of a configuration l to the set of nodes and links,

respectively. Given a vector q
′ obtained from q by projecting

away some of the quantities, the projection of a configuration

onto q
′ is denoted by l[q′], and corresponds to ignoring

the quantities not in q
′. We naturally extend these operators

to sets of configurations, e.g. L[(x)]|V denotes the possible

assignments of horizontal positions to nodes in Example 1.

We use communication structures to capture three important

and related concepts in our framework: the specification of an

on-chip communication synthesis problem, the collection of

alternatives to implement the communication (the platform in-

stances), and the final communication implementation. These

three structures correspond to different abstraction levels. In

Section II-F we establish precise relations among them to

define when an implementation refines a platform instance

and supports a specification. It is often necessary to compare

specifications, platform instances and implementations; e.g.

it is important to be able to order different specifications

depending on how stringent the constraints are. Similarly, it is

important to compare platform instances depending on their

performance. Therefore, we define an ordering relation ≤q on

the set of communication structures Gq as follows:

Definition 2. Given two communication structures N1, N2 ∈
Gq, N1 ≤q N2 if and only if C1 ⊆ C2, and for all l1 ∈ L1

there exists l2 ∈ L2 such that for all c ∈ C1, l1(c) �q l2(c).

C. Communication Specification

We express the specification of an on-chip communication

synthesis problem as a communication structure NC ∈ GqC
,

where qC = (x, y, a, τ, b, h). Nodes represent IP cores (that

can be sources and/or destination of a communication) and

have an associated position (x, y) in the Euclidean plane, an

area a, and a type τ denoting the supported interface protocol.

Links represent distinct inter-core communications. Each link

is associated with two quantities: a minimum average band-

width b and a maximum latency h. Each configuration l ∈ LC

represents a possible combination of the positions and inter-

faces of the cores, and bandwidth and latency requirements

for the communication among them (e.g., to capture different

communication scenarios or different chip floor-planning).

Example 2. (Communication specification): In the set-top box
example of Fig. 1, the position of the dem core is fixed at coordinates
(0.2, 1.44). Hence, each configuration l ∈ Lstb

C must be such that
l(dem) = (0.2, 1.44, 0.55, OCP,⊥,⊥). Since there are no other
floor-planning constraints, the position of the other IP cores can be
determined during the synthesis process. The double arrows indicate
that the constraints between the CPU and the IP cores are mutually
exclusive, i.e. the CPU can only communicate with one core at the
time: i.e. for all l ∈ Lstb

C [(b)], only one among l((CPU, dem)),
l((CPU, aud)), l((CPU, vid)), l((CPU, mem)) can be different
from zero.

Since the performance and cost of the network depend on

the core positions, an important step in our design flow is to

restrict the possible configurations of a specification by fixing

the position of the ports of each core. In COSI-OCC we rely

on the PARQUET floor-planner [20] to obtain these positions.

D. Communication Structures Instantiation and Composition

To allow the incremental design of complex on-chip com-

munications, we introduce two operations: renaming and par-

allel composition. The identifiers of two nodes in different

sub-nets can be renamed to be the same to indicate that either

one IP implements both or an implicit connection is present

between the two sub-nets at these nodes. A renaming function

r : UV → UV is a bijection on the vertex universe. R denotes

the set of all renaming functions. Given a communication

structure N and a renaming function r, with abuse of notation

we use r(N) to denote a new communication structure where

the components have been renamed according to r.

The composition of two communication structures N1 and

N2, denoted by N1‖N2, results in a new communication struc-

ture N that contains the set of components C1∪C2. We define

the operator ‖ by two rules. The first rule establishes how the

configurations of the components being merged contribute to

the formation of the ones of the combined entity. The rule

is expressed by the binary operator ⊕q that is commutative

and associative so that the composition of communication

structures also satisfies these properties. This is important since

we want the result of the composition to be independent of

the order in which communication structures areinstantiated

and composed. Further, if l1 : C1 → Dq and l2 : C2 → Dq,

then l = l1 ⊕q l2 must be such that l : C1 ∪ C2 → Dq.

This operator is defined on sets of configurations as follows:

let L1 ⊆ [C1 → Dq] and L2 ⊆ [C2 → Dq], then

L1 ⊕q L2 = {l1 ⊕q l2|l1 ∈ L1 ∧ l2 ∈ L2}. A second

rule restricts the legal compositions by forcing the composed

structure to satisfy certain properties. This rule, that defines a

class of communication structures the result of the composition

must belong to, is given by a relation between the components

and the configurations and it is denoted by R ⊆ 2UC × Uq.

Definition 3. Given a binary operator ⊕q and a composi-

tion rule R, and two communication structures N1 and N2

belonging to Gq, their composition is N1‖
R
q

N2 = N ∈ Gq,

where C = C1 ∪ C2, L = {l ∈ L1 ⊕q L2|(C, l) ∈ R} 6= ∅; the

composition is not defined if L = ∅.

Example 3. (Composition of communication specifications): We
want to add an extra video channel to our set-top box chip by reusing
the already instantiated IP cores. In Fig. 4, Nvch is a communication
structure capturing the communication requirements of a set-top-box
video channel. To reuse the same IP cores, we rename the nodes
according to a renaming function r such that r(d) = dem, r(m) =
mem, r(v) = vid and r(dec) = HDTV . Since the new video
channel must be displayed on the same device, r(P2) = PAD3
forces the same output pad to be reused. For the demodulator input,
though, we need an additional pad. We also add a new pad to
connect a second memory bank to the memory controller. Fig. 4

shows the result of the composition Nstb
C ‖

RC
qC

r(Nvch). Intuitively,
we have added the bandwidths of common requirements and we have
restricted the position of the dem core. More precisely, we need
to define the operator ⊕qC

. Given two communication structures
structures N1, N2 ∈ GqC

, let l1 ∈ L1 and l2 ∈ L2 be two
configurations. The configuration l = l1⊕qC

l2 is defined as follows:



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 5

dem

aud vid HDTV

mem

CPU

PAD1

PAD2 PAD3

PAD4
(0.2, 2.44)

1.44

0.650.2

0.46
124

10

25

538

0.55

0.55

d

v
dec

m
P1

P2

P3

0.65

0.46

124
15

538

207

34 34
297

0.55

0.55

dem

vid HDTV

mem
PAD5

PAD3

124

15

538
207

34 34 297

0.55 PAD6
0.46

0.650.55

Renaming

Nvch r(Nvch)

PAD5

124

538
PAD6

30

414

68
68 594

N
stb

C ‖r(Nvch)

Fig. 4. Example of parallel composition of networks: the set-top box is
expanded by adding a video channel and an extra off-chip memory bank.

• there is no “interference” between components not shared by N1

and N2, i.e l(c) = l1(c) for all c ∈ C1 \ C2, and l(c) = l2(c)
for all c ∈ C2 \ C1;

• common nodes must be “compatible”, meaning that they must
agree on the positions and interfaces:

∀c ∈ V1 ∩ V2, l(c) =

{

l1(c) if l1(c) = l2(c)
⊥6 if l1(c) 6= l2(c)

(notice that it is sufficient to have some compatible configura-
tions for the composition to be defined);

• for all c ∈ E1 ∩ E2, l[(b)](c) = l1[(b)](c) + l2[(b)](c) and
l[(h)](c) = min{l1[(h)](c), l2[(h)](c)}.

We now define the composition rules. First, we specify that each node
has an assigned position and interface protocol: Rv

C = {(C, l) ∈
2UC × UqC

|∀v ∈ C, ∀q ∈ {x, y, a, τ}, l[(q)](v) 6= ⊥}. A second
rule may depend on the area budget νa for the IP cores on the chip:

Ra
C =

{

(C, l) ∈ 2UC × UqC

∣

∣

∣

∣

∣

∑

c∈V

l[(a)](c) ≤ νa

}

The two rules are combined as RC = Rv
C ∩R

a
C . We give examples

of other rules in Section II-E.

E. Libraries and Platforms

A platform is the set of all valid compositions that can be

obtained by assembling the components from a given commu-

nication library. These components either have a corresponding

implementation that is ready to be used or can be synthesized

by tools operating at a lower level of abstraction.

A communication library L is a collection of communi-

cation structures, i.e. L ⊂ Gq. The elements of a commu-

nication library are templates that can be instantiated and

composed to obtain more complex communication structures.

The vector of quantities that characterize our platform is

qP = (x, y, τ, in, out, γ) where each node has an associate

position (x, y), a type τ , two multisets in and out of input

and output port interfaces, respectively. Each link is associ-

ated with a capacity γ, i.e. the maximum bandwidth that it

can sustain (Section II-E). Differently from qC , vector qP

represents the capabilities of a component; e.g., quantities

x and y in qC denote the coordinates where a component

must be located, whereas the same variables in qP denote the

coordinates where a component can be located.

NN

S S

E
EW

W

NN

S S

W
W

NN

S S

W
WE

E
E
E

NN

S S

W
W E

E

NN

S S

W
W E

E

L

(Bus node)
(Mesh node)

(Bus segment)

(EW mesh link)

(N
S

 m
e

s
h

 l
in

k
)

(Interfaces)

N1 N2

N3

N4

N5

N6

N7

N9

i, j i, j + 1

i + 1, j

i, j

lmax

dem

aud vid HDTV

memCPU

dem

aud vid HDTV

memCPU

−1,−1

0, 0
0,−1

−1, 0

0, 1

−1, 1

N
1

P

N
2

P

N
′

P
= r1(N6)

N
′

P
‖r2(N6)‖r3(N3)

γ
M

max

γ
M

max

[0, γ
B

max
]

Fig. 5. Example of a library L and two alternative implementations for the
set-top box based on composing elements instantiated from L.

The definition of composition ‖RP

qP
captures the set of valid

communication architectures (i.e. communication platform in-

stances) that can be obtained out of the communication library.

The definition of the rules is more involved than in the case of

Example 3 and depends on the design space of interest. The

following example shows the flexibility that our framework

provides in defining the set of communication structures that

can be obtained by composition of library elements.

Example 4. Composition rules: Consider a communication library
whose elements are nodes and links. Fig. 5 shows a communication
library L and two possible platform instances N1

P and N2
P . Library

L contains the following set of components: a bus node and a
bidirectional bus-segment connecting two bus nodes; a mesh node
and two mesh links for East-West connection and North-South con-
nection, respectively. It contains also a set of interface communication
structures to connect IP cores to bus nodes and mesh nodes. Each
node has an associated multi-set of input interfaces in and output
interfaces out (depicted as filled and non-filled shapes attached to
nodes in Fig. 5). A link connects an output interface of a node to
an input interface of another node. Mesh links have an associated
maximum capacity γM

max while bus-segments (including the link
between an IP core and a bus node) have an associated interval
of capacities [0, γB

max] corresponding to different configurations. We
introduce two more quantities ix and iy for mesh structures that
are the row and column index of a node. Now, we state a set of
composition rules such that the only platform instances that are valid
in this platform are either busses or meshes:

1) The number of bus nodes can be at most the number of bus
segments minus one. This ensures that the topology of a bus
is a collection of trees. Also, since a bus node has only two
bidirectional ports to connect to other bus nodes,each bus is a
chain of IP cores (as shown by the platform instance N1

P ).
2) An East-West mesh link can connect two mesh nodes (u, v)

only if l[(ix, iy)](u) = (i, j) and l[(ix, iy)](v) = (i, j + 1);
a North-South mesh link can connect two mesh nodes (u, v)
only if l[(ix, iy)](u) = (i, j) and l[(ix, iy)](v) = (i+1, j) (as
shown by the platform instance N2

P ).
3) A bus configuration l forces the sum of the capacities of the

links connecting the cores to the bus to be less than γB
max. This

restricts the possible bus organizations and models the sharing
of the bus capacity among all connected IP cores.

These three rules define RP for this specific platform.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 6

The platform is obtained by taking all possible compositions

of instantiated library elements (if the composition is valid):

Definition 4. The communication platform generated by the
communication library L under composition ‖R

q
is

〈L〉 = {N(C,q, L) = r1(N1)‖
R
q . . . ‖Rq rm(Nm) |

ri ∈ R′, Ni ∈ L, L 6= ∅, m ≥ 1}

where R′ ⊆ R is a set of valid renaming functions. An element

N ∈ 〈L〉 is called a communication platform instance.

The set of renaming functions is restricted because generally

there may be constraints on the possible ways in which

components are instantiated (see Section IV for an example

of definition of R′).

F. Mapping

The same specification can be implemented by many plat-

form instances. On the other hand, the same platform instance

can implement a variety of different specifications. For a

given platform instance, deriving an implementation of a given

specification is called mapping in the platform-based design

terminology. The implementation is a refinement of both the

specification and the platform instance. Being a refinement

means that the implementation contains more details, that

are captured not only by the number of components of the

communication structure defining the implementation, but also

by the vector of quantities. In our example, the implementation

of a communication specification is a communication structure

derived from a platform instance by adding the information

regarding the routing of packets and the latency. Routing is

captured by a quantity ρ called transfer table. To define ρ, we

introduce another quantity λ with domain Dλ representing a

name attached to each component. To simplify the notation, we

assume that this quantity implicitly belongs to any vector of

quantities. For a component c, we denote its name with λ(c).
The name of a component c is different from its identifier

which is denoted by the symbol c itself. In particular, the

renaming function does not change the name of a component

but only its identifier (this is the main reason to distinguish

them). The domain of ρ is Dρ = 2Dλ×Dλ×Dout . Therefore,

a transfer table is a set of triples (λs, λd, o) where λs and

λd are the names associated with the source and destination

of the packets, respectively, and o is an output interface

of a node. Each triplet specifies the output interface o for

each packet that arrives at the node from a given source

in its transit to a given destination. For routers, the transfer

table is also called routing table. Latency is captured by

quantity h as introduced in Section II-B. Hence, an imple-

mentation is a communication structure NI(CI ,qI , LI) where

qI = (x, y, τ, in, out, ρ, b, γ, h) (which contains the quantities

coming from the specification and from the platform instance).

The latency information associated to the components of an

implementation depends on the actual network traffic which is

known only after mapping. This quantity is derived from the

others. However, if it is measured in number of hops, then it

is an independent quantity and each link has a latency equal

to one while each node has a latency equal to zero. Another

example of derived quantity is the bit error rate over wireless

communication links that depends on the interference from

other nodes in a communication structure. These quantities

depend on the abstraction of the specific protocol that is used

at the network level and at the lower level of abstraction (e.g.,

Layer 2 of the OSI protocol stack [21]). For example, packets

traveling on a bus incur in different latencies if the protocol

is AMBA rather then OCP. To compute derived quantities, that

are often used to model specification dependent metrics, we

formally introduce the notion of a model. Let q denote a

derived quantity. Two cases can arise. If the configurations of

a component c of a communication structure contain enough

information to determine the value of q, then the quantity is

directly derived from a function mq : Dq → Dq, and we call

mq a direct model for q. For example, the power dissipated on

a link is directly derived from its communication bandwidth. If

the computation of the value of q depends not only on the con-

figuration but also on the other components and how they are

configured in the communication structure, then the quantity is

indirectly derived from a function m′
q : Gq×UC → Dq, and we

call m′
q an indirect model for q. During the refinement process,

some quantities can be determined by models (like latency in

our example) while independent quantities are computed by

optimization algorithms (like transfer tables in our example).

Example 5. Transfer tables and latency: Fig. 6 shows a bus-
based implementation of the set-top box example of Fig. 1. The
light-gray arrows represent paths in the communication structures.
The paths are implicitly defined by the transfer tables of each bus-
node. For example, the transfer table of node v2 contains an element
(λCPU , λdem, o3) meaning that a packet from the CPU core to the
dem core must be sent to output interface o3. The transfer table
information can be used at a lower abstraction level to optimize the
bus circuitry (e.g. decoders and multiplexers) or even to segment the
bus and insert bus bridges.

The latency to access the bus for each IP core depends on the
actual set of components and the bus configuration. When refining
the platform instance N1

P shown in Fig. 5 into the implementation
N2

I , shown in Fig. 6, a range of latencies [hmin, hmax] is first
considered for the access link (dem, v1). This range can be computed
by a best and worst case analysis of a bus. An indirect model m′

h

is used to restrict the range of latencies depending on the actual
specification mapped on the implementation. Therefore, the indirect
model becomes part of a composition rule that can be state ad follows:

Rh
I = {(C, l) ∈ 2UC×UqI

| l[(h)](c) = m′
h((C,qI , {l}), c), ∀c ∈ C}

The latency of an end-to-end communication is the sum of the
latencies of all components in the path. Notice that in this example
of bus model we lump the latencies on the access link to the bus and
assign a latency equal to zero to each bus segment.

Assuming a 128 bit-wide bus and 200Mhz clock frequency, the
maximum theoretical throughput is 1.6GB/s. Hence, we can assign
capacities to the links connecting the cores to the bus nodes. Given the
capacity assignment, the communication implementation can support
a larger set of specifications than the one in Fig. 1. For example, the
throughput of the dem core can be increased up to 100MB/s. In
the rest of this section we define precisely the set of specifications
that an implementation can support.

Other examples of composition rules are the follow-

ing. For each configuration l of a communication structure

NI(C,qI , L), the bandwidth on each link must be less than

or equal to the capacity of the link, i.e. l[(b)] ≤ l[(γ)], A

possible additional rule is deadlock freedom, which requires



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 7

dem

aud vid HDTV

memCPU

(λdem, λaud, o1)

(λCPU , λaud, o1)

(λdem, λvid, o2)

(λCPU , λdem, o3)

o1

o2

o3

γ = 100

γ = 50

γ = 600

γ = 700

γ = 1300

h = m′

h
(N2

I
, (dem, v1))

(                    Paths)

v1

v2

N
2

I

Fig. 6. Example of communication implementation for the set-top box.

the channel dependency graph of NI to be acyclic [22].

A synthesis problem for on-chip communication is a con-

strained optimization problem where the decision variables are

the components that form the communication implementation

together with their configurations, and the constraints come

from the specification NC and the platform (the constraints

are detailed in Section III). Therefore, we need to related

an implementation to the set of specifications that it can

correctly implement, and to a platform instance. We define

these relations by abstraction functions as follows.

Given an implementation NI , a path of length n is a

sequence of n links π = (e1, . . . , en) such that ei = (vi−1, vi).
Even if the topology is such that a path can be found

between two nodes in NI , packets may not be able to flow

through the path simply because a node may not have routing

capabilities, that are captured by transfer tables. A real path

from a source node s to a destination node d according to

a configuration l ∈ LI is such that v0 = s, vn = d and

∀ei ∈ π, ∃(λs, λd, o) ∈ l[(ρ)](vi−1) and l[(out)](ei) = o.

The communication specification characterizing the set of

specifications that a communication implementation NI can

correctly implement is given by the path abstraction Π :
GqI

→ GqC
, which is defined by the following construction:

• the nodes of NC are the IP cores also present in NI

• there exists a link (s, d) ∈ CC if and only if there

exists a real path from s to d in NI according to some

configuration lI ∈ LI ;

• a configuration lC belongs to LC if an only if there exists

a configuration lI ∈ LI such that the following conditions

are satisfied:

1) lC [(x, y, τ)](c) = lI [(x, y, τ)](c) for all c ∈ CC

2) for all links e ∈ CI

∑

(s,d)∈CC :e∈π(s,d)

lC [(b)](s, d) = lI [(b)](e)

3)
∑

e∈π(s,d)

lI [(h)](e) = lC [(h)](s, d)

To relate implementations and platform instances we intro-

duce the abstraction relation Ψ : GqI
→ GqP

that removes

the transfer tables and the latency quantities, i.e. given an

implementation NI it returns Ψ(NI) = NP (CI ,qP , LI [qP ]).

Given a specification NC and a platform 〈L〉, implementa-

tion NI must satisfy two constraints: NC ≤qC
Π(NI) and

Ψ(NI) ∈ 〈L〉. When the implementation is constrained to have

a specific topology such as a mesh or a torus, an additional

condition Ψ(NI) = NP must be satisfied where NP is the

platform instance capturing the specific topology.

III. FORMULATION OF THE OPTIMIZATION PROBLEM

Our objective is to find an implementation NI that min-

imizes a given cost function F : GqI
→ R+. We assume

that the cost function is monotonic, i.e. N1 ≤qI
N2 ⇒

F (N1) ≤ F (N2). This is a reasonable assumption since a

less performing communication structure should also cost less.

First, we formulate the problem of configuring a platform

instance NP to implement a specification. The communication

synthesis problem can be stated as follows:

PR1(NP ) : min
CI ,LI

F (NI)

subject to NC ≤qC
Π(NI), (1)

Ψ(NI) ∈ 〈L〉 (2)

Ψ(NI) ≤qP
NP (3)

(CI , lI) ∈ RI , ∀lI ∈ LI (4)

Constraints 1 and 2 require NI to implement the specifi-

cation and to be a refinement of a platform instance. Con-

straint 3 requires the implementation to be contained in the

performance envelope of the given platform instance NP and

Constraint 4 requires the implementation to satisfy the rules

defined at the implementation level (like for instance deadlock

freedom). This formulation of the communication synthesis

problem has been used in the optimization of NoC with fixed

topologies where, for instance, NP is a mesh [9].

Let Alg be a hypothetical algorithm that solves problem

PR1 exactly. Given a library L, platform 〈L〉 can be explored

by using Alg to solve problem PR1 for each NP ∈ 〈L〉.
In [23], the optimization problem is solved for many instances

corresponding to meshes, tori, butterflies and other regular

topologies. In [24], the optimization technique explores the

isomorphic-free set of all regular topologies and in [25]

the authors assume that one NP is given as input to their

algorithm. The following lemma relates the cost of the solution

to problem PR1 for different platform instances. 2

Lemma 1. Let NC be a specification, NP,1 and NP,2 two plat-

form instances such that NP,1 ≤qP
NP,2. Let N∗

I,1 and N∗
I,2

be the implementations found by Alg for platform instances

NP,1 and NP,2, respectively. Then F (N∗
I,2) ≤ F (N∗

I,1).

According to Lemma 1, if we can find the greatest element

NP of 〈L〉 with respect to the ordering relation ≤qP
, then the

solution of problem PR1 with NP = NP is the best com-

munication structure among all possible platform instances.

Unfortunately, such greatest element is not guaranteed to exist

in any given platform. Hence, instead of looking for it, we can

look for an upper bound N
〈L〉
P of 〈L〉 (which is not required

2The proofs of the lemma and proposition are given in [18].



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 8

to belong to the platform). The existence of an upper bound

is related to the platform being finite (i.e. containing a finite

number of platform instances). A communication structure is

finite if the set of its components is finite. A library is finite

if it is a finite set of finite communication structures.

Proposition 1. Given a vector of quantities q such that each

quantity is either finite or bounded, a finite library L ⊆ Gq

and a finite set of valid renaming function R′ ⊂ R, for any

composition rule R and operator ⊕q, there exists an upper

bound N 〈L〉 ∈ Gq of the communication platform 〈L〉 with

respect to the ordering relation ≤q.

Assuming that the upper bound can be constructed, it

follows from Lemma 1 and Proposition 1 that in order to

solve the communication synthesis problem we need to solve

the optimization problem PR2 ≡ PR1(N
〈L〉
P ). In general the

upper bound N
〈L〉
P does not satisfy the composition rules

RP (in fact, these rules are not taken into account by the

constructive proof of the upper bound itself). Constraint 2

makes sure that the final implementation is a refinement of

a platform instance. The solution N∗
I to problem PR2 is the

best communication structure that implements the specification

among all possible implementations that can be constructed

from L through composition. Notice that, once the upper

bound has been found, Constraint 2 is the only constraint

that depends on the library L. Thus, the properties of the

optimization problem can depend on L and consequently, an

algorithm that solves efficiently the communication synthesis

problem could also depend on L.

IV. APPLICATION TO NETWORK-ON-CHIP SYNTHESIS

In this section we apply our methodology to the synthesis of

NoCs. We present the library of communication components

and the models that we use to characterize them. The models

include the cost of each element in terms of area and power

consumption. We define the composition rules and develop

an efficient heuristic algorithm to solve problem PR2, which

generally is not a linear program.

A. The Communication Library and the Composition Rules

The nodes of our library are routers and network interfaces.

Fig. 7(a) shows the internal architecture of an input-queued

router. Given a target technology process, the area and energy

dissipation of a router depend on five parameters: number of

inputs i, flit-width fw, number of lanes (i.e. virtual channels)

vc, queue length l, and number of outputs o. For each

configuration of these paramenters, we characterize a router by

an energy-per-flit metric E(i, o, fw, vc, l) and an area metric

A(i, o, fw, vc, l) that are estimated with ORION [26]. that

we obtain not through an analytical model, but by running a

series of simulations with ORION [26]. The table in Fig. 7(b)

reports the energy values across different router configurations

and technology processes. Network interfaces are directly

connected to cores. Their characterization in terms of power

and area is the same as for the routers. However, their

performance in terms of throughput and latency can be very

XBAR

#lanes

#inputs

#outputs

fw

u v

lsg

Rd/w Rwlsg

w(β + 1)Cd Cwlsg w(β + 1)Cg

ln 90nm 65nm 45nm

1.2V 0.9V 0.6V

3x3
1 13.6 5.6 2.2

4 22.6 8.7 3.1

4x4
1 19.9 8 3.1

4 35.1 13.4 4.6

5x5
1 27.1 10.9 4.1

4 50 18.9 6.4

90nm 65nm 45nm

fclk (GHz) 1.5 2.25 3
VDD (V ) 1.2 0.9 0.6
l!sg (mm) 9.98 4.73 3.47
w! 99 85 52
Ed (pJ/mm) 0.48 0.2 0.07
Pl(µW/mm) 0.8 1.3 1.2

||l[(x, y)](u) − l[(x, y)](v)|| ≤ lst

l[(γ)](u, v) = bmax

Router Metrics (pJ/flit)

Wire Metrics
s d

u

v

s

v d

u

s

v

d

u

v

u

oif

iif

oif

iif

L1
L2

Ni

a)

c)

b)

d)

e)

Fig. 7. Modeling the NoC components.

different because they need to provide extra services such as

protocol conversion, flit-width adjustment, and packetization.

A link is a bundle of wires connecting the output port of

a node with the input port of another node. Fig. 7(c) shows

the first-order RC model of a buffered wire. For a detailed

description we refer the reader to [1], [27], [28]. We use

optimally buffered interconnects. For any given technology,

the critical sequential length is the maximum distance lst that

a signal can travel in a target clock period 1/f . Fig. 7(d)

summarizes the metrics of interests for the purpose of NoC

synthesis. In particular, each link is characterized by an energy

dissipation per bit per unit length Ed/l and an area per bit per

unit length, which includes the wiring and buffer areas 3

Fig. 7(e) shows the basic NoC component Ni, i.e. a link.

The set of configurations of a component contains all assign-

ments of positions to the two nodes such that their distance

is not greater than the maximum distance lst. The capacity of

a link is equal to bmax and the latency is equal to one hop.

The capacity bmax is different from the clock frequency. In

fact, in order to avoid router congestion, the capacity of a link

should be set in such a way that the routers’ injection rate

is far from saturation. Otherwise, the actual communication

latency would grow exponentially.

In Fig. 7, L1 and L2 are two possible communication

libraries. There are many types of nodes: s is a source node

(without any input), d is a destination node (without any

output), u and v are routers, iif is an input interface and oif is

an output interface. Since each component in L1 has the same

interface, this library allows establishing direct connections

between a source and a destination. Instead, library L2, where

the source interface iif is different from the destination

interface oif , supports a design flow where there are dedicated

sockets to connect the cores to the NoC.

Two important composition rules are considered. At the

platform level, rule RP allows only communication structures

3More details on these models are available in the COSI-OCC manuals [15].



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 9

 Order( )

Return 

Find links

to remove 

Return 

Can add 

new node?

Add New 

Node

Return 

Empty

For all 

   FindPath( ,NoDegree)

  

                      
  
       

NI ← Empty

RI

satisfied?

Y

N

Found Not FoundFor all links 

  Remove the set of path 

  Remove 

  ReRoute all paths   

  If cannot ReRoute,

     Add  to 

     Add all paths  to 

  Else

     Add the new paths to   

       

RI

satisfied?

Y

N

N

Y

(Find initial solution)

(Re-route flows to remove links,

if not possible then backtrack)

Fig. 8. High-level description of the heuristic algorithm.

where the number of input and output links of a node does not

exceed the number of input and output ports, respectively. At

the implementation level, rule RI allows only deadlock-free

communication structures by forcing the channel-dependency

graph of an implementation to be acyclic. Moreover, the

bandwidth on any channel cannot exceed its capacity.

B. Solution to the Optimization Problem

We use the results of Section III to solve the optimization

problem. We begin the optimization process by assigning a

fixed position to each core with a floor-planner. We assume

that placing the network over the cores is not allowed. Hence

we identify the area AC on the chip that is available to lay

out the network because it is not occupied by the IP cores 4.

An automatic procedure takes care of computing and dis-

cretizing AC so that the set of positions D(x,y) is finite. Quan-

tity τ is also finite and quantity γ is bounded, moreover we

assume to have a finite library. Because we want lI [(x, y, τ)]
to be injective (i.e. only one component of a specific type can

be installed in a particular location), the maximum number of

nodes in any platform instance is limited to |D(x,y,τ)|. Thus,

let U ′
V ⊂ UV be a set of nodes such that |U ′

V | = |D(x,y,τ)|.
The set of valid renaming functions R′ is such that each node

of the library elements is renamed to one of the nodes in U ′
V .

Hence, it is possible to find an upper bound N
〈L〉
P following

the construction of Proposition 1.

Problem PR2 is non-linear and discrete. The cost of nodes is

a non-linear function of the number of inputs and outputs and

not all of the constraints are linear. We could try to linearize

the problem and solve it using Integer Linear Programming

(ILP). To illustrate this approach, consider library L1 of Fig. 7.

First, we have to linearize the cost function by assuming that

the cost of a router is the sum of the cost of each input

port plus the cost of each output port. Then, we define the

energy per flit as mini,j [E(i + 1, j) − E(i, j)] for an input

port and as mini,j [E(i, j + 1) − E(i, j)] for an output port

4In COSI-OCC this area can be defined in two ways as input to our tool.
The user can decide to reserve a small amount of area around each core that is
made available for the communication architecture. Alternatively, the user can
define “virtual” communication cores and place them on the chip to reserve
space for the installation of communication components.

d1

d1

r1

r2

r1

1 ) Degree violations at

2) AddNode

4) AddNode

(x1, y1)

(x2, y2)

d1

d1

3 ) Degree violations at d1

v1
v2

v3

v4

v1
v2

v3

v4

v1
v2

v3

v4

o1 o2

o3

o4

o5

o6

o1 o2

o3

o4 lI [(ρ)](r1) = ∪i=1,...,4lI [(ρ)](vi)(oi\o5)

lI [(ρ)](r2) = lI [(ρ)](r1)(o5\o6) ∪ lI [(ρ)](v4)(o4\o6)

Fig. 9. Procedure for adding a new router to the NoC implementation. For an
expression exp, we denote by exp(x\y) the same expression where variable
x has been replaced by y.

(and, similarly, the leakage power and area occupation). This

linearized cost function is a lower bound of the real cost of

the network. Hence solving the ILP with this cost function

returns a solution that is optimistic. Using one binary variable

for each installation site denoting whether a router is installed

at that site, one binary variable for each link that can be

installed between two sites, and one binary variable to denote

that a constraint is routed through a link, the number of

variables of the ILP problem becomes very large. It is equal

to |U ′
V |2 · |EC | + |U ′

V |2 + |U ′
V | where the first term is the

square of the number of installation sites times the number

of constraints. For the simple example of Fig. 1 with 70
installation sites, the number of binary variables is 93, 170.

These many variables cause an ILP solver to run very slow.

Moreover, some composition rules (e.g deadlock freedom)

cannot be included in the ILP since they are highly non linear.

Because of these difficulties, we devised a heuristic approach

to solve problem PR2. In Section V, we compare the results

obtained by the heuristic with a lower bound provided with a

further optimistic approximation of the ILP formulation.

1) Structure of the Algorithm: Fig. 8 shows the high-level

structure of the heuristic algorithm. In the first step we find

an initial solution with the same technique that is used in

algorithms for global routing: the end-to-end constraints in

EC are first ordered by decreasing bandwidth. One path in

N
〈L〉
P is derived for each constraints one at a time (the actual

implementation of procedure FindPath depends on the

composition rules). During this step, possible rule constraining

the maximum degree of a network node are not taken into

account; however, if we are lucky, NI may still satisfy the

degree rule, in which case the algorithm returns NI and stops.

Otherwise, we activate an iterative procedure to remove the

degree constraint violations.

This procedure implements a rip-up and reroute approach

one link at a time. The links connected to the output of

nodes with output degree violations and links connected to

the input of nodes with input degree violations are the ones

that are considered for rip-up and re-route. For each link, all

source-destination paths containing that link are re-routed by

procedure FindPath that now takes into account the degree

constraint rule. If a path cannot be removed, the algorithm

back-tracks by reinserting the link and all the paths. Otherwise,

the new paths are added to the communication implementation.

If the re-routing procedure finds an implementation that satis-



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 10

Procedure Reach(NI ,v,R,L)
NR ← empty communication structure ;
forall Ni ∈ L with Ci = {vi, ui, (ui, vi)} do

forall li ∈ Li do
if lI(v) = li(ui) then1

let N ′
i(Ci,qP , {li}) ;2

N ′′
i ← r(Ni), with r(ui) = v, r(vi) = id(li(ui)) ;3

if Ψ(NI)‖
R
q N ′′

i is defined then4

NR ← NR‖
R
q N ′′

i

return NR ;

fies the composition rules, the algorithm ends with success.

Otherwise we try adding a new node (router) to yield a

feasible solution. The idea is that when a new node is added,

multiple links entering/exiting a node can be merged/split

into/from one link, thereby reducing the degree of the node

(Fig. 9). However, if no node can be added (e.g., because

delay constraints would be violated) the algorithm ends with

an empty implementation implying that no solution was found.

Fig. 9 shows how new nodes are added. First, among all nodes

with input/output degree violations, the one with the highest

number of input/output links is selected. All input/output links

to/from the node are candidates for the merge operation. A

subset of them is chosen with a criterion that depends on the

optimization goal. The source and target nodes of the selected

links are connected to the new router, which is instantiated in a

position that minimizes the cost of the links. The transfer table

of the router is set according to the new paths flowing through

it. As it executes this local transformation the algorithm makes

sure that link capacities and degree constraints are not violated.

Note that the merge operation does not change the number of

nodes with degree violations.

2) The FindPath procedure: This procedure is available

in different forms to search for the “best” path between a

source and a destination core depending on the given com-

position rules. If a delay model must be taken into account

to check delay constraints, the best path is discovered by a

labeling algorithm (SpLabeling) that finds the minimum-

cost constrained shortest path between two nodes; a modified

version of Dijkstra’s shortest path algorithm is used otherwise.

If deadlock freedom is included in the set of rules RI , then

FindPath runs on the channel-dependency graph of the

communication implementation to make sure that it remains

acyclic. The degree constraints of the nodes can be taken into

account by adding a rule denoted Rdg .

FindPath explores the upper bound N
〈L〉
P without build-

ing an explicit representation. In fact N
〈L〉
P is explored locally

at run-time by procedure Reach. This procedure takes as

input parameters the current communication implementation

NI , a node v ∈ CI , the composition rules R, and the platform

library L. Reach checks which links can be instantiated

with the source node v (Line 1). For each link, an instance

is generated by renaming the nodes appropriately (Lines 2

and 3). Function id associates a unique identifier to a node

depending on its type and position. If the new link can be

composed with the communication implementation without

Procedure SpLabelling(s,d,NI ,L,R,RI)

D[s]← {(0, 0)}, D[v]← ∅, ∀ v ∈ U ′
V \ {s} ;1

Q← (s, (0, 0)) ;2

while Q 6= ∅ do
(v, Dv)← ExtractMin(Q) ;3

Nπ ← path from (s, (0, 0)) to (v, Dv) ;4

NR ← Reach(NI‖qI
Nπ ,v,RP ,L) ;

forall (v, u) ∈ CR do5

l← Configure(LI , (v, u)) ;
define N ′({(u, v)},qI , {l}) ;

if NI‖
RI
qI

N ′ is defined then6

f ← Compute incremental area and power ;7

Du = (Dv.H + 1, Dv.C + f) ;8

if ∄D ∈ D[u] s.t. D < Du then
D[u]← D[u] ∪ {Du} ;9

Insert(Q,(u, Du)) ;10

π[(u, Du)]
N′

←−− (v, Dv) ;11

if D[d] = ∅ then12

return ∅ ;
else

return ToGraph(π) ;

violating the composition rules (Line 4), then it is added to the

reachable communication structure NR (note that NR ∈ GqP
,

therefore the set of rules R must contain RP ).

Procedure SpLabelling is a particular implementation

of FindPath. It solves the constrained shortest-path prob-

lem [29] using a labeling algorithm [30]. We use the number

of hops as a model for latency. A distance label is a tuple

D = (H,C) associated to a node v where H is the number

of hops of the path from the source s to v with minimum cost

C. A distance label D is dominated by D′, written D < D′

if D.H ≤ D′.H , D.C ≤ D′.C, and D.H 6= D′.H ∨ D.C 6=
D.C ′. A set of distance labels D[v] is associated to each node

v. The queue Q contains pairs (v, D) where v is a node and

D ∈ D[v] is a distance label of v. Distance labels in the queue

are ordered by number of hops and, for the same number

of hops, by cost. The procedure starts with an empty set of

distance labels for all nodes but the source, which has the

distance label {0, 0}. The pair (s, {0, 0}) is the only element

in the queue (Line 2). The minimum distance label node is

extracted from the queue (Line 3) and the set of possible links

departing from the node (computed by procedure Reach) is

processed (Lines 4 and 5). Each link is first configured by

selecting one possible configuration, then composition rules

are checked (Line 6). If this distance label is not dominated

by any other already present at u, then it is added to the set

of distance labels of u (Line 9), the new pair is added to the

queue (Line 10), and the predecessor tree is updated (Line 11).

A path from s to d that satisfies the hop constraint exists if

the set of distance labels at d is not empty (Line 12). If this

is the case, the path with minimum cost C is selected and

returned. During the construction of the initial solution, the

composition rules R and RI do not contain rule Rdg , which

is added during the re-routing procedure instead.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 11

Project

Communication 

Specificaion

Any 

Unplaced IP 

Core ?

Run PARQUET NC

Opt. 
Parameters

Library

Quantities

Algorithm1

Algorithm 2

Algorithm 3

L

〈L〉
Direct models

Indirect Models

NI Code generation

SystemC + 

Makefile
DotSvg Report SysCLibg++

Simulation

N

Y

Nodes
Links

Components

x,y,z
Position

mm2
Area

Interface
Type

bps
Bandwidth

ns
Latency

RP

RI

Fig. 10. The COSI-OCC design environment built on the COSI infrastructure.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, first we briefly describe COSI-OCC, the on-

chip communication design flow that we developed, them we

present some results that we obtained by applying it to a

number of test cases for NoC design.

A. The COSI-OCC Design Flow

COSI-OCC is an open-domain software package that im-

plements the methodology presented in the previous sections.

Since our methodology is quite general, COSI-OCC allows for

the use of different libraries, compositional rules, and synthesis

algorithms. In this paper, we focus on the use of COSI-OCC to

solve NoC design problems using the formulation and the

heuristic algorithm presented in Section IV. COSI-OCC is

part of the COSI project [15], [17], [18]. COSI belongs to the

class of component composition frameworks (CCFs) such as

BALBOA [31], LSE [32], SPARTACAS [33], and MCF [34]. A

detailed comparison is available in [18].

Fig. 10 shows the software organization of COSI-OCC. The

input to COSI-OCC is a project file that contains pointers to

the communication specification file and to the library file. The

former contains a list of IP cores and inter-core communication

constraints. If there are unplaced IP cores, PARQUET is used

to floor-plan the chip [20]. The library file contains the

description of each library element, the quantities attached

to them, and the parameters needed to compute the value of

directly derived quantities. The library is used to construct

the platform data structure that contains the composition rules

including models for indirectly derived quantities. The project

file includes also the optimization parameters such as the

relative weights of power and area cost. The communication

specification and the platform are passed to the synthesis

algorithm that derives the network implementation NI .

COSI-OCC includes a set of code generators to produce an

SVG graphical representation and a DOT logical representation

of NI . A SYSTEMC netlist can be generated from NI by

assembling the corresponding SYSTEMC-view of each element

instantiated from the library that is contained in SysCLib,

also part of the COSI-OCC distribution. The generation of the

SYSTEMC netlist is a further refinement of NI that requires

the binding of each port of the nodes to links, the generation of

Name |VC | |EC | Area (mm2) Total Bw. (Gbps) Ref.

MWD 12 13 3 × 4 8.96

[8]
MPEG4 12 27 3 × 2.35 27.8
VOPD 12 15 1.53 × 1.18 27.9
dVOPD 26 34 2 × 2.23 66.6

[35]
tVOPD 38 51 2.78 × 2.37 98.84
VProc 42 69 8 × 6 78.2

TABLE I
CHARACTERISTICS OF THE SELECTED SOCS APPLICATIONS.

the routing tables, and the computation of the weights for the

weighted fair queuing algorithm, which is used by the routers

for flit scheduling. The COSI-OCC distribution includes a set

of algorithms to solve some variants of the communication

synthesis problem, e.g. an algorithm that generates deadlock-

free networks. Our approach to solve this problem is different

from the one proposed in [12] that is based on prohibited turns.

In COSI-OCC the optimization algorithm operates directly on

the channel-dependency graph of the communication structure

and at run-time checks that such graph is kept acyclic (i.e. it

checks that the corresponding composition rule is satisfied).

B. Test Cases and Experimental Results

Table I lists the SoCs that we used in our experiments. We

selected the test cases based on several criteria:

• the number of IP cores |VC |, ranging from 12 to 42, and

the size of the chip, as large as 48mm2;

• the total bandwidth requirement, defined as the sum of the

bandwidth requirements over all end-to-end constraints

EC , and ranging from 9 to 99 Gbps;

• the maximum input degree of a destination core and the

maximum output degree of a source core, ranging from

2 to 25 depending on the SoC application.

The goal of our experiments is to study the impact of these ap-

plication features on the synthesized NoC. Specifically we are

interested in the following metrics: the power and area break-

down, the maximum and average input and output degree of

the nodes, the maximum and average number of hops among

all source-destination paths, and the maximum and average

latency. The latency measurements are obtained by simulating

the SYSTEMC implementation of the NoC generated by COSI-

OCC. The maximum latency is the largest end-to-end delay

experienced by any packet over the entire simulation, i.e. the

time that elapses from the generation of the head flit to the

delivery of the tail flit to the destination. The average latency is

computed by dividing the sum of the latencies of each packet

over the simulation run by the total number of flits sent. The

SYSTEMC model of the NoC implements wormhole routing

and weighted round robin packet scheduling. Moreover, each

packet has one header flit, one tail flit, and four payload flits.

1) Impact of the Application Characteristics: The SoC

applications used in this experiment were: a Multi-Window

Displayer (MWD), an MPEG4 decoder (MPEG4), a Video

Object Plane Decoder (VOPD) as well as two applications,

called dVOPD and tVOPD obtained by instantiating two and

three VOPDs, respectively sharing a common memory. We

assumed a 90nm technology and a target clock frequency



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 12

0

0.08

0.16

0.24

0.32

0.40

Power (W)

0

0.2

0.4

0.6

0.8

1.0

Area ( mm^2 )

0

1

2

3

4

5

6

7

8

Hop count

1.0
1.3
1.8
2.5
3.3
4.5
6.0
8.1

11.0
14.8
20.0

Latency (ns/flit)

0

1.5

3.0

4.5

6.0

7.5

Input degree

0

1.5

3.0

4.5

6.0

7.5

Output degree

 

fw=32

fw=128

2x2 5x5 8x8

W dyn

W leak

R dyn

R leak

W

B

R

Max

Avg

Max

Avg

Max

Avg

Max

Avg 

fw=32

fw=128

2x2 5x5 8x8

         

MWD MPEG4 VOPD dVOPD tVOPD MWD MPEG4 VOPD dVOPD tVOPD

Fig. 11. Properties of the synthesized NoCs for the MWD, MPEG4, VOPD,
dVOPD and tVOPD applications. Power is expressed in Watts, area in mm2

and latency in ns/flit. We used the following notation: R for routers, W for
wires, B for sequential buffers. Latency is reported on a logarithmic scale.

f = 1.5GHz 5. The link capacity bmax was set to 1.12GBps.

We used six libraries of communication components differing

for the flit-width of the data path (32 and 128 bits correspond-

ing to 280 ·106 and 70 ·106 flits per second, respectively) and

the size of the largest switch available in the library (2 × 2,

5 × 5 and 8 × 8). The results are reported in Fig. 11. Each

histogram is divided into five zones, one for each application.

Each zone contains six bars, one for each library.

The power consumption and the area occupied by the NoC

are increasing functions of the total bandwidth requirement.

Most test cases do not need the instantiation of large routers.

For example, the number of input and output ports on each

router in the NoCs supporting the MWD and the VOPD

applications is no greater than two since each core is a source

and/or destination of few communication constraints. These

NoCs are basically a set of dedicated point-to-point links with

very little sharing and the synthesis algorithm avoids the use

of costly routers. Hence, the difference between the maximum

and the average latency is small.

The dVOPD and tVOPD applications show the effect of

merging different communications into a common link. In

these applications, a central memory is shared among a few

cores. Since the memory has only one input and one output

port, one or more routers are needed to merge concurrent mem-

ory accesses via time multiplexing. Allowing the installation

of larger routers provides two advantages: (1) the total power

consumption is reduced (by 14% and 12% for dVOPD and

tVOPD, respectively) thanks to a reduced hop count, and (2)

the end-to-end latency (both the maximum and average value)

is reduced. The latency decrease is modest compared to the

reduced number of hops because the time spent for contention

among the input queues grows with the router size. Generally,

however, for these applications the reduced number of hops

5The clock frequency is not the result of hardware synthesis but it is a
constraint for the NoC synthesis. In [36] we also characterize interconnect
elements using low level implementations.

0

1

2

3

4

5

6

7

8

Input degree

Max

Avg

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Power (W)

W dyn

W leak

R dyn

R leak

0

0.4

0.8

1.2

1.6

2.0

Area ( mm^2 )

W

B

R

0

1

2

3

4

5

6

7

8

Output degree

Max

Avg

0

2.5

5.0

7.5

10.0

Hop count Max

Avg

3.6
3.0

1.9
2.22.22.5

3.33.33.7

26.028.226.5
35.035.035.3

52.452.751.0

Latency (ns/flit)

Max

Avg

100nm 70nm 50nm 100nm 70nm 50nm
2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8 2x2 5x5 8x8

Fig. 12. Properties of the synthesized NoCs for the VProc applications.

counterbalances the negative effect due to contention.

In the MPEG4 application, the SDRAM is shared among

many more cores than in the case of the dVOPD and tVOPD

applications. Hence, to use larger routers does not give the

same benefits. Despite the significant differences between the

maximum number of hops in the 2×2 and 8×8 cases, there are

no gains in terms of maximum latency, which in fact is even

worse for larger routers (a 73% increase with respect to the 2×
2 case). Here, port contentions cannot be counterbalanced by

the reduced hop count, as opposed to the dVOPD and tVOPD

cases where routers have no more than five inputs.

This set of test cases shows that the power consumption and

the area occupied by the NoC implemented with 32-bit links

is much smaller than in the 128-bit implementation. The latter

case gives smaller link utilization (i.e. flit rate), which reduces

the latency due to contention. This, however, is a minor gain

and does not justify the use of wider data parallelism, which

should be limited to cases when the required bandwidth cannot

be achieved with narrower links.

2) Effect of Technology Scaling: For the second set of

experiments we selected the VProc SoC as a representative

embedded system application and we studied the impact

of scaling the technology on the performance and cost of

the synthesized NoC. VProc features a central memory that

serves 25 different cores. Each core requires a write and

read bandwidth of 960Mbps (in each direction). In this case

we expect the algorithm to use routers because the central

memory has only one read and one write port. Technology

scaling generally enables higher transistor densities and clock

frequencies. Hence, as we scale the technology we double the

bandwidth requirements from each core to the central memory

while keeping the core size fixed. This choice mimics the fact

that two cores can fit in the area of one, as the transistor

density doubles with the new process generation.

We used a total of nine libraries obtained as the combination

of three different technology processes with three different

router designs: specifically, we used 90nm, 65nm, and 45nm
technologies while the routers’ maximum size was set equal



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 13

to 2 × 2, 5 × 5 and 8 × 8, respectively. Again the targer

clock frequency was f = 1.5Ghz at 90nm. Since the total

memory bandwidth is 3GBps, we set the flit width to 128
bits to achieve a link capacity of 3.2GBps with a maximum

flit rate of 200 ·106 per input port of the routers. We increased

f to 2.25GHz and 3GHz and the link capacities to 6.4 and

12.8GBps for the 70 and 45nm process, respectively. The

synthesis constraints were set as follows: the density of the

installation sites was fixed to 20, which gives a total of 364
different possible locations to install the routers; the synthesis

goal is minimum latency with a constraint that each path be

no longer than 10 hops. The results are reported in Fig. 12.

The critical sequential length drops from 9.98mm at 90nm
down to 3.47mm at 45nm due to the different electrical pa-

rameters of the wires and also to the increased clock frequency

(from 1.5 to 3 GHz). Since the chip size is 8 × 6mm2, the

entire chip can be spanned in one clock cycle at 90nm while

3 cycles are needed at 45nm. Hence, it is not surprising that

the maximum number of hops at 45nm does not change much

across the various router configurations because intermediate

stateful repeaters such as relay stations [37] are needed to

segment long interconnection links. The use of larger routers

does not help to reduce the number of hops while it increases

the chance of contention. Therefore, contrary to the 90nm
case, the reduced number of hops does not balance the higher

contention probability and, ultimately, the average latency

obtained by simulation actually increases.

In terms of power consumption, the advantage of using

larger routers does not persist as we scale from 90nm to

45nm due to the higher target clock frequency and leakage

power dissipation. If stateful repeaters are needed to span large

distances among the cores, it is more efficient to spatially dis-

tribute small routers on the chip. Finally, the results highlight

the need for more accurate timing models for synthesis rather

than the simple measure based on hop count.

3) Quality of the Solution: Ideally, we would like to com-

pare the exact solution of problem PR2 with the one found

by our heuristic algorithm. However, the best we can do is

to compare our results with a lower bound since even the

relaxed ILP algorithm sketched in Section IV-B has prohibitive

running times for our test cases. We relaxed the problem

further by converting the ILP into a Linear Program (LP),

which we solved with CPLEX [38]. We then computed the ratio

of the power consumption of the solution found by CPLEX over

the one of our heuristic algorithm across various benchmarks.

Table II reports these results together with the number of

positions |D(x,y)|, the computation time ’tcpu LP’ of CPLEX

and the computation time ’tcpu H’ of our heuristic.

In most cases our heuristic algorithm is 2-3 orders of

magnitude faster than solving the LP (a remarkable fact since

the LP does not find a feasible solution). The power of the

NoC found by the heuristic is within 2x from the power found

by CPLEX that is very optimistic for the change in the cost

function and for the relaxation of the integer constraints.

VI. CONCLUSIONS AND FUTURE WORK

We presented a design methodology with a supporting

tool infrastructure that follows the Platform-Based Design

Name |D(x,y)| tcpu LP tcpu H Ratio

MWD 2x2 94 4.76 0.11 1
MWD 5x5 94 4.83 0.11 1
MWD 8x8 94 4.78 0.11 1
MPEG4 2x2 117 434 5.29 0.49
MPEG4 5x5 117 479 1.46 0.55
MPEG4 8x8 117 394 1.32 0.48
VOPD 2x2 63 1.98 0.13 0.73
VOPD 5x5 63 0.87 0.13 0.78
VOPD 8x8 63 0.85 0.13 0.78
dVOPD 2x2 147 130 1.8 0.69
dVOPD 5x5 147 60 1.66 0.66
dVOPD 8x8 147 60 1.65 0.66
tVOPD 2x2 150 438 4.54 0.71
tVOPD 5x5 150 423 3.32 0.66
tVOPD 8x8 150 426 3.34 0.66

TABLE II
EVALUATING THE HEURISTIC ALGORITHM OF FIG. 8.

paradigm and relies on a solid mathematical foundation

to model, compose, and optimize communication networks.

The communication specification is given as a point-to-point

network. A mathematical formalism is used to model the

platform that supports on-chip communication (OCC) design.

The platform captures all possible communication structures

that can be built by assembling the components from the target

communication library. We formulated a general optimization

problem for OCC synthesis that applies to a wide class of

libraries. Then we applied the methodology to the NoC syn-

thesis problem and we proposed an efficient heuristic to solve

it. Finally, we presented two sets of experiments made with

COSI-OCC, an on-chip communication synthesis design flow

that we developed as part of the COmmunication Synthesis

Infrastructure (COSI) to support the proposed methodology.

REFERENCES

[1] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,”
Proceedings of the IEEE, vol. 89, no. 4, pp. 490–504, April 2001.

[2] J. D. Meindl, “Interconnect opportunites for gigascale integration,” IEEE

Micro, 2003.

[3] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with latency
in SOC design,” IEEE Micro, vol. 22, no. 5, pp. 24–35, Sep-Oct 2002.

[4] OCP-IP. [Online]. Available: http://www.ocpip.org/home

[5] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Vberg, M. Millberg, and
D. Lindqvist, “Network on chip: An architecture for billion transistor
era,” in Proc. of the IEEE NorChip Conference, Nov. 2000.

[6] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. of the Design Automation Conf., June
2001.

[7] L. Benini and G. D. Micheli, “Networks on chip: A new SoC paradigm,”
IEEE Computer, 2002.

[8] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. D. Micheli, “NoC synthesis flow for customized domain spe-
cific multiprocessor systems-on-chip,” IEEE Trans. on Parallel and

Distributed Systems, vol. 16, no. 2, pp. 113–129, Feb. 2005.

[9] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for
regular NoC architectures,” IEEE Trans. on CAD of Integrated Circuits

and Systems, vol. 24, no. 4, pp. 551–562, Nov. 2005.

[10] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration for
optimizing on-chip communication architectures,” IEEE Trans. on CAD

of Integrated Circuits and Systems, vol. 23, no. 6, pp. 952–961, Dec.
2004.

[11] U. Ogras and R. Marculescu, “Application-specific network-on-chip
architecture customization via long-range link insertion,” in Proc. Intl.

Conf. on Computer-Aided Design, Nov. 2005.

[12] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini,
G. D. Micheli, and L. Raffo, “Designing application-specific networks
on chips with floorplan information,” in Proc. Intl. Conf. on Computer-

Aided Design, Nov. 2006, pp. 355–362.

http://www.ocpip.org/home


IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 3, MARCH 2009 14

[13] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear-programming-
based techniques for synthesis of network-on-chip architectures,” IEEE

Trans. on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 4,
pp. 407–420, Apr. 2006.

[14] ——, “Application specific network-on-chip design with guaranteed
quality approximation algorithms.” in ASPDAC, January 2006.

[15] “http://embedded.eecs.berkeley.edu/cosi/.”
[16] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R.

Wang, “MIS: A multiple-level logic optimization system,” IEEE Trans.

on CAD of Integrated Circuits and Systems, vol. CAD-6, no. 6, pp.
1062–1081, Nov. 1987.

[17] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “COSI: A
framework for the design of interconnection networks,” IEEE Design &

Test of Computers, vol. 25, no. 5, Sep-Oct 2008.
[18] A. Pinto, L. Carloni, and A. L. Sangiovanni-Vincentelli, “A methodology

for constraint-driven synthesis of on-chip communications,” Department
of EECS, University of California at Berkeley, Tech. Rep., 2008.

[19] A. Sangiovanni-Vincentelli, “Defining platform-based design,”
EEDesign of EETimes, February 2002.

[20] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning : Enabling
hierarchical design,” IEEE Trans. on Very Large Scale Integration (VLSI)

Systems, vol. 11, no. 6, pp. 1120–1135, December 2003.
[21] ISO/IEC 7498-1, Information Technology – Open Systems Interconnec-

tion – Basic Reference Model: The Basic Model, 1994.
[22] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in mul-

tiprocessor interconnection networks,” IEEE Trans. Comput., vol. 36,
no. 5, pp. 547–553, 1987.

[23] S. Murali and G. D. Micheli, “SUNMAP: A tool for automatic topology
selection and generation for NOCs,” in Proc. of the Design Automation

Conf., June 2004, pp. 914–919.
[24] Y. Hu, H. Chen, Y. Zhu, A. A. Chien, and C.-K. Cheng, “Physical syn-

thesis of energy-efficient networks-on-chip through topology exploration
and wire style optimization,” in ICCD, 2005, pp. 111–118.

[25] A. Hansson, K. Goossens, and A. Rǎdulescu, “A unified approach to
constrained mapping and routing on network-on-chip architectures,” in
CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP interna-

tional conference on Hardware/software codesign and system synthesis.
New York, NY, USA: ACM, 2005, pp. 75–80.

[26] H. S. Wang, X. Zhu, L. S. Peh, and S. Malik, “Orion: A power-
performance simulator for interconnection networks,” in Proc. of the

35th Intl. Symp. on Microarchitecture, Nov. 2002, pp. 294–305.
[27] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI.

Reading,MA: Addison-Wesley, 1990.
[28] S. Heo and K. Asanovic, “Replacing global wires with an on-chip

network: a power analysis,” in Proc. of the Intl. Symp. on Low Power

Electronics and Design, 2005, pp. 369–374.
[29] G. Handler and I. Zang, “A dual algorithm for the constrained shortest

path problem,” Networks, 1980.
[30] M. Desrochers and F. Soumis, “A generalized permanent labelling

algorithm for the shortest path problem with time windows,” Information

Systems and Operations Research, vol. 26, no. 3, pp. 191–212, 1988.
[31] F. Doucet, S. K. Shukla, M. Otsuka, and R. K. Gupta, “Balboa: a

component-based design environment for system models,” IEEE Trans.

on CAD of Integrated Circuits and Systems, vol. 22, no. 12, pp. 1597–
1612, 2003.

[32] M. Vachharajani, N. Vachharajani, and D. August, “The liberty structural
specification language: A high-level modeling language for component
reuse,” in Proc. of the Conf. on Programming Language Design and

Implementation, June 2004, pp. 195–206.
[33] B. Morel and P. Alexander, “Spartacas automating component reuse and

adaptation,” IEEE Trans. Softw. Eng., vol. 30, no. 9, pp. 587–600, 2004.
[34] D. A. Mathaikutty and S. K. Shukla, “MCF: A metamodeling based

component composition framework – composing SystemC IPs for exe-
cutable system models,” IEEE Trans. on Very Large Scale Integration

(VLSI) Systems, vol. 16, no. 7, pp. 792–805, 2008.
[35] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, S. Murali, L. Raffo,

G. D. Micheli, and L. Benini, “65 nm NoC design: Opportunities and
challenges,” Proc. of the 1st Intl. Symp. on Networks-on-Chips, 2007.

[36] L. Carloni, A. B. Kahng, S. Muddu, A. Pinto, K. Samadi, and P. Sharma,
“Interconnect modeling for improved system-level design optimization,”
in Proc. of the Asia and South Pacific Design Automation Conference,
2008, pp. 258–264.

[37] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-
Vincentelli, “A methodology for “correct-by-construction” latency insen-
sitive design,” in Proc. Intl. Conf. on Computer-Aided Design. IEEE,
Nov. 1999, pp. 309–315.

[38] “CPLEX.” [Online]. Available: http://www.ilog.com/products/cplex/

Alessandro Pinto is a Research Scientist in the
Embedded Systems and Networks group at the
United Technologies Research Center, East Hart-
ford, Connecticut. His research interests are in the
field of networked embedded systems with particular
emphasis on formal models, design methodologies
and tools. Dr. Pinto received a Ph.D. degree in
Electrical Engineering and Computer Sciences from
the University of California at Berkeley in 2008, and
a M.S. degree in Electrical Engineering in 2003 from
the same university. He holds a Laurea degree from

the University of Rome “La Sapienza”. In 1999, Dr. Pinto spent one year
as a consultant at Ericsson Lab Italy in Rome, Italy, working on the design
of system-on-chips. He consulted for the same company from 2000 to 2001,
developing system-level design flows for wireless access networks. He is a
member of the IEEE.

Luca P. Carloni received the Laurea degree (summa
cum laude) in electrical engineering from the Uni-
versità di Bologna, Italy, in 1995, and the M.S. and
Ph.D. degrees in electrical engineering and computer
sciences from the University of California, Berkeley,
in 1997 and 2004, respectively.

He is currently an Assistant Professor with the
Department of Computer Science, Columbia Uni-
versity, New York, NY. He has authored over 50
publications and is the holder of one patent. His
research interests are in the area of design tools

and methodologies for integrated circuits and systems, distributed embedded
systems design, and design of high-performance computer systems.

Dr. Carloni received the Faculty Early Career Development (CAREER)
Award from the National Science Foundation in 2006 and was selected as
an Alfred P. Sloan Research Fellow in 2008. He is the recipient of the 2002
Demetri Angelakos Memorial Achievement Award “in recognition of altruistic
attitude towards fellow graduate students.” In 2002, one of his papers was
selected for ”The Best of ICCAD”, a collection of the best IEEE International
Conference on Computer-Aided Design papers of the past 20 years. He is a
member of the IEEE and the IEEE Computer Society.

Alberto L. Sangiovanni-Vincentelli (Fellow, IEEE)
holds the Buttner Chair of Electrical Engineering
and Computer Sciences at the University of Cali-
fornia at Berkeley. He was a cofounder of Cadence
and Synopsys, the two leading companies in the area
of electronic design automation. He is the chief tech-
nology adviser of Cadence. He is a member of the
board of directors of Cadence, UPEK (a company he
helped spin off from ST Microelectronics), Sonics,
and Accent (an ST Microelectronics-Cadence joint
venture he helped found). He was a member of the

HP Strategic Technology Advisory Board and is a member of the Science
and Technology Advisory Board of General Motors. He consulted for many
companies, including Bell Labs, IBM, Intel, United Technology, COMAU,
Magneti Marelli, Pirelli, BMW, Daimler-Chrysler, Fujitsu, Kawasaki Steel,
Sony, and Hitachi. He is the founder and Scientific Director of PARADES,
a European Group of Economic Interest supported by Cadence and ST
Microelectronics. He is a member of the High-Level Group and of the steering
committee of the EU Artemis Technology Platform. In 1981, he received the
Distinguished Teaching Award of the University of California. He received
the worldwide 1995 Graduate Teaching Award of the IEEE for “inspirational
teaching of graduate students.” In 2002, he was the recipient of the Aristotle
Award of the Semiconductor Research Corporation. In 2001, he was given the
prestigious Kaufman Award of the Electronic Design Automation Council
for pioneering contributions to EDA. He is an author of more than 800
papers and 15 books in the area of design tools and methodologies, large-
scale systems, embedded controllers, hybrid systems and innovation. Dr.
Sangiovanni-Vincentelli has been a fellow of the IEEE since 1982 and a
member of the National Academy of Engineering since 1998.

http://www.ilog.com/products/cplex/

	Introduction
	The Methodology and its Mathematical Representation
	The Methodology
	Basic Definitions
	Communication Specification
	Communication Structures Instantiation and Composition
	Libraries and Platforms
	Mapping

	Formulation of the Optimization Problem
	Application to Network-on-Chip Synthesis
	The Communication Library and the Composition Rules
	Solution to the Optimization Problem
	Structure of the Algorithm
	The FindPath procedure


	Implementation and Experimental Results
	The cosi-occ Design Flow
	Test Cases and Experimental Results
	Impact of the Application Characteristics
	Effect of Technology Scaling
	Quality of the Solution


	Conclusions and Future Work
	References
	Biographies
	Alessandro Pinto
	Luca P. Carloni
	Alberto L. Sangiovanni-Vincentelli


