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1 Introduction

Shortly after Cooley and Tukey (C-T) introduced their algorithm for computing
the Fourier transform (FT) [6], a large number of variations were created and
this work was summarized by Cochran et al. in [5]. In this paper a method of
obtaining variations of the C-T algorithm was presented, and it was conjectured
this produced all of the “C-T type” algorithms. Within a year Pease [13] intro-
duced an algorithm not based on this method. In the introduction to Pease’s
paper he suggested strongly that the tensor product formulation was a valuable
tool in the study of C-T type algorithms. This was not taken up at this time due
to the great success of the “butterfly” as a teaching and programming device.

With the advent of parallel and vector processors, there began another flurry
of C-T algorithmic and programming effort. In much of this effort no use of
the tensor product was made. However, in their comparison of several vector
algorithms [11], Korn and Lambiotte make a slight use of tensor products as
a tool. The most successful programming of the FT on vector computers like
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the CRAY X-MP and Cyber 205 is due to C. Temperton [18, 19, 20]. In his
expository paper [21] he places the tensor product at center stage. This paper
was written for numerical physicists and is not familiar to the Electrical Engi-
neering and Computer Science communities. In our paper we again place the
tensor product at center stage, but we extend Temperton’s work by presenting a
detailed study of the permutations associated with tensor products – stride per-
mutations – and their relation to the addressing requirements in the C-T type
algorithms. We also make explicit the relationship of tensor products and stride
permutations to the programming of these algorithms on various architectures.

Tensor products offer a natural language for expressing C-T type algorithms.
In the first section, we introduce tensor products from a point of view best suited
to our algorithmic and programming needs. We emphasize a decomposition
which leads to an efficient evaluation of a tensor product on a vector. We
also give several isomorphisms which make explicit the connections between
various viewpoints of the C-T algorithms. These isomorphisms are later used
to construct the indexing needed to program these algorithms.

Closely associated with tensor products are a class of permutations, con-
taining stride permutations and tensor products of stride permutations, which
govern the addressing between the stages of a tensor product decomposition.
These permutations arise as a permutation of a tensor product basis. From
a programming point of view these permutations interchange the order of the
nested loops used to program a tensor product factorization. Some previous
discussion of these permutations from a different point of view was given by
Swartztrauber in his expository papers [16] and [17]. It is these permutations
that are the basis of all variations of the C-T algorithm.

After introducing tensor products and the associated permutations, we give
a direct method for programming tensor product factorizations. Once the pro-
gramming of tensor products is made explicit, we can systematically study var-
ious ways of optimizing an implementation and modifying it to a specific ar-
chitecture. The basic idea is to obtain a natural loop implementation based on
tensor product identities and then to unroll some of the loops to match specific
instruction sets. Furthermore, various factorizations of the permutations that
arise can be used to adapt the algorithm to the specific addressing capabilities
of a given architecture. In particular, in section 4.4 we give a detailed study of
the implementation of tensor products on the CRAY X-MP [2]. Using tensor
product and permutation identities, we obtain a vectorized segmented algorithm
that uses addressing that can be efficiently implemented on this machine. Fi-
nally, using the programming techniques discussed earlier we obtain a program
that implements this algorithm. In [7] Granata and Rofheart use some of these
ideas to obtain an efficient implementation of a 1K FT on the AT&T DSP32
[3]. By performing various compile time optimizations that we will discuss in
section 4.2 they were able to save the cost of run time permutations. This sav-
ings helped them to achieve a program that was twice as fast as the distributed
FFT.

2



In the remaining sections, we show how tensor products can be used in the
design and implementation of FT algorithms. The derivation of the standard
variations of the C-T algorithm using the tensor product and permutation lan-
guage discussed in this paper was presented by Rodriguez in his thesis [14].

At the end of the paper, we give some ideas on automating the techniques
presented. Essentially, the algebraic properties of tensor products and stride
permutations need to be incorporated into a special purpose compiler which
can automatically generate code to implement various C-T algorithms. Ideally,
heuristics could be added to derive an algorithm suited to a given architecture.
With such a compiler, an environment would be created for easily implementing
and modifying FT algorithms on various architectures.

2 Tensor Products

In this section we introduce some of the basic properties of tensor products which
will play a major role in the design and implementation of FT algorithms. The
formalism of tensor product notation can be used to keep track of the complex
index calculation needed in FT algorithms. This property of the formalism can
be used to aid in program design and verification. If the mapping between
tensor product notation and machine instructions is automated, mathematical
properties of tensor products can be used to guarantee the correctness of the
implementation. Furthermore, tensor product identities can be used to directly
transform the corresponding programs.

We begin with some definitions and some identifications which will allow
us to look at tensor products from several perspectives. Let Cn denote the
n-dimensional vector space of n-tuples of complex numbers. The collection of
vectors with a one in the i-th position and zeros elsewhere form the standard
basis for this vector space. We use en

i to denote such a vector. The superscript
n indicates the size of the vector. Furthermore we let i range from 0 to n − 1.
We will also use xn to denote an arbitrary n-dimensional vector.

We can form the tensor product Cm ⊗ Cn of the vector spaces Cm and Cn

to get an mn-dimensional vector space with basis {em
i ⊗en

j | 0 ≤ i < m−1, 0 ≤
j < n− 1}. We can associate this vector space with Cmn by ordering the basis
lexicographically. This gives the following map

em
i ⊗ en

j ←→ emn
in+j , (1)

which relates tensor products to mixed-radix indices. Let

xm =







x0

...
xm−1






=

∑

0≤i<m

xie
m
i ,
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and

yn =







y0

...
yn−1






=

∑

0≤j<n

yje
n
j .

Then using the bilinearity of the tensor product and this map we have

xm ⊗ yn =
∑

0≤i<m 0≤j<n

xiyj(e
m
i ⊗ en

j ) =
∑

xiyje
mn
in+j =







x0y
n

...
xm−1y

n






.

This mn-dimensional vector can be mapped to an m × n matrix by placing
the segments xiy of n elements in consecutive rows. For example,

xm ⊗ yn →







x0y0 · · · x0yn−1

...
. . .

...
xm−1y0 · · · xm−1yn−1






.

This operation identifies the vector space Cm⊗Cn with the vector space Cm,n of
m×n matrices. The standard basis for Cm,n is {Em,n

i,j | 0 ≤ i < m, 0 ≤ j < n},
where Em,n

i,j is the m × n matrix with a one in the (i, j)-th position and zeros
elsewhere. Using these basis elements, the preceding operation can be written
as

em
i ⊗ en

j ←→ Em,n
i,j . (2)

We can extend this map to act on an arbitrary mn-dimensional vector by placing
consecutive segments of n elements in m consecutive rows. This identifies the
vector space Cmn with Cm,n by associating the basis vectors with the map

emn
in+j ←→ Em,n

i,j . (3)

The inverse map which takes an m× n matrix to an mn-dimensional vector by
placing consecutive rows after each other is the same map that is used to store
a two-dimensional array in linear memory. Clearly this entire discussion could
have been carried out based on anti-lexicographic ordering, which would have
given the column method of storing arrays that is used in FORTRAN, instead
of the row major ordering used in languages like Pascal. In the next section
we will study an important permutation which allows one to go back and forth
between these two representations.

We can extend the definition of the tensor product of vectors to a tensor
product of linear transformations by the following definition.

Definition 1 (A ⊗ B)(x ⊗ y) = Ax ⊗ By,

where A and B are linear transformations on the appropriate dimensional vector
spaces. If A and B are represented by matrices with respect to the standard
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basis and are of dimensions m and n respectively, we have the following matrix
picture

A ⊗ B =







a0,0B · · · a0,m−1B
...

. . .
...

am−1,0B · · · am−1,m−1B






.

This block structured matrix, which replaces each element of the first matrix A
by that element times the second matrix B is called the tensor product of two
matrices (sometimes it is called the Kronecker product).

The action of the matrix A⊗ B on an arbitrary mn-dimensional vector can
be performed efficiently with the aid of the following decomposition

A ⊗ B = (A ⊗ In)(Im ⊗ B) = (Im ⊗ B)(A ⊗ In), (4)

where In and Im are n and m dimensional identity matrices. This decomposition
is a corollary of the multiplication rule for tensor products.

Theorem 1 (Multiplication Rule For Tensor Products) (A⊗B)(C⊗D) =
AC⊗BD, where A and C are m×m matrices and B and D are n×n matrices.

This follows immediately from the definition since

(A ⊗ B)(C ⊗ D)(em
i ⊗ en

j )

= (A ⊗ B)(Cem
i ⊗ Den

j )

= (AC)em
i ⊗ (BD)en

j .

Applying this identity to A ⊗ B = AIm ⊗ InB = ImA ⊗ BIn gives the
decompositions in equation (4). This multiplication rule and its implications
are the most important tools in the design of efficient algorithms for computing
with tensor products.

In order to better understand the computation of (A ⊗ B)x we need to
examine the factors Im ⊗B and A⊗ In that arise in decomposition (4). Im ⊗B
is the direct sum of m copies of B

Im ⊗ B =







B
. . .

B






,

and its action on x is performed by computing the action of B on the m consec-
utive segments of size n. Clearly this direct sum can be computed in parallel on
separate segments of the vector x, hence we will call it a parallel tensor product
term.
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An alternative view of this computation can be obtained if we map x to the
matrix X using equation (3). In this case B acts on the rows of the matrix.

X =











x0 · · · xn−1

xn · · · x2n−1

...
. . .

...
x(m−1)n · · · xmn−1











.

Since matrices usually act on column vectors, we must first transpose X , let B
act on the columns and then transpose the result to return to our row represen-
tation. Thus the computation is given by the following matrix multiplication
(BXt)t = XBt, which can be mapped back to a vector using the inverse of the
previous map.

The factor A ⊗ In can be interpreted as a vector operation on vectors of
length n.

A ⊗ In =







a0,0In · · · a0,m−1In

...
. . .

...
am−1,0In · · · am−1,m−1In






.

The action of A⊗ In can be interpreted as a vector operation if we segment the
input vector x into m consecutive segments of length n. If we let Xi denote the
i-th such segment, then (A ⊗ In)x is the following vector operation







a0,0X0 + · · · + a0,m−1Xm−1

...
am−1,0X0 + · · · + am−1,m−1Xm−1






,

where ai,jXj denotes a scalar-vector multiply and + denotes a vector addition.
This computation is just the evaluation of A on vector segments of length n.

An alternative interpretation of this computation results from the matrix
point of view. In this case, A naturally acts on the columns of the matrix X
giving the computation AX . The two factors Im ⊗B and A⊗ In are related by
changing from a row representation of X to a column representation of X .

Thus the computation of (A⊗B)x can be thought of as a parallel operation
followed by a vector operation, or more conventionally as the matrix operation
Y = A(XBt), where the result is obtained from the rows of the matrix Y .
Clearly the order of these two operations could be interchanged, as indicated by
the two forms of the decomposition in equation (4), or by the associativity of
matrix multiplication. Furthermore, the computation of the two types of factors
A ⊗ In and Im ⊗ B are identical up to a change of representation given by the
transpose of the matrix X .

In terms of the vector x, this change of representation is obtained by a per-
mutation , called a stride permutation, that skips over the segments representing
the rows or columns. This permutation governs the addressing needed in the
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implementation of the factors A ⊗ I and I ⊗ B. Further discussion of these
permutations and their implementation will be given in the next section.

Before discussing stride permutations, we need to show how to extend ten-
sor products to arbitrarily many factors, and thus give a natural setting for
multidimensional problems. The way to proceed is by induction from the two-
dimensional case. For example,

(A1 ⊗ A2 ⊗ A3)(x ⊗ y ⊗ z) = (A1 ⊗ A2)(x ⊗ y) ⊗ A3z = A1x ⊗ A2y ⊗ A3z,

where A1, A2, and A3 are m×m, n×n, and p× p matrices and x, y, and z are
m, n, and p dimensional vectors respectively. In order for this to make sense, it
is essential that the tensor product be associative. From our point of view this
reduces to an index computation that is related to the induction used to store
multidimensional arrays. Namely, to show that A1 ⊗ A2 ⊗ A3 is associative we
use the associativity of x ⊗ y ⊗ z, and to show that x ⊗ y ⊗ z is associative we
compute

(em
i ⊗ en

j ) ⊗ ep
k = emn

in+j ⊗ ep
k = emnp

(in+j)p+k

= em
i ⊗ (en

j ⊗ ep
k) = em

i ⊗ enp
jp+k = emnp

inp+jp+k.

Using associativity we can uniquely define the tensor product of n terms by
induction. This recursive definition makes it easy to inductively derive and pro-
gram factorizations of tensor products, which can be used to compute multiple
tensor products. In section 4.1 we will examine several important factorizations
and their programming implications.

3 Commuting Tensor Products and Stride Per-

mutations

In this section the permutations that arise from commuting tensor products will
be studied. The ability to commute tensor products is essential to modifying
tensor product factorizations and hence modifying algorithms for computing
with tensor products. As pointed out previously, stride permutations can be
used to convert the parallel operation I ⊗ A to the vector operation A ⊗ I.
Alternatively these permutations can be thought of as converting a row repre-
sentation of a matrix to a column representation, or in other words transposing
a matrix.

A stride permutation P (mn, n) is defined by

Definition 2 (Stride Permutation)

P (mn, n)em
i ⊗ en

j = en
j ⊗ em

i
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To get an mn × mn matrix representation of this permutation, observe that
P (mn, n) : emn

in+j −→ emn
jm+i. For example,

P (6, 2)(x0e0+x1e1+x2e2+x3e3+x4e4+x5e5) = x0e0+x1e3+x2e1+x3e4+x4e2+x5e5.

As a matrix computation, this can be written as:

P (6, 2)x =

















1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

































x0

x1

x2

x3

x4

x5

















=

















x0

x2

x4

x1

x3

x5

















.

Thus we see that the elements of x are collected at stride two into two consec-
utive segments containing three elements each. The first segment begins with
x0, and the second segment begins with x1. In general, P (mn, n) reorders the
coordinates at stride n into n consecutive segments of m elements; the i-th seg-
ment beginning with xi−1. This reordering of the coordinates corresponds to
the inverse of the permutation of the basis elements. A physical interpretation
of such a reordering can be observed when a deck of mn cards are dealt into n
piles.

On some machines the action of a stride permutation might be implemented
as elements of the input vector are loaded from main memory into registers. For
example, each segment might be loaded at the appropriate stride into a separate
register beginning at the appropriate offset. For architectures where this is the
case, considerable savings can be obtained by performing these permutations
when loading the input vector into the registers. If it is necessary to load
the input vector to perform some arithmetic operation, and the permutation
is performed during this load, then a separate computation of the permutation
can be avoided. In section 4.4, we will see an architecture where these savings
can be obtained. There will also be a discussion of the implementation of stride
permuatations on that machine.

Because of this interpretation, we use Lmn
n to denote the stride permutation

P (mn, n). This notation indicates that a vector of size mn is reordered by
loading into n segments at stride n. Shortly, we will see that the inverse of
the stride permutation P (mn, n) is the stride permutation P (mn, m). Along
the lines of the load interpretation of P (mn, n), there is an interpretation of
P (mn, n)−1 as a store operation. In this case, n consecutive segments, residing
in n registers, are stored back to memory at stride n with the i-th segment
beginning i positions from the first segment. It is clear that a load operation
followed by the inverse store operation leaves the input vector fixed. Similarly
to the L notation used for the load operation, we use Smn

n to denote the inverse
store operation. Even though (Lmn

n )−1 = Lmn
m = Smn

n all denote the same
permutation, the notational distinction will be important when we are concerned
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with implementation. Even when we are not concerned with the implementation
of these permutations, we will use the L and S notation to help keep track
of the indices. For example, the definition of P (mn, n) can be conveniently
remembered with

Lmn
n (xm ⊗ xn) = xn ⊗ xm. (5)

An alternative view of these permutations as a change of representation
arises from the matrix representation of em

i ⊗ en
j . In this case, Lmn

n Em,n
i,j =

En,m
j,i = (Em,n

i,j )t. Thus we see that a stride permutation effects a transposition.
In other words, it collects terms by striding over the segments storing the rows
of a matrix. For example, if we map a vector x containing 6 elements to the
matrix

X =





x0 x1

x2 x3

x4 x5



 ,

then

Xt =

(

x0 x2 x4

x1 x3 x5

)

gets mapped to the vector L6
2x.

The most important property of stride permutations is that they commute
the factors in the tensor product of matrices. Using this property we will be
able to show, as indicated in the last section, that

A ⊗ B = Lmn
m (In ⊗ A)Lmn

n (Im ⊗ B). (6)

so that both factors in the decomposition can be performed as a loop, which
is indicated by the direct sum interpretation of I ⊗ A. In order to do this
it is necessary to perform a change of basis by a stride permutation, which
corresponds to changing from row representation to column representation. This
change of basis is given in the following commutation theorem.

Theorem 2 (Commutation Theorem) Lmn
n (A ⊗ B) = (B ⊗ A)Lmn

n where
A is an m × m matrix and B is an n × n matrix. In other words B ⊗ A =
Lmn

n (A ⊗ B)(Lmn
n )−1.

The proof is nothing more than a simple computation based on the definition.

Lmn
n (A ⊗ B)(em

i ⊗ en
j ) = Lmn

n (Aem
i ⊗ Ben

j ) = Ben
j ⊗ Aem

i

Similarly

(B ⊗ A)Lmn
n (em

i ⊗ en
j ) = (B ⊗ A)(en

j ⊗ em
i ) = Ben

j ⊗ Aem
i .

As an application of the commutation theorem observe that A ⊗ In =
(Lmn

n )−1(In ⊗ A)Lmn
n = Smn

n (In ⊗ A)Lmn
n . The readdressing denoted by Lmn

n

on input and Smn
n on output turns the vector expression A⊗In into the parallel
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expression In ⊗ A. In the same way, Im ⊗ B = (Lmn
n )−1(B ⊗ Im)Lmn

n , which
turns the parallel expression Im ⊗ B into the vector expression B ⊗ Im. As
promised, we can now write A ⊗ B as

(A ⊗ In)(Lmn
n )−1(B ⊗ Im)Lmn

n (7)

or
(Lmn

n )−1(In ⊗ A)Lmn
n (Im ⊗ B). (8)

Using the fact that (Lmn
n )−1 = Lmn

m , we can write these factorizations as

(A ⊗ In)Lmn
m (B ⊗ Im)Lmn

n , (9)

and
Lmn

m (In ⊗ A)Lmn
n (Im ⊗ B). (10)

These factorizations decompose A⊗B into a sequence of vector operations and
parallel operations respectively. The intervening stride permutations provide
a mathematical language for describing the readdressing between the stages of
the computation. In the next two sections we will show how knowledge of these
permutations can be used to implement the addressing of a tensor product fac-
torization on a variety of architectures. Furthermore, the direct interpretations
of A⊗ I as a vector operation and I ⊗B as a parallel operation along with the
commutation theorem will allow us to automatically derive parallel and vector
algorithms.

Before examining the implementation of stride permutations and the use
of the commutation theorem in deriving various tensor product factorizations,
we need to obtain a better understanding of these permutations. The algebra
of stride permutations is especially rich and will serve as an important tool in
algorithm design. We begin with a multiplication rule, which can be expressed
formally with our notation as:

Theorem 3 If N = rst then LN
st = LN

s LN
t

Proof: First observe that LN
st(x

r⊗xs⊗xt) = xs⊗xt⊗xr. Since also LN
s LN

t (xr⊗
xs ⊗ xt) = LN

s (xt ⊗ xr ⊗ xs) = xs ⊗ xt ⊗ xr, the theorem is proved.
In particular, since LN

N = IN , we have LN
n LN

N/n = IN , so that (LN
n )−1 =

LN
N/n. Since in general the inverse of a permutation matrix is the transpose we

have that LN
N/n = (LN

n )t. For example,

(L6
2)

−1 = (L6
2)

t = L6
3 =

















1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

















.

As a simple application of theorem 3 we get
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Corollary 1 If N = pk, the set of stride permutations corresponding to the
divisors of N ,

{LN
pj : 0 ≤ j < k},

form a cyclic group of order k generated by LN
p .

The second type of theorem of importance in the algebra of stride permu-
tations is a tensor product decomposition of stride permutations. In general,
the permutations that arise from commuting terms in a multidimensional tensor
product are built up from products of terms of the form I ⊗L⊗ I. A permuta-
tion of the form I ⊗L⊗ I will commute a tensor product and fix the remaining
terms to the left and right. For example,

(An1
⊗ · · ·Ani

⊗ Ani+1
⊗ · · · ⊗ Ant

)

= (In1···ni−1
⊗ Lnini+1

ni
⊗ Ini+2···nt

)

(An1
⊗ · · · ⊗ Ani+1

⊗ Ani
⊗ · · · ⊗ Ant

)

(In1···ni−1
⊗ Lnini+1

ni+1
⊗ Ini+2···nt

),

where Ani
is a ni × ni matrix. To see this, use the multiplicative rule for

tensor products and the commutation theorem. An alternative interpretation
of this permutation is obtained by its action on a basis vector of the form
xn1 ⊗ · · · ⊗ xnt . The collection of basis elements of this form is called a tensor
product basis and the general permutations associated with tensor products
result from permutations of the component positions of these basis elements.
In terms of the tensor basis, this permutation exchanges the i-th component
with the i + 1-st, and can be represented as a permutation of t objects by the
transposition (i, i+1) written in cycle notation. Thus we have the following map
which reduces stride permutations and tensor products of stride permutations
to permutations of an appropriate tensor basis.

In1···ni−1
⊗ Lnini+1

ni+1
⊗ Ini+2···nt

←→ (i, i + 1) (11)

All permutations arising from repeated applications of the commutation theo-
rem can thus be thought of as a permutation of the terms in the tensor basis,
and can be written as a product of permutations of the form I ⊗L⊗ I. As such
we have a convenient notation for dealing with such permutations.

Two special cases of these types of permutations are especially important for
some architectures. These are the permutations Ir ⊗Lst

t and Lst
t ⊗ Ir. The first

permutes the elements within the segments of the input vector and the second
permutes the segments themselves. The permutation Ir ⊗ Lst

t permutes the
elements in each of the r segments of size st by Lst

t , and the Lst
t ⊗ Ir permutes

the st segments of size r by Lst
t . Ir ⊗ Lst

t can be implemented as a loop of
r stride permutations Lst

t , where the same permutation is performed, but the
initial offset is incremented by st each iteration. Lst

t ⊗ Ir can be implemented
by loading blocks of r consecutive elements, beginning at offsets given by the

11



permutation Lst
t . A combination of these two types of permutations can by

implemented efficiently on an architecture that can load at a given stride and
can stride the offsets.

With these types of permutations in mind we shall derive a tensor product
decomposition of stride permutations. This decomposition will be of importance
on certain architectures, where the size of the registers must be taken into
account. A detailed example using the CRAY X-MP architecture will be given
in section 4.4. The stride permutation LN

t , where N = rst can be thought of as
a rotation of the tensor basis xr⊗xs⊗xt. As such it can be decomposed into two
transpositions. Formally, the permutation (r, s, t) can be written as (r, s)(s, t),
where the permutations are composed from right to left. This observation leads
to the following decomposition theorem.

Theorem 4 If N = rst then LN
t = (Lrt

t ⊗ Is)(Ir ⊗ Lst
t ).

Proof: Since LN
t (xr⊗xs⊗xt) = xt⊗xr⊗xs, and (Lrt

t ⊗Is)(Ir⊗Lst
t )(xr⊗xs⊗xt) =

(Lrt
t ⊗ Is)(x

r ⊗ xt ⊗ xs) = (xt ⊗ xr ⊗ xs), the theorem is proved.
Other decompositions of the permutations that arise in tensor product fac-

torizations can be obtained in the same way. The important point is that these
permutations are really only permutations of the tensor product basis rather
than arbitrary permutations of the full vector. In many cases special features of
the architecture can be used to implement these permutations without resorting
to a general purpose implementation of an arbitrary permutation. For many al-
gorithms dealing with tensor products, including the FT, this observation can
lead to a substantial efficiency gain.

4 Implementing Tensor Products

We can now use the commutation theorem and other tensor product identities
to obtain some important factorization theorems for multidimensional tensor
products. These factorization theorems will have important implications for
FT algorithms on various parallel and vector architectures. Using these factor-
izations and the addressing information given by the permutations, we will show
how to obtain a direct implementation of the factorization on a serial machine.

Tensor product identities can be used to modify a factorization so that the
addressing permutations are more suitable to a given architecture. First we will
show how to obtain a general vector or parallel algorithm. These algorithms
will contain features such as maximum vector length and constant data flow.
However, when designing an algorithm for a specific machine, these idealized
algorithms may not be appropriate. For example, a vector machine might have
a maximum vector length, or a parallel machine might have a fixed number
of processors or a specific communication network. In these cases, we need to
fine tune an algorithm to conform to or take advantage of the features of the
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machine. We will end this section with an example of how to use properties of
tensor products in this tuning process.

4.1 Factorization of Tensor Products and Implications for

Various Architectures

Before deriving the factorizations, we need to introduce some notation. This
notation will be used throughout this section. Let ni be a positive integer, and
N(i) = n1 · · ·ni. We will use the convention that N(0) = 1. Finally, we will
represent an ni × ni matrix by Ani

. When we have an arbitrary number of
matrices in a tensor product, we will use t to denote the number of factors. In
this special case, we will let N = N(t). With this notation, we begin with the
fundamental tensor product factorization.

Theorem 5 (Fundamental Tensor Product Factorization)

An1
⊗ · · · ⊗ Ant

=
t

∏

i=1

(IN(i−1) ⊗ Ani
⊗ IN/N(i)).

Furthermore, the factorization is true for any permutation of the factors (IN(i−1)⊗
Ani

⊗ IN/N(i)).

The proof is by induction on t. For t = 2 the theorem is just the factorization
An1

⊗An2
= (An1

⊗ In2
)(In1

⊗An2
) given in equation (4). For the general case

we have:

An1
⊗ An2

⊗ · · · ⊗ Ant
= (An1

⊗ IN/n1
)(In1

⊗ An2
⊗ · · · ⊗ Ant

),

which by induction is equal to

(An1
⊗ IN/n1

)

(

In1
⊗

t
∏

i=2

(IN(i−1)/n1
⊗ Ani

⊗ IN/N(i))

)

.

Using the tensor product identities

(I ⊗ BC) = (I ⊗ B)(I ⊗ C) (12)

Im ⊗ In = Imn (13)

obtained from the multiplicative rule, in theorem 1, and the definition, we get

(An1
⊗ IN/n1

)

t
∏

i=2

(IN(i−1) ⊗ Ani
⊗ IN/N(i))

which gives the desired result. Since any two terms commute, the theorem is
true independent of the order of the factors.
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Each term in this factorization (Im ⊗A⊗ In) involves m copies of the vector
operation A⊗In. In order to understand the implementation and modification of
this factorization, we must study a general tensor product term of this form. We
begin by showing two ways to convert this term into the parallel form Imn ⊗A.
Besides the benefit for a parallel machine, this form has a natural interpretation
as a loop, hence it can be directly implemented on a serial machine using a loop
construct. In order to program In ⊗A⊗ Im as the loop Imn ⊗A, we must keep
track of the indexing given by the necessary stride permutations. Two possible
indexing schemes are given by the following equations.

Im ⊗ Ani
⊗ In = Im ⊗ Lnin

ni
(In ⊗ Ani

)Lnni

n

= (Im ⊗ Lnin
ni

)(Imn ⊗ Ani
)(Im ⊗ Lnni

n ) (14)

Im ⊗ Ani
⊗ In = (Im ⊗ Ani

) ⊗ In = Lmnin
mni

(Imn ⊗ Ani
)Lmnin

n . (15)

The first equation can be implemented with a pair of nested loops with the
innermost loop indexing given by the stride permutations Lnni

n and Lnni
ni

or as a
single loop with the input indexing given by Im ⊗Lnni

n and the output indexing
given by its inverse. The second equation can be implemented with a single
loop with its indexing given by Lmnin

n and its inverse. A detailed translation
between these equations and their implementations will be given in section 4.2.

These two modifications can be applied to the fundamental tensor product
factorization to obtain alternative factorizations which give direct implementa-
tions using loops.

The first indexing scheme gives the following two alternative factorizations.

Theorem 6

An1
⊗ · · · ⊗ Ant

=

t
∏

i=1

IN(i−1) ⊗
(

LN/N(i−1)
ni

(IN/N(i) ⊗ Ani
)L

N/N(i−1)
N/N(i)

)

=

t
∏

i=1

(

IN(i−1) ⊗ LN/N(i−1)
ni

)

(IN/ni
⊗ Ani

)
(

IN(i−1) ⊗ L
N/N(i−1)
N/N(i)

)

.

The last factorization can be simplified if we combine adjacent permutations,
and thereby eliminate some permutations. We carry out this simplification to
familiarize the reader with the permutation manipulations that arise in modify-
ing tensor product factorizations. The form of the factorization that would be
used on a particular machine depends on the types of permutations that can be
efficiently implemented. This simplification can easily be obtained using equa-
tion (11), and the permutation identity (i, . . . , t)(i− 1, i, . . . , t)−1 = (i− 1, i). If
we map this equation to stride permutations, we get the tensor product identity,

(

IN(i−2) ⊗ L
N/N(i−2)
N/N(i−1)

)(

IN(i−1) ⊗ LN/N(i−1)
ni

)

= IN(i−2) ⊗ Lni−1ni

ni
⊗ IN/N(i),
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which leads to the following factorization

An1
⊗ · · · ⊗ Ant

=

t
∏

i=1

(IN(i−2) ⊗ Lni−1ni

ni
⊗ IN/N(i))(IN/ni

⊗ Ani
). (16)

The second indexing scheme gives rise to

Theorem 7 (Parallel Tensor Product Factorization)

An1
⊗ · · · ⊗ Ant

=

t
∏

i=1

LN
N(i)(IN/ni

⊗ Ani
)LN

N/N(i) =

t
∏

i=1

LN
ni

(IN/ni
⊗ Ani

).

The second equation is obtained by using the multiplication rule for stride per-
mutations, given in theorem 3, to simplify adjacent stride permutations.

All of the modified factorizations that we have presented so far are com-
pletely parallelized in the sense that all tensor product terms are of the form
I⊗A. We can easily use the commutation theorem to convert the parallel terms
to vector terms to get factorizations that are completely vectorized. By com-
plete vectorization, we mean that each tensor product A ⊗ I acts on vectors of
the maximum length. For example, we commute the last factorization to get

Theorem 8 (Vectorized Tensor Product Factorization)

t
∏

i=1

(Ani
⊗ IN/ni

)LN
ni

.

In many practical cases, complete vectorization is not desired because of
machine limitations such as the size of the vector registers. In these cases
we would like a factorization that is only partially vectorized. For example,
if the maximum size of vector operations was 64, then we would like tensor
product terms of the form Im ⊗ A ⊗ I64. This would correspond to a loop of
m vector operations on vectors of the maximum size possible on the machine
in question. We can interpret this as segmenting a large vector operation into
vector operations that fit on a given machine. Using the mathematical tools
presented so far, it is easy to obtain a variety of factorizations that meet the
addressing and architectural features of a given machine. In section 4.4, we
will give an example of how to modify tensor product operations to the CRAY
X-MP.

4.2 Programming Tensor Product Factorizations

In this section we show how to program tensor product factorizations. In gen-
eral, we will start with a set of base macros and combine them by performing
operations corresponding to tensor products, stride permutations, and com-
positions. Thus macros will be algebraically combined to form new macros.
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Furthermore, a macro can be optimized by applying algebraic transformations
to it. Several examples of these operations will be presented in this section.

We begin by showing how Im ⊗ A corresponds to a loop. For this example
and the rest of the examples throughout this section, we let

A = F2 =

(

1 1
1 −1

)

.

To produce the code for y = (Im ⊗ F2)x, we must start with code for F2.

F2 ≡ F2(y, x)

≡ y(0) = x(0) + x(1)

y(1) = x(0) − x(1)

F2 is a macro with two parameters corresponding to the base addresses of
the input x and the output y. The tensor product of this code, (Im ⊗ F2) is
constructed by looping over F2.

Im ⊗ F2 ≡ ITF2(m, y, x)

≡ for i = 0, . . . , m − 1

F2(y(2i), x(2i))

≡ for i = 0, . . . , m − 1

y(2i) = x(2i) + x(2i + 1)

y(2i + 1) = x(2i) − x(2i + 1)

Using this construction, any tensor product term of the form I ⊗ A naturally
gets mapped to code that computes its action on a vector.

Two such code sequences can be concatenated to create a program that
computes the product of matrices of that form. This is done by creating a
temporary vector which serves as the output of the first code sequence and the
input to the next. For example, y = (Im ⊗ F2)(Im ⊗ F2)x is computed with

ITF2(m, t, x)

ITF2(m, y, t)

where t is a temporary.
In general tensor product factorizations, not all tensor product terms are

of the form we desire to construct loop implementations. For example, in the
fundamental factorization, the generic tensor product term is of the form Im ⊗
F2 ⊗ In. This has a natural interpretation as a loop of m vector operations on
vectors of length n.

for i = 0, . . . , m − 1
(

Y2ni

Y2n(i+1)

)

=

(

In In

In −In

) (

X2ni

X2n(i+1)

)
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On a machine that does not offer vector instructions, F2⊗In must be computed
as a loop. In order to obtain a direct loop interpretation, we must apply the
commutation theorem. If we do this, we will introduce stride permutations,
F2⊗In = L2n

2 (In⊗F2)L
2n
n , that must either be performed as actual permutations

or incorporated into the code for computing In ⊗ F2 as readdressing.
First we show how to use the mathematical definition of a stride permutation

to write code to implement it. Recall that the stride permutation Lmn
n permutes

the basis elements emn
in+j −→ emn

jm+i. If we write an arbitrary vector in terms of
this basis, we have

Lmn
n





m−1
∑

i=0

n−1
∑

j=0

xin+je
mn
in+j



 =

n−1
∑

j=0

m−1
∑

i=0

xin+je
mn
jm+i.

Thus if y = Lmn
n x, we have that y(jm + i) = x(in + j), where the index into

the arrays is given by the basis elements. To get a program that computes this
permutation, we need to loop over all possible values of i and j.

Lmn
n ≡ L(m, n, y, x)

for i = 0, . . . , m − 1

for j = 0, . . . , n − 1

y(jm + i) = x(in + j)

The order of these loops does not matter; however, it is essential that the
dimensions are associated with the proper indices.

Using these stride macros, we can program w = (F2 ⊗ In)x as w = L2n
2 (In ⊗

F2)L
2n
n x with the following code sequence.

L(2, n, y, x)

ITF2(n, z, y)

L(n, 2, w, z)

We can optimize this code sequence by incorporating the permutations L2n
n and

L2n
2 into the code for In ⊗ F2 as readdressing.

To see how this readdressing is carried out, we expand these code sequences.

for j = 0, . . . , 1

for i = 0, . . . , n − 1

y(i2 + j) = x(jn + i)

for i = 0, . . . , n − 1

z(2i) = y(2i) + y(2i + 1)

z(2i + 1) = y(2i) − y(2i + 1)
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for i = 0, . . . , n − 1

for j = 0, . . . , 1

w(jn + i) = z(i2 + j)

In this expansion we have taken the liberty to consistently associate i with n
and j with 2. This makes it easier to see the substitutions that are needed to
combine the code sequences to obtain the correct readdressing. The first stride
permutation L2n

n combines with the code for In ⊗ F2 by substituting the input
expression of ITF2(n, z, y) with the output expression of L(2, n, y, x). To get a
direct match, we must further expand L(2, n, y, x) by setting j = 0 and j = 1:
(e2n

2i −→ e2n
i and e2n

2i+1 −→ e2n
i+n).

for i = 0, . . . , n − 1

y(2i) = x(i)

y(2i + 1) = x(i + n)

After this expansion, we can combine the two code sequences.

for i = 0, . . . , n − 1

z(2i) = x(i) + x(i + n)

z(2i + 1) = x(i) − x(i + n)

The composition with the output permutation L2n
2 = S2n

n is carried out in
the same way. However, in this case the substitution is carried out with the
output variable. We can use the notation S2n

n instead of L2n
2 to make this

distinction.
After both of these compositions are carried out, we arrive at the transformed

(conjugated) code sequence which computes w = (F2 ⊗ In)x.

for i = 0, . . . , n − 1

w(i) = x(i) + x(i + n)

w(i + n) = x(i) − x(i + n)

This code transformation eliminates the runtime permutations L(2, n, y, x) and
L(n, 2, w, z) by changing the indexing of ITF2(n, z, y) at compile time, thereby
saving runtime memory accesses.

An alternative approach to this problem of transforming code sequences
would be to augment the parameters of ITF2 to include stride information.
For example, we could redefine ITF2 with the stride parameters a, s, b, and t.
In the definition of ITF2 we have included the macro for F2 with the additional
stride parameters s and t.

ITF2(m, y, b, t, x, a, s) ≡ for i = 0, . . . , m − 1
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F2(y(bi), t, x(ai), s)

≡ for i = 0, . . . , m − 1

y(bi) = x(ai) + x(ai + s)

y(bi + t) = x(ai) − x(ai + s)

This being the case, we have S2m
m ITF2(m, z, 2, 1, y, 2, 1)L2m

m = ITF2(m, z, 1, m, y, 1, m).
We can now use these techniques to program Im⊗F2⊗In. If we rewrite this

as Im ⊗ S2n
n (In ⊗F2)L

2n
n , it can be programmed by looping over ITF2(n, y, x).

for i = 0, . . . , m − 1

ITF2(n, y(2ni), x(2ni))

We then expand this code sequence.

for i = 0, . . . , m − 1

for k = 0, . . . , n − 1

y(2ni + k) = x(2ni + k) + x(2ni + k + n)

y(2ni + k + n) = x(2ni + k) − x(2ni + k + n)

This code sequence could also have been constructed from the tensor product
expression (Im ⊗S2n

n )(Im ⊗ In⊗F2)(Im ⊗L2n
n ). The simplest way to implement

this would be to separately construct Im ⊗ S2n
n , Im ⊗ (In ⊗ F2), and Im ⊗ L2n

n

using the looping techniques discussed previously, and then compose the code
sequences together with the appropriate introduction of temporaries. If we
then optimize by combining the permutations with Im ⊗ In ⊗ F2, we arrive
at the same code sequence produced from Im ⊗ (S2n

n (In ⊗ F2)L
2n
n ). To see

this observe that (Im ⊗ L2n
n )em

i ⊗ e2
j ⊗ en

k = em
i ⊗ en

k ⊗ e2
j which implies that

em2n
(2i+j)n+k −→ em2n

(in+k)2+j . Before applying this substitution, we list the code
for Im ⊗ In ⊗ F2.

Im ⊗ In ⊗ F2 ≡ IITF2(m, n, x, y)

≡ for i = 0, . . . , m − 1

for k = 0, . . . , n − 1

y(2in + 2k) = x(2in + 2k) + x(2in + 2k + 1)

y(2in + 2k + 1) = x(2in + 2k) − x(2in + 2k + 1)

If we make the substitution corresponding to the permutation Im ⊗ L2n
n and

Im ⊗S2n
n , we obtain the same code for Im ⊗F2 ⊗ In that we derived previously.

So far we have only been able to program Im ⊗ F2 ⊗ In using two nested
loops. Yet one would like to be able to rewrite this as Imn ⊗ F2 and only use
one loop of mn interations. The reason that we have not been able to do this is

19



that the addressing given by the permutations Im ⊗L2n
n and Im ⊗ S2n

n requires
two indices. Instead of using the transformation that led to these permutations,
we might try the second transformation Im ⊗ F2 ⊗ In = Sm2n

n (Imn ⊗ F2)L
m2n
n .

However a careful inspection shows that if the permutations are composed with
Imn⊗F2, the same problem occurs. There is no way to combine the permutation
em2n

in+j −→ em2n
jm+i with the loop for Imn ⊗ F2 listed below.

for i = 0, . . . , mn − 1

y(2i) = x(2i) + x(2i + 1)

y(2i + 1) = x(2i) − x(2i + 1)

The only way to combine the permutation with the code would be to rewrite
Imn ⊗ F2 as Im ⊗ In ⊗ F2 as before and look at Lm2n

n as a permutation on
em

i ⊗ e2
j ⊗ en

k . In this way we see that Lm2n
n (em

i ⊗ e2
j ⊗ en

k ) = en
k ⊗ em

i ⊗ e2
j

and em2n
(2i+j)n+k −→ em2n

(km+i)2+j , and this substitution leads to the same code as
before.

The only way to get a single loop is to look at the complete tensor product
factorization. Using theorem 7, we have that

F2 ⊗ · · · ⊗ F2 =

t
∏

k=1

L2t

2 (I2t−1 ⊗ F2).

In this factorization we have terms of the form L2mn
2 (Imn ⊗ F2) = S2mn

mn (Imn ⊗
F2), which can be programmed with a single loop.

ITF2(mn, y, 1, mn, x, 2, 1) ≡
for i = 0, . . . , mn − 1

F2(y(i), mn, x(2i), 1)

≡ for i = 0, . . . , mn − 1

y(i) = x(2i) + x(2i + 1)

y(i + mn) = x(2i) − x(2i + 1)

In this factorization, adjacent stride permutations combine to produce a stride
permutation with appropriate stride so that it can be combined with F2 in a
single loop. However, the input and output permutations are no longer the same.
This makes programming the algorithm in place impossible. Nonetheless, with
the introduction of temporaries, t copies of this code can be used to compute
F2 ⊗ · · · ⊗ F2.
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4.3 Modifying the Implementation to Parallel Architec-

tures

In this section we show how tensor product factorizations lead to parallel and
vector implementations. Tensor product terms of the form Im⊗A can be imple-
mented as m copies of A, which can be done in parallel. Instead of implementing
y = (Im ⊗ F2)x as a loop, each F2 can be computed in parallel on m separate
processors. If each processor has access to a shared memory containing the input
vector x and the output vector y, then the code sequence F2(y(2i), x(2i)) can be
computed by the i-th processor. In the same fashion, F2 ⊗ Im can be computed
as S2m

m (Im⊗F2)L
2m
m , where each processor computes F2(y(i), m, x(i), m) an F2

at stride m. Here we are using the F2 macro which includes stride parameters.
In general, Im ⊗ F2 ⊗ In can be computed by mn processors labeled by

the pair of integers (i, j) 0 ≤ i < m, 0 ≤ j < n, each computing F2(y(2ni +
j), n, x(2ni + j), n). Alternatively, Im ⊗ (In ⊗ F2) can be thought of as m
parallel computations of In ⊗ F2. In this case, each processor would compute
the following code sequence.

for j = 0, . . . , n − 1

y(2ni + 2j) = x(2ni + 2j) + x(2ni + 2j + 1)

y(2ni + 2j + 1) = x(2ni + 2j) − x(2ni + 2j + 1)

Using Im ⊗ (In ⊗ F2) instead of Imn ⊗ F2, is a natural way of controlling the
granularity of the parallel computation. This is especially useful if there is a
fixed number of processors. Returning to the general term, Im ⊗ F2 ⊗ In =
Im ⊗ (S2m

m (In ⊗ F2)L
2m
m ) can be computed with m processors each computing

the following loop.

for j = 0, . . . , n − 1

y(2ni + j) = x(2ni + j) + x(2ni + j + n)

y(2ni + j + n) = x(2ni + j) − x(2ni + j + n)

We can now use the fundamental factorization and these ideas to compute
F2 ⊗ · · · ⊗ F2 in parallel. However, there is some added difficulty. First of all,
between each stage I2i−1 ⊗ F2 ⊗ I2t−i , a barrier synchronization is needed to
guarantee that the input to the next stage is correct. Furthermore, the natural
interpretation of each stage leads to a different degree of parallelism at each
stage. Different addressing and hence different programming at each stage is
required to get a consistent degree of parallelism. This problem can be fixed if
we use the parallel factorization instead. In this case, the addressing is the same
at each stage and the natural interpretation has the maximum possible degree
of parallelism at each stage. The only problem with this factorization is that
we may desire a larger granularity and not the maximum degree of parallelism.

If we wish to adapt to a parallel processor with a fixed number of proces-
sors, we can modify this factorization accordingly. For example, if we have 8
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processors and wish to compute F2 ⊗ · · · ⊗ F2 = F2,10, the tensor product of 10
factors of F2, we could rewrite the factorization as

10
∏

i=1

S1024
512 (I512 ⊗ F2) =

10
∏

i=1

S1024
512 (I8 ⊗ I64 ⊗ F2).

In this case each processor would compute the following code sequence.

for j = 0, . . . , 63

F2(y(27i + j), 29, x(27i + 2j), 1)

≡
for j = 0, . . . , 63

y(27i + j) = x(27i + j) + x(27i + 2j + 1)

y(27i + j + 29) = x(27i + j) − x(27i + 2j + 1)

There are two potential problems with this parallel implementation. These
difficulties stem from locality and granularity considerations. After each compu-
tation of F2, the results are stored back to main (shared) memory. It might be
advantageous to do more local computation before doing the memory operation.
Even for serial computers this might be the case. In fact any implementation
on a machine with an hierarchical memory structure should be concerned with
doing the proper amount of local computation. Furthermore, depending on
the memory organization, it might be beneficial to load and store more than
one operand or result at a time. These objectives can be satisfied by further
modifying the factorization.

More local computation can be obtained if the decomposition is based on a
larger unit of computation than F2. For example, we may have enough local
memory to compute F2 ⊗ F2 instead of just F2. In this case we can use the
modified parallel factorization

5
∏

i=1

(

S1024
256 (I8 ⊗ I32 ⊗ (F2 ⊗ F2))

)

.

In this factorization there are only 5 factors instead of 10. Therefore, the number
of required synchronizations has been decreased and the granularity has been
increased.

In this example, we have chosen the number of F2’s in each stage (2) to
divide the total number of factors (10). If we had chosen a decomposition that
was not compatible in this sense, the only difficulty that would arise would
be an odd sized factor somewhere in the computation. Such a decision might
be necessitated by the limitations of the given architecture. Returning to our
example, suppose we could compute F2 ⊗ F2 ⊗ F2 = F2,3 instead of just F2 ⊗
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F2. If we chose to have the odd-sized factor in front, there are two natural
factorizations that we could use.

F2 ⊗ F2,9 = F2 ⊗
3

∏

i=1

(

S512
64 (I64 ⊗ F2,3)

)

(17)

= (F2 ⊗ I512)
∏

(

(I2 ⊗ S512
64 )(I2 ⊗ I64 ⊗ F2,3)

)

= S1024
512 (I512 ⊗ F2)L

1024
512

∏

(

(I2 ⊗ S512
64 )(I2 ⊗ I64 ⊗ F2,3)

)

.

F2,10 = S1024
512 (I512 ⊗ F2)

3
∏

i=1

(

S1024
128 (I128 ⊗ F2,3)

)

. (18)

The first factorization is obtained by a tensor product construction of the de-
composition of F2,9 which is compatible with F2,3. The difficulty with this
construction is that the addressing given by the permutations is not compatible
with I128 ⊗ F2,3, but instead is compatible with I2 ⊗ I64 ⊗ F2,3. This combined
with the extra permutation given by the commutation of F2⊗I512 leads to a com-
plicated program that can not easily be programmed in our 8 processor machine.
However, the second factorization, which follows immediately from the mixed
radix parallel factorization (theorem 7) starting from F2⊗F2,3⊗F2,3⊗F2,3, can
easily be programmed in the same manner as the compatible example based on
F2,2.

The second possible problem with the computation given by the parallel fac-
torization is that each memory operation must be done separately. We would
like to be able to do permutations within local memories of the separate proces-
sors, and then store large blocks of results back to shared memory. This type of
data flow can be obtained by decomposing the intervening permutations into a
collection of local permutations followed by a global block permutation. This is
given by the tensor product decomposition of stride permutations (theorem 4).
For our example, where we need to compute S1024

512 (I8 ⊗ I64 ⊗ F2) this allows us
to write

S1024
512 = (S16

8 ⊗ I64)(I8 ⊗ S128
64 ).

I8 ⊗ S128
64 is carried out by permuting elements in local memory for each of the

8 processors by S128
64 . After that local permutation, the results are sent back to

main memory in segments of length 64. These segments are permuted by S16
8 .

The regularity of the factorization
∏

SN
N/2(IN/2 ⊗F2) implies that the com-

putation could be carried out on an array processor or in VLSI. For each stage
of the computation, the same instructions (F2) are computed on each segment
of the input vector. Furthermore, the same permutation of the output is per-
formed after each stage, so that the same routing instructions could be used
to transmit the data after each stage. Thus it is quite conceivable to program
tensor product factorizations on an array processor, a single instruction multiple
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data architecture, with various interconnection networks for data transmission.
Factorizations of stride permutations can be used to adapt algorithms to a given
interconnection network.

As a simple example, we look at an array of four processors with a perfect
shuffle interconnection network called the omega network [12]. This network has
been designed for problems involving stride permutations [15]. The permutation
L2n

2n−1 has been called the perfect shuffle since its action on a deck of cards is
obtained by shuffling two equal piles of cards so that the cards are interleaved
one from each pile. Since the permutation L8

4 is hardwired into this processor,
a single pass through the network performs this permutation. If each processor
can add and subtract, a single pass through this network can be used to compute
(I4⊗F2)L

8
4 (see figure 1). In the factorizations we have considered so far, terms
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Figure 1: Omega network computing (I4 ⊗ F2)L
8
4

of this form have not arisen. We have only seen S8
4(I4 ⊗ F2). However, if we

rederive the parallel factorization for F2,3 in the opposite order, the appropriate
terms are obtained.

F2,3 = (I4 ⊗ F2)(I2 ⊗ F2 ⊗ I2)(F2 ⊗ I4)

= (I4 ⊗ F2)L
8
4(I4 ⊗ F2)L

8
4(I4 ⊗ F2)L

8
4. (19)
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Using this factorization, F2,3 can be computed in three passes through the
network.

In general, if we had an N/2 (N = 2n) processor omega network, we could
compute F2,n in n = log N passes. However, if we have a fixed number of proces-
sors, we can use the omega network as a module to help in larger computations.
Such programs are constructed from tensor products.

F2,n =
∏

(

SN
N/8

(

IN/8 ⊗ I4 ⊗ F2,3

)

)

. (20)

F2,n =
∏

(

SN
N/2

(

IN/8 ⊗ I4 ⊗ F2

)

)

=
∏

((

S
N/4
N/8 ⊗ I4

)

(

IN/8 ⊗ S8
4

) (

IN/8 ⊗ I4 ⊗ F2

)

)

. (21)

In this section we have presented a variety of techniques for implementing
tensor products on a variety of parallel archtictures. We have shown how to use
tensor product identities to modify algorithms to situations with a fixed number
of processors, fixed granularity, shared memory, and special interconnection
networks. While this should give a general overview of using tensor product
formulations to modify algorithms and obtain parallel implementations, none
of the techniques can be fully appreciated without a specific example. In the
next section we deal with questions of vectorization using the CRAY X-MP as a
specific example. While we have not specifically discussed vectorization in this
section, the techniques needed are similar to the ones presented for the parallel
architectures discussed.

4.4 The Cray X-MP: A Design Example

In this section, we use the mathematical techniques developed in the previous
sections to design algorithms for a specific architecture. In particular, we will
study how to efficiently implement tensor product operations and the corre-
sponding stride permutations on the CRAY X-MP. The X-MP is a sample ar-
chitecture from a class of machines called vector processors. In order to obtain
an efficient implementation on this machine, it is essential that the algorithm
be programmed to take advantage of its architectural features. For a vector
processor like the X-MP, the two key programming concerns are vectorization
and segmentation. These issues will become clearer as we present some exam-
ples.

The reason we have singled out a particular machine is not due to the lim-
itations of our techniques, but rather that our techniques can be used to tune
an algorithm to a specific architecture, and the X-MP serves as a nice exam-
ple. Before studying the implementation of tensor products on the X-MP, we
will briefly review the X-MP’s architecture and highlight some of the key pa-
rameters, which are needed for tuning our algorithms to the machine. More
information on the X-MP can be found in the hardware reference and CAL
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assembly manuals [1, 2]. A discussion of algorithm design and modification for
the X-MP can be found in [9, 8].

The X-MP is a pipelined vector processor. Built into the X-MP’s instruction
set are instructions for performing vector operations. For example, the X-MP
has an instruction for adding all of the components of two vectors of floating
point numbers. Vector instructions are implemented, in hardware, by pipelining
the elements of the vectors through a functional unit that performs the corre-
sponding operation. In our example of floating point addition, the functional
unit that performs the addition is a six stage pipeline. Therefore, the result
obtained from adding the first two elements is produced in 6 CPs (clock peri-
ods), and the remaining results are produced one every clock period after that.
So two vectors containing 64 elements each can be added in 6 + 63 = 69 CPs.
If the vector addition were performed with a loop of scalar additions, it would
take 64 · 6 = 384 CPs. It is this speed-up that gives vector processing its power.

Thus the first concern in obtaining an efficient algorithm for the X-MP, is
maximizing the use of vector instructions. Some important vector instructions
for our purposes are vector addition and subtraction and scalar-vector multipli-
cation.

It is important to realize that the vector instructions available on the X-
MP are carried out on vectors located in vector registers. For example, the
instruction

• V 0 V 1 + FV 2 Floating point vector add

adds the vectors contained in registers V 1 and V 2 and produces the result in
register V 0. Since the vector registers can contain a maximum of only 64 el-
ements, this limits the size of vectors that can be used in vector instructions.
However, several vector instructions can be combined to perform operations on
larger vectors, which we call supervectors. Splitting a supervector into appro-
priate segments on which vector instructions can be used, is the second major
concern in designing an algorithm for the X-MP. In this case, the size of the
vector registers is a key design parameter.

Before giving an example of a supervector instruction, we need to examine
how vectors are loaded into and stored from the vector registers. Also, studying
these memory operations is essential to efficiently implementing the loadstride
permutations that arise from tensor product operations. A vector of elements
in memory beginning at X and separated at stride s can be loaded into a vector
register with the following instruction.

• V i X, s Load a vector beginning at X into V i at stride s

The number of elements that are loaded is determined by the contents of a
special register called the vector length register V L. Similarly, a vector register
can be stored to memory at any given stride.

• , Y, s V k Store V k to Y at stride s
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Both of these instructions are performed in the same pipelined fashion that
other vector instructions are. Ignoring potential memory conflicts, a vector
of 64 elements can be loaded in 17 + 63 = 80CPs, the time to load the first
element plus one CP each for the remaining elements. If memory operations
were not done with vector instructions, then performance degradation would
be disasterous. By properly segmenting an algorithm its performance can be
improved dramatically.

Now that we know how to load segments of vectors into the vector registers,
we can see how to perform a supervector instruction like supervector addition.
To do this we need a loop that loads a segment of each vector, adds them,
and stores the resulting segment. Since the functional units on the X-MP are
independent and there are three independent memory ports, these operations
can be performed concurrently. The overlap obtained from this concurrency
can be thought of as another level of pipelining. In the example of supervector
addition, we have a three stage pipeline so that while two segments are being
loaded, another two can be added, and the previous result can be stored. Here
we see another important benefit of proper segmentation, namely the overlap of
the operations on the segments.

We now begin our study of the implementation of tensor product operations
on the X-MP. Tensor product terms of the form A ⊗ In, for n ≤ 64, can be
implemented directly with vector instructions. For example,

(F2 ⊗ I3)x =

















1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

































x0

x1

x2

x3

x4

x5

















=

















x0 + x3

x1 + x4

x2 + x5

x0 − x3

x1 − x4

x2 − x5

















.

If we let V 0 contain the vector (x0, x1, x2) and V 1 contain (x3, x4, x5), the tensor
product operation can be performed with the following vector instructions.

• V 2 V 0 + FV 1

• V 3 V 0 − FV 1

The result is obtained by storing V 2 followed by V 3 back to memory. If Y is
the location of the output vector, this is done with the following instructions.

• , Y, 1 V 2 Store first segment at stride 1

• , Y + 3, 1 V 3 Store second segment at stride 1

In this case the stride is 1 for the individual stores, but the offset must be
incremented by the size of the vector segments.

Next we will see how to implement stride permutations using load and store
operations. As in the previous example, we let x be a vector with six elements.
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First we would like to perform the load operation y = L6
2x, which corresponds

to the permutation

















1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

































x0

x1

x2

x3

x4

x5

















=

















x0

x2

x4

x1

x3

x5

















.

The following load instructions can be used to perform this operation.

• V 0 , X, 2 Load first segment at stride 2

• V 1 , X + 1, 2 Load second segment at stride 2

After these loads are performed,

V 0 =





x0

x2

x4



 , V 1 =





x1

x3

x5



 .

To obtain the permuted vector Y , we must store these registers back to memory.

• , Y, 1 V 0 Store first segment at stride 1

• , Y + 3, 1 V 1 Store second segment at stride 1

The same permutation could be carried out with the storestride operation
S6

3 . In this case we load the registers V 0, V 1, and V 2 with consecutive elements,
and store the registers back at stride 3.

• V 0 , X, 1 Load first segment at stride 1

• V 1 , X + 2, 1 Load second segment at stride 1

• V 2 , X + 4, 1 Load third segment at stride 1

After these loads, we have

V 0 =

(

x0

x1

)

, V 1 =

(

x2

x3

)

, V 2 =

(

x4

x5

)

.

These registers are then stored back to main memory.

• , Y, 3 V 0 Store first segment at stride 3

• , Y + 1, 3 V 1 Store second segment at stride 3

• , Y + 2, 3 V 2 Store third segment at stride 3

28



After the first store operation y = (x0, , , x1, , ), after the second store
y = (x0, x2, , x1, x3, ), and after the third store y contains the appropriately
permuted vector.

To see how loadstride and storestride permutations can be implemented in
conjunction with tensor product operations, we show how terms like (A ⊗ I)L
and S(A ⊗ I) are implemented. We begin by looking at (F2 ⊗ I3)L

6
2x. As in

the previous example, we load x into two vector registers at stride 2. However,
before storing the vectors back to memory, we perform the vector operation
F2 ⊗ I3 as in the first example, obtaining:

V 2 =





x0 + x1

x2 + x3

x4 + x5



 , V 3 =





x0 − x1

x2 − x3

x4 − x5



 .

Finally, these registers are stored back giving the desired output vector. It is
imperative that the loadstride operation be compatible with the tensor product
operation. In this case, we must have two registers with 3 elements each in
order to be able to perform F2 ⊗ I3.

The operation S6
2(F2 ⊗ I3) can be implemented in a similar fashion. In

this case, after performing the vector operation F2 ⊗ I3, we have two registers
each containing 3 elements, which can be stored at stride 2. An important
feature of both of these examples, is that in order to perform F2 ⊗ I3 we must
load the input vectors and store the result even if there were no permutation.
By performing the permutation during the loading or storing phases we are
essentially obtaining the permutation for free. In effect we are saving the extra
memory operations that would be needed if the permutation was carried out
separately.

To see how tensor product terms with preceding loadstride permutations
can arise, let A be a 2 × 2 matrix and B be a 3 × 3 matrix and consider
the factorization given by the commutation theorem. In this case we need to
implement the factorization

z = (A ⊗ B)x = (A ⊗ I3)(I2 ⊗ B)x (22)

= (A ⊗ I3)L
6
2(B ⊗ I2)L

6
3x. (23)

We would perform y = (B ⊗ I2)L
6
3x followed by z = (A ⊗ I3)L

6
2y. This fac-

torization allows A ⊗ B to be performed using only vector instructions. Also
the factorization forces the tensor product operations to be compatible with the
loadstride operations.

Up until now, by assuming vectors fit inside the vector registers, we have
ignored the problem of segmentation. Since the size of the vector registers is
64, we would like to perform vector instructions on vectors with 64 elements. In
terms of tensor product operations, we would like factors of the form Im⊗A⊗I64.
Such a factor corresponds to performing a loop of m tensor product operations
on vectors of length 64. Factors of this form are not always present in tensor
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product factorizations; however, it is possible to use tensor product identities
to manipulate the factorization so that appropriate terms can be obtained.

For example, suppose we need to evaluate F2 ⊗ I128. Here the size of the
vector operation is 128, so that the vector appears not to fit in the vector
registers. We would like to rewrite this as I2 ⊗ F2 ⊗ I64, in order to get the
correct vector length. It is clear that the commutation theorem can be used to
do this; however, if we do this in the obvious way, we run into some difficulty.
To see this observe

F2 ⊗ I128 = (F2 ⊗ I64) ⊗ I2 (24)

= L256
128(I2 ⊗ (F2 ⊗ I64))L

256
2 . (25)

In order to perform the vector operation F2 ⊗ I64, we need vectors of length 64,
but L256

2 gives two vectors of length 128:















x0

x2

x4

...
x254















and















x1

x3

x5

...
x255















.

In order to solve this difficulty, we need to use the loadstride factorization

L256
2 = (L4

2 ⊗ I64)(I2 ⊗ L128
2 )

given by theorem 4. This factorization can easily be remembered if the terms in
F2 ⊗ I64 ⊗ I2 are commuted in stages. The first factor I2 ⊗L128

2 corresponds to
a permutation within segments, and the second factor L4

2 ⊗ I64 can be thought
of as a permutation of segments. I2 ⊗ L128

2 creates four segments of size 64:

V 0 =











x0

x2

...
x126











, V 1 =











x1

x3

...
x127











, V 2 =











x128

x130

...
x254











, V 3 =











x129

x131

...
x255











.

L4
2 ⊗ I64 permutes these segments giving (V 0, V 2, V 1, V 3). Now we can apply

I2 ⊗ F2 ⊗ I64 to these segments. First apply F2 ⊗ I64 to (V 0, V 2) and then to
(V 1, V 3). It is clear that the addressing given by (L4

2 ⊗ I64)(I2 ⊗ L128
2 ) can be

carried out by doing loadstrides as before on the segments and by changing the
initial offsets of the loadstrides to perform the permutation of the segments. In
this example, we start with an offset to x0 and another offset to x128. We then
go through a loop which loads segments of 64 elements with L128

2 .
To complete the operations, we need to store the elements produced by

I2 ⊗ F2 ⊗ I64. Furthermore, this must be done in the same order as they are
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computed. This can be done in the same way that L256
2 was performed. Since

L256
128 = S256

2 = (L256
2 )−1,

S256
2 =

(

(L4
2 ⊗ I64)(I2 ⊗ L128

2 )
)−1

=
(

I2 ⊗ L128
2

)−1 (

L4
2 ⊗ I64

)−1

=
(

I2 ⊗ (L128
2 )−1

) (

(L4
2)

−1 ⊗ I64

)

=
(

I2 ⊗ S128
2

) (

S4
2 ⊗ I64

)

.

Thus the storestride operations can be carried out in an manner analogous to
the loadstride operations. In our example, after performing F2⊗I64 on (V 0, V 2),
namely

• V 4 V 0 + FV 2

• V 5 V 0 − FV 2

we store V 4 at stride 2 starting at y0 and V 5 at stride 2 starting at y128. After
the next F2 ⊗ I64, V 6 = V 1 + FV 3 is stored at stride 2 beginning at y1 and
V 7 = V 1 − FV 3 is stored at stride 2 beginning at y129. Thus the complete
operation F2 ⊗ I128 is performed as a vector loop (or supervector instruction)
corresponding to the factorization

(I2 ⊗ S128
2 )(S4

2 ⊗ I64)(I2 ⊗ F2 ⊗ I64)(L
4
2 ⊗ I64)(I2 ⊗ L128

2 ).

In this supervector instruction, segments of 64 elements are loaded into vector
registers, a vector F2 is performed, and the resulting segments are stored. By
keeping the appropriate offsets, given by the loadstride and storestride factor-
izations, this can be programmed as a simple loop.

Several key points should be noted about the segmentation obtained for this
loop. First of all, when the segments of 64 elements are loaded, both the addition
and subtraction from F2 are performed before getting rid of the input segments.
This is important since it eliminates the unnecessary memory operations that
would be performed if the vector had to be reloaded to do the subtraction.
This is an example of the key design goal of minimizing memory operations and
keeping vectors in the vector registers as long as possible. It should be pointed
out that the X-MP has only 8 vector registers, so that the care that we have
gone through in segmenting the computation (i.e. matching input and output
segments) is essential.

A second benefit of the segmentation is the overlap it implies. In this exam-
ple, while we are doing the additions or subtractions, we can simultaneously be
doing the loads and stores on other segments. The way to think of this overlap,
as pointed out before, is as a vector instruction pipeline. The overlap in this
example is depicted in the timing diagram in figure 2. The operations indicated
on the left correspond to functional units and memory operations that can be
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1 2

1 2

1 1 2 2

1 1 2 2

Load 1

Load 2

Add/Sub

Store

time −→

Figure 2: Timing Diagram

performed concurrently on the X-MP. The numbers indicate the segment the
operation is being performed on, and more than one number in a single column
indicates overlap. Furthermore, the add unit is fully utilized and a vector is
produced every time slot.

We would like to point out that there is another way to segment the operation
F2⊗I128. In general, there are many different ways of performing tensor product
operations, and these different methods of computation correspond to different
tensor product factorizations. The different factorizations can conveniently be
obtained by applying different tensor product identities in various orders. An
alternative method of segmenting F2 ⊗ I128 can be obtained as follows:

F2 ⊗ I128 = (F2 ⊗ I2) ⊗ I64 (26)

= S4
2(I2 ⊗ F2)L

4
2 ⊗ I64 (27)

= (S4
2 ⊗ I64)(I2 ⊗ F2 ⊗ I64)(L

4
2 ⊗ I64) (28)

In this case we let

V 0 =











x0

x1

...
x63











, V 1 =











x64

x65

...
x127











, V 2 =











x128

x129

...
x191











, V 3 =











x192

x193

...
x255











,

and compute

• V 4 V 0 + FV 2

• V 5 V 0 − FV 3

• V 6 V 1 + FV 3
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• V 7 V 1 − FV 3

storing the results in the order (V 4, V 6, V 5, V 7). This computation can be
implemented by setting offsets to x0 and x128. As the computation proceeds,
the offsets are incremented by 64 and the corresponding F2 ⊗ I64 is performed.

Both of the methods of computing F2 ⊗ I128 easily generalize as indicated
by the two factorizations

F2 ⊗ I64r = (I2 ⊗ S64r
r )(S2r

r ⊗ I64)(Ir ⊗ F2 ⊗ I64)

(L2r
r ⊗ I64)(I2 ⊗ L64r

r ) (29)

= (S2r
r ⊗ I64)(Ir ⊗ F2 ⊗ I64)(L

2r
r ⊗ I64). (30)

Moreover, both factorizations can easily be implemented with a supervector
loop that performs F2 ⊗ I64. In both cases the addressing is given by tensor
products of loadstrides and storestrides, which are implemented by striding the
individual elements I⊗L or striding the offsets L⊗I. Programs computing these
factorizations can be obtained in the same way that we derived programs for
scalar machines using loops. The only difference is that some loops are unrolled
and replaced by vector instructions.

In order to implement the second factorization we start with the loop imple-
mentation of L2r

r ⊗ I64. Since (L2r
r ⊗ I64)e

2
i ⊗ er

j ⊗ e64
k = er

j ⊗ e2
i ⊗ e64

k , the index
permutation is (ir + j)64 + k −→ (2j + i)64 + k and we get the following loop.

for i = 0, . . . , 1

for j = 0, . . . , r − 1

for k = 0, . . . , 63

y(2j64 + i64 + k) = x(ir64 + j64 + k)

In order to compose this code sequence with a supervector loop implementing
Ir ⊗ F2 ⊗ I64, the outer loop must be unrolled and the inner loop must be
replaced with a vector instruction. The resulting supervector loop is

for j = 0, . . . , r − 1

Y (2j64) = X(j64)

Y (2j64 + 64) = X(r64 + j64)

where X and Y are vectors of length 64 beginning with the indicated offset.
This can be composed with the supervector loop computing Ir ⊗ F2 ⊗ I64.

for j = 0, . . . , r − 1

Y (2j64) = X(2j64) + X((2j + 1)64)

Y ((2j + 1)64) = X(2j64)− X((2j + 1)64)
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The resulting code can be composed with the output permutation S2r
r ⊗ I64 to

obtain

for j = 0, . . . , r − 1

Y (j64) = X(j64) + X((r + j)64)

Y ((r + j)64) = X(j64)− X((r + j)64)

which can be implemented on the X-MP with a supervector loop.

for j = 0, . . . , r − 1

V 0 , Xj64, 1

V 1 , X(j+r)64, 1

V 2 V 0 + FV 1

V 3 V 0 − FV 1

, Yj64, 1 V 2

, Y(r+j)64, 1 V 3

The other factorization can be implemented in the same way. The only new
phenomenon is the composition of the two permutations (L2r

r ⊗ I64)(I2 ⊗ L64r
r )

and their implementation on the X-MP. The permutation I2 ⊗ L64r
r can be

programmed with the following loop.

for j = 0, . . . , r − 1

for k = 0, . . . , 63

y(j64 + k) = x(kr + j)

y((r + j)64 + k) = x((k + 64)r + j)

If the inner loop is unrolled it can be implemented with vector loads at stride r.

for j = 0, . . . , r − 1

Y64j ←− Xj , r

Y(r+j)64 ←− Xj+64r, r

Combining this with the other code sequences gives the following CRAY imple-
mentation.

for j = 0, . . . , r − 1

V 0 , Xj , r

V 1 , Xj+64r , r
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V 2 V 0 + FV 1

V 3 V 0 − FV 1

, Yj , r V 2

, Yj+64r , r V 3

We end this section by producing a vectorized segmented factorization of
F2,n+6 which can be programmed on the X-MP using some of the techniques
that we have discussed. We begin with the vector factorization from theorem 8

F2,n+6 =

n+6
∏

i=1

(

(F2 ⊗ IN/2)L
N
2

)

.

This factorization can be conjugated to obtain

F2,n+6 =
n+6
∏

i=1

(

SN
2n(I2n ⊗ F2 ⊗ I64)L

N
2 LN

2n

)

(31)

= SN
2n

{

n+6
∏

i=1

(

(I2n ⊗ F2 ⊗ I64)L
N
2

)

}

LN
2n . (32)

The permutation LN
2 in each stage of the product can be factored as in our

example; therefore, up to relabeling of the input and output, we get a segmented
vectorized algorithm for the X-MP. Alternatively LN

2 and LN
2n can be combined

to get LN
2n+1 which produces appropriately sized vectors. However, in this case,

SN
2n must be factored to operate on vectors of length 64.

5 What is the Finite Fourier Transform?

Let f be a complex function. If we sample f at n points and assume that f
is periodic outside the sample, we get a function f : Z/(n) −→ C. We can
represent f as an n-tuple of complex numbers











f(0)
f(1)

...
f(n − 1)











,

corresponding to the values of f . The collection of functions on Z/(n) form
a vector space denoted by L(n) which, under the above representation, is iso-
morphic to Cn. If we define < f, g >=

∑

f(i)g(i), where g(i) is the complex
conjugate of g(i), L(n) becomes an inner product space denoted by L2(n).

The finite Fourier transform is the linear operator Fn : L2(n) −→ L2(n)
defined by
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Definition 3 (Fourier Transform) Fnen
i = fn

i , where fn
i =

∑n−1
j=0 ωijen

j ,

and ω = e2πi/n.

The matrix representation is given by Fn = (ωij) 0 ≤ j, k < n. For example,

F2 =

(

1 1
1 −1

)

, F4 =









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









, Fn =











1 1 · · · 1
1 ω · · · ωn−1

...
... · · ·

...

1 ωn−1 · · · ω(n−1)2











.

The Fourier transform of a function f ∈ L2(n) is given by the matrix vector
multiplication Fnf . Note that 1/

√
nFn is a unitary operator, i.e. {1/

√
nfn

i }
form an orthonormal basis. To see this,

< fn
i , fn

j > =

n−1
∑

k=0

ωikωkj =
∑

ω(i−j)k

=

{

n if i = j
0 if i �= j

.

Therefore, we have the following properties:

1. FnF ∗
n = nIn and F−1

n = 1
nF ∗

n , where ∗ denotes the conjugate transpose,

2. 1/nF 2
nen

i = 1/n
∑n−1

j=0 < fn
i , fn

j > en
j = en

n−i,

3. F 4
n = n2In.

These properties can be used as tools for debugging Fourier transform algo-
rithms. The main idea is to try the program on various bases.

5.1 An Algorithm for Computing the Fourier Transform

The Fourier matrix has many redundancies. If we take advantage of this re-
dundancy we naturally arrive at a matrix factorization of Fn that allows us to
compute its action on a vector efficiently. For example, the computation y = F4x
can be performed more efficiently if we notice that t0 = x0 + x2, t1 = x0 − x2,
t2 = x1 + x3, and t3 = x1 − x3 only need to be computed once. In terms of the
temporary values, y0 = t0 + t2, y1 = t1 + it3, y2 = t0 − t2, and y3 = t1 − it3.
This observation implies the matrix factorization

F4 =









1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i









=









1 0 1 0
0 1 0 i
1 0 −1 0
0 1 0 −i

















1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1









.
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If we collect the multiplications by i we introduce a diagonal matrix in the
factorization.

F4 =









1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

















1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

















1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









.

We can rewrite this factorization using tensor product notation as F4 = (F2 ⊗
I2)T

4
2 (I2 ⊗ F2)L

4
2, where T 4

2 is the diagonal matrix diag(1, 1, 1, i).
We will now carry out this factorization for another example. Namely

F8 =

























1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω

























,

where ω is a primitive 8th root of unity. This can be factored as

























1 0 0 0 1 0 0 0
0 1 0 0 0 ω 0 0
0 0 1 0 0 0 ω2 0
0 0 0 1 0 0 0 ω3

1 0 0 0 ω4 0 0 0
0 1 0 0 0 ω5 0 0
0 0 1 0 0 0 ω6 0
0 0 0 1 0 0 0 ω7

















































1 1 1 1 0 0 0 0
1 ω2 ω4 ω6 0 0 0 0
1 ω4 1 ω4 0 0 0 0
1 ω6 ω4 ω2 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 ω2 ω4 ω6

0 0 0 0 1 ω4 1 ω4

0 0 0 0 1 ω6 ω4 ω2

























L8
2

If we look at the eighth roots of unity, we see that (1, ω2, ω4, ω6) are the fourth
roots of unity. In particular we have ω4 = −1. Using this information we get
the factorization

F8 = (F2 ⊗ I4)T
8
4 (I2 ⊗ F4)L

8
2,

where T 8
4 is the diagonal matrix diag(1, 1, 1, 1, 1, ω, ω2, ω3).

In order to generalize these examples, we need to define a special diagonal
matrix which is commonly called the matrix of twiddle factors.

Definition 4 (Twiddle Factors) T rs
s er

i ⊗ es
j = ωijer

i ⊗ es
j, where ω is a prim-

itive n-th root of unity, where n = rs.

The definition implies that T rs
s =

⊕r−1
i=0 (Drs

s )i, the direct sum of powers of
the diagonal matrix Drs

s = diag(1, ω, . . . , ωs−1). Also, immediately from the
definition, we get the following change of basis theorem.
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Theorem 9 T sr
r = Lrs

s T rs
s (Lrs

s )−1 = Lrs
s T rs

s Lsr
r .

The following theorem is the basis of all Cooley-Tukey type FT algorithms.
The basic divide and conquer idea behind this theorem and the means of com-
putation it implies was first presented in the fundamental paper [6].

Theorem 10 (Cooley-Tukey)

Frs = (Fr ⊗ Is)T
sr
s (Ir ⊗ Fs)L

sr
r .

Proof: The proof involves the defining properties of tensor products and the
associated matrices that have been presented. To see this, compute both sides
on the basis elements es

i ⊗ er
j .

(Fr ⊗ Is)T
rs
s (Ir ⊗ Fs)L

rs
r (es

i ⊗ er
j) = (Fr ⊗ Is)T

rs
s (Ir ⊗ Fs)(e

r
j ⊗ es

i )

= (Fr ⊗ Is)T
rs
s (er

j ⊗ fs
i )

= (Fr ⊗ Is)T
rs
s

(

s−1
∑

k=0

ωrik(er
j ⊗ es

k)

)

= (Fr ⊗ Is)
s−1
∑

k=0

ωrik+jk(er
j ⊗ es

k)

=
s−1
∑

k=0

ωrik+jk(f r
j ⊗ es

k)

=

s−1
∑

k=0

r−1
∑

l=0

ωrik+sjl+jk(er
l ⊗ es

k).

Since ω is an rs-th root of unit, ωrik+sjl+jk = ωrik+sjl+jk+rils = ω(ri+j)(sl+k).
Using this observation along with the map er

l ⊗ es
k −→ ers

ls+k, shows that the
last sum in the derivation is fn

ri+j and the theorem is proved.
The factorization in the preceding theorem decomposes the n-point FT into

four stages, the stride permutation Ln
r , the parallel operation Ir ⊗Fs, the diag-

onal matrix multiplication T n
r , and the vector operation Fr ⊗ Is. The only new

part in this computation is the diagonal matrix of twiddle factors. From our
previous discussions on tensor products and stride permutations, we know how
to implement the other components. Implementation of the twiddle factors can
be handled in much the same way. We will carry out an example that gives the
main ideas involved.

In the factorization of F8 the two factors (F2 ⊗ I4) and T 8
4 can be combined

and performed as a vector butterfly. If W is a vector containing the first 4 roots
of unity (1, ω, ω2, ω3), X0 = (x0, x1, x2, x3), X1 = (x4, x5, x6, x7), and similarly
for Y0 and Y1, then the computation Y = (F2 ⊗ I4)T

8
2 X can be performed with

the vector operations Y0 = X0 + WX1 and Y1 = X0 − WX1. The important
observation is that the diagonal multiplication can be combined with the vector
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operation F2 ⊗ I4. However, WX1 should be stored in a temporary vector, so
that the multiplication is only performed once. If vector instructions are not
available to perform this operation, then it can be converted to a loop with
the commutation theorem. After applying the commutation theorem, we need
to perform Y = S8

4(I4 ⊗ F2)L
8
4T

8
4 X . As in the construction of programs for

computing with tensor products, the code can be optimized by composing the
four operations together.

The diagonal multiplication of the input by T 8
4 can be carried out with the

following loop obtained from the definition.

for i = 0, . . . , 1

for j = 0, . . . , 3

y(4i + j) = W (ij)x(4i + j)

In order to combine this with the following permutation, we need to unroll the
loop.

for j = 0, . . . , 3

y(j) = x(j)

y(4 + j) = W (j)x(4 + j)

This can be combined with the code for L8
4.

for j = 0, . . . , 3

z(2j) = x(j)

z(2j + 1) = W (j)x(4 + j)

The resulting code can then be combined with the loop implementing I4 ⊗ F2,

for j = 0, . . . , 3

w(2j) = x(j) + W (j)x(4 + j)

w(2j + 1) = x(j) − W (j)x(4 + j)

which, when combined with the output permutation S8
4 , gives the final code

segment.

for j = 0, . . . , 3

u(j) = x(j) + W (j)x(4 + j)

u(j + 4) = x(j) − W (j)x(4 + j)

This sequence can be further optimized if the common data W (j)x(4 + j) is
collected together in a temporary. This optimization is suggested by the separate
diagonal factor, which makes explicit the temporary allocation.
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As in the case of tensor product factorizations, variations can be obtained
by applying the commutation theorem. Two such factorizations are

Frs = Lrs
r (Is ⊗ Fr)L

rs
s T rs

s (Ir ⊗ Fs)L
rs
r (33)

Frs = (Fr ⊗ Is)T
rs
s Lrs

r (Fs ⊗ Ir). (34)

The first factorization is a parallel factorization and the second factorization is
a vector factorization. Furthermore, the order of the data permutation and the
twiddle factor can be interchanged by applying theorem 9. Finally, since Fn is
symmetric, taking the transpose of any factorization leads to a new factorization.
For example, taking the transpose of the initial factorization in the Cooley-
Tukey Theorem gives

Frs = Lrs
s (Ir ⊗ Fs)T

rs
s (Fr ⊗ Is). (35)

Since this factorization has the permutation on output it is commonly called a
decimation-in-frequency algorithm, while the factorization with the permutation
on input is called a decimation-in-time algorithm. All of these variations offer
programming options that may be used to advantage on some architectures.

When n has more than two factors, theorem 10 can be repeatedly used to
obtain an algorithm for computing Fn. For example,

F8 = (F2 ⊗ I4)T
8
4 (I2 ⊗ F4)L

8
2

= (F2 ⊗ I4)T
8
4 (I2 ⊗ ((F2 ⊗ I2)T

4
2 (I2 ⊗ F2)L

4
2)L

8
2

= (F2 ⊗ I4)T
8
4 (I2 ⊗ F2 ⊗ I2)(I2 ⊗ T 4

2 )(I4 ⊗ F2)(I2 ⊗ L4
2)L

8
2.

The permutation R8 = (I2 ⊗ L4
2)L

8
2 is uniquely defined by R8(e

2
i ⊗ e2

j ⊗ e2
k) =

e2
k ⊗ e2

j ⊗ e2
i . R8 is called a bit reversal permutation, since it permutes the

indexing set by mapping an index to a number whose binary representation is
the reverse of the binary representation of the index. To see this, the defining
condition of R8 implies that e8

4i+2j+k −→ e8
4k+2j+i. In general, the bit reversal

permutation is defined as

Definition 5 (Bit Reversal) R2n(e2
i1 ⊗ e2

i2 ⊗ · · · ⊗ e2
in

) = e2
in
⊗ · · · ⊗ e2

i2 ⊗ e2
i1 .

(It reverses the order of the factors in the tensor product basis.)

The bit reversal permutation satisfies the following recursion.

Theorem 11

R2n = (I2 ⊗ R2n−1)L2n

2 .

Proof: Compute the action of both sides on a basis element in the tensor basis.
If we repeatedly apply the Cooley-Tukey factorization to FN where N =

2n, and use the recursion property of the bit reversal permutation, we get the
following factorization known as the fast Fourier transform.
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Theorem 12 (FFT)

F2n =

{

n
∏

i=1

(I2i−1 ⊗ F2 ⊗ I2n−i)(I2i−1 ⊗ T 2n−i+1

2n−i )

}

R2n .

This factorization can be implemented using the techniques for implementing
tensor products and twiddle factors. The recursive property of the bit rever-
sal permutation can be used to obtain code implementing it. Moreover, tensor
product identities can be used to modify this factorization, in the same way
that tensor product factorization were modified, to obtain programs more suit-
able to various architectures. In the next section, we briefly list some of these
variations.

5.2 Variations on Cooley-Tukey: Parallelized and Vector-

ized FT Algorithms

In this section we begin where we ended in the last section. However, we will
now derive algorithms that display complete vectorization and parallelism. Fi-
nally, we will give one example of a segmented algorithm that is similar to
the segmented tensor product algorithm developed for the CRAY. Despite the
added complexity of some diagonal matrices and the bit reversal permutation,
the same techniques that we used for modifying tensor product factorizations
carry through here.

We begin by re-examining F4 and F8. Applying the commutation theorem
to the Cooley-Tukey factorization of F4 we get

F4 = (F2 ⊗ I2)T
4
2 (I2 ⊗ F2)L

4
2.

We use this form of F4 as the starting point for recursively deriving a vector
FT algorithm. We see how this is done by looking at F8.

F8 = (F2 ⊗ I4)T
8
4 (I2 ⊗ F4)L

8
2

= (F2 ⊗ I4)T
8
4 L8

2(F4 ⊗ I2).

Substituting the previous form of F4 into this equation and using the multi-
plicative rule for tensor products gives the vector algorithm

F8 = (F2 ⊗ I4)T
8
4 L8

2(F2 ⊗ I4)(T
4
2 ⊗ I2)(L

4
2 ⊗ I2)(F2 ⊗ I4).

Generalizing this computation we get the following theorem due to T. G. Stock-
ham which is described in [5].

Theorem 13 (Stockham) If N = 2n then

FN =

n
∏

i=1

(F2 ⊗ IN/2)
(

T
N/N(i−1)
N/2N(i−1) ⊗ IN(i−1)

)(

L
N/N(i−1)
2 ⊗ IN(i−1)

)

.
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This factorization obtains full vectorization. Also the initial bit reversal permu-
tation has been spread through the computation. In fact this algorithm can be
derived by starting with the FFT and bringing the bit reversal permutation into
the computation. It is this property that makes this algorithm preferable on
some vector machines where the bit reversal permutation is hard to implement.
C. Temperton discusses some of the implementation issues of this algorithm and
mixed radix generalization in [21]. The effectiveness of this algorithm depends

on the ability to implement the permutations L
N/N(i−1)
2 ⊗ IN(i−1). The price of

the removal of the bit reversal permutation is the irregular data flow between
each of the stages.

A second variation can be obtained that has full vectorization and regular
data flow, but keeps the bit reversal permutation. This algorithm is analagous
to the vectorized tensor product factorization in theorem 8.

To obtain this algorithm, we start with the FFT and apply the commutation
theorem to obtain factors of the form F2⊗IN/2 as was done in the tensor product
case. The only difference is the twiddle factors, which get commuted by the
stride permutations. Before stating this theorem, we look at an example.

F8 = (F2 ⊗ I4)T
8
4 (I2 ⊗ F2 ⊗ I2)(I2 ⊗ T 4

2 )(I4 ⊗ F2)R8

= (F2 ⊗ I4)T
8
4 L8

2(F2 ⊗ I4)L
8
4(I2 ⊗ T 4

2 )L8
4(F2 ⊗ I4)L

8
2R8

= (F2 ⊗ I4)T
8
4 L8

2(F2 ⊗ I4)(T
4
2 ⊗ I2)L

8
2(F2 ⊗ I4)L

8
2R8.

We now state the vectorized FFT, which was first described by Korn-Lambiotte
in [11], where they discuss implementation of vector FFT’s on the STAR 100
computer.

Theorem 14 (Korn-Lambiotte) If N = 2n then

FN =

{

n
∏

i=1

(F2 ⊗ IN/2)
(

T
N/N(i−1)
N/2N(i−1) ⊗ IN(i−1)

)

LN
2

}

RN .

Important points about this factorization are the constant data flow at each
stage given by the simple permutation LN

2 . This algorithm should be well suited
to vector processors. The only possible difficulties are the permuted diagonal
and the initial bit reversal. Both issues warrant further study. The algorithm
can be segmented in the same way that the tensor product factorization was
segmented; however, the notation for the twiddle factors must be refined if we
are to write it down.

The vector algorithm just presented was a modification of a parallel algo-
rithm originally developed by Pease in [13]. To get a similar algorithm to that
of Pease, we can apply the commutation theorem.

Theorem 15 (Pease) If N = 2n then

FN = RN

n
∏

i=1

LN
2 (IN/2 ⊗ F2)T

′
i ,
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where T ′
i = LN

N/2

(

T
N/N(i−1)
N/2N(i−1) ⊗ IN(i−1)

)

LN
2 .

The algorithms that we have presented so far are the major types of vector
and parallel algorithms for computing the FT. As in the case of tensor product
algorithms many minor variations can be derived. These variations allow the
algorithm to be fine tuned to a specific architecture. Along these lines, we have
only indicated how to derive a segmented vectorized algorithm for the CRAY X-
MP. However, the tools presented earlier in this paper can be used to obtain any
desired variation based on the Cooley-Tukey theorem. An important class of
variations can be derived from the mixed radix generalizations of the algorithms
presented in this section. These generalizations are discussed in [4] and [21].
The importance of the mixed radix cases come from deriving algorithms that
increase local computation. As was pointed out in section 4.3, in the discussion
on modifying tensor product implementations, the mixed radix cases are useful
when the size of the local computation does not divide the number of points in
the Fourier transform.

The major point of this section is the ease with which variations of the
FFT algorithm can be derived using the tensor product formulation. The tools
developed in the sections on tensor products give a mechanism for carrying
out these modifications and implementing them. It is clear that one would
like to have these tools automated so that different variations could be derived,
implemented and tested on various architectures.

6 Some Notes on Code Generation and a Special

Purpose Compiler

We believe that tensor product formulation of FT algorithms allows one to easily
manipulate algorithms to get variations that might be better suited to differ-
ent architectures. We also indicated that the formulation contains information
that is relevant to architectural features of various machines. Furthermore, we
showed that the mathematical formulation can aid in the implementation of the
algorithms. However, if the user is going to be able to easily use these techniques
for selecting, modifying, and implementing algorithms, then the process needs
to be automated. This is especially true for the code generation phase. The
user might be able to guide the mathematical formulation and the heuristics for
selecting a specific variation. Nonetheless, there are thousands of choices and
the user should be able to quickly try variations without specifying the details.

The first step would be to create a parser, which determines if an algorithm
described in tensor product notation actually computes the desired Fourier
transform. The parser should also be interfaced with a code generator. The
code generator should produce intermediate code, which can then be sent to a
machine specific code generator, which produces the actual code. In this way
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the same basic code generator could be used for a variety of architectures. Fi-
nally, we would like to put heuristics into this special purpose compiler, so that
the compiler could automatically select an appropriate algorithm for a given ar-
chitecture. The architecture sould be described in terms of some key parameters
such as the size of vector registers, the available special purpose instructions,
and the types of permutations that can be efficiently implemented.

In this section we sketch a methodology [10] for automatic algorithm deriva-
tion and code generation. The basic idea is to incorporate a set of production
rules based on algebraic decompositions and tensor product algebra into an at-
tribute grammar used to generate the code. The attribute grammar produces a
parse tree corresponding to an algorithm for computing the Fourier transform
Fn. The leaf nodes of the tree correspond to macros that produce common code
sequences such as F2 and the internal nodes correspond to various algebraic op-
erations, such as direct sums, matrix multiplications, and tensor products, used
in the derivation of the algorithm. The code for Fn is produced by performing
the algebraic operations on the code sequences given by the macros. The code
is synthesized up the tree until the root node is reached and the code for Fn is
produced.

It should be pointed out that various algebraic operations (commuting ten-
sor products) introduce permutations that need to be incorporated into the
addressing of the data. This information is stored as an attribute which is
passed down the tree. Permutations get pushed down the tree by applying the
algebraic operations at the internal nodes to the permutations themselves. For
example, we can take the tensor product of two permutations or we can multiply
the permutations together. If the permutations are of a special form, such as
stride permutations, we have special rules for applying these operations.

In order to make these ideas a little clearer, we give some examples. First we
give some typical production rules. Some rules corresponding to tensor algebra
are

Am ⊗ Bn −→ Lmn
m (Bn ⊗ Am)Lmn

n . (36)

This production rule can be depicted by its action on the parse tree shown in
figure 3. A second important example is given by the tensor product decompo-
sition

Am ⊗ Bn −→ (Am ⊗ In)(Im ⊗ Bn). (37)

This is depicted in the parse tree in figure 4.
An example production based on algebraic theorems concerning the Fourier

transform is the following rule corresponding to the Cooley-Tukey theorem,

Frs −→ (Fr ⊗ Is)T
rs
s (Ir ⊗ Fs)L

rs
r (38)

which is diagrammed in figure 5.
Some possible macros for productions of these types would be F2⊗In, In⊗F2,

and multiplication by roots of unity. It is clear that different macros would have
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Smn
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n
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Figure 3: Commutation theorem

to be given for different machines. Of special interest are vector macros, based
on ideas given earlier in the section on the CRAY.

Once we have appropriate macros, in order to produce the final code, we
need to be able to combine code sequences based on the algebraic operations
given in the parse tree. Some useful ideas along these lines were discussed in
section 4.2 on implementing tensor products using loops. In fact if our macros
are based on the loop implementation discussed in that section, then we already
have an automated way of performing the algebraic operations of interest on
those macros. Furthermore, by unrolling loops to match special instructions, as
was done to implement stride permutations on the CRAY with vector loads, we
have a means of converting loop macros to machine specific macros.

We now give a general framework for how algebraic operations are performed
on code sequences. If we let [A] be the code to evaluate y = Ax and [B] be
the code to evaluate z = Bw, then the code to evaluate the direct sum A ⊕ B
is just the concatenation of [A] and [B] with the appropriate partitioning of
the input and output variables. Likewise, the code to evaluate y = ABw is the
concatenation of the codes for A and B, so that temporaries are introduced that
pass the output of B to the input of A. Finally, the code for the tensor product
can be created from these two constructions using the identity A ⊗ B = (A ⊗
In)(Im⊗B) and Im⊗B = ⊕m

i=1B. Therefore, A⊗B = Lmn
m (In⊗A)Lmn

n (Im⊗B)
which gets expanded to Lmn

m (⊕n
i=1A)Lmn

n (⊕m
j=1B). This is just n copies of [A]

followed by m copies of [B] with the appropriate permutations in the addressing.
If we had procedures to implement A⊗I or I⊗B we could implement the tensor
product more directly.

Finally, we need some mechanism to guide the application of production
rules to give a normal form or unique representation of the parse tree. These
rules could be changed for different architectures, or for different passes on the
same architecture. This would be useful for trying different algorithms. One
possible idea is to use heuristics that choose certain rules over others. This has
been examined for the code generation of certain Fourier transform algorithms
on the VAX [10]. Another alternative would be to force the resulting tree to
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Figure 4: Tensor product decomposition

have certain properties such as tensor product operations of the form A⊗I with
the vector size matching the vector registers. In this case the compiler would
search for the appropriate derivation of an appropriate goal tree.

7 Summary

The tools that have been presented in this paper give a methodology for im-
plementing Fourier Transforms. The following outlines the methodology and
shows how the techniques in this paper can be used. The procedure has been
carried out in section 4.4, using the CRAY X-MP as an example.

Given an architecture on which to implement an FT, proceed as follows:

1. Consider how to implement tensor product constructions and the associ-
ated permutations (see section 4 for general techniques and section 4.4 for
a specific example).

2. Decide which constructions have an efficient implementation (see sec-
tions 4.3 and 4.4).

3. Formulate an appropriate FT algorithm using tensor product notation
(see sections 5.1, 5.2 and [14]). Using tensor algebra (see sections 2 and 3)
manipulate the algorithm to achieve operations that have an effective im-
plementation.
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4. Implement the expression obtained in (3) using the techniques developed
in (1). The CRAY example given in section 4.4 carries this out to a pseudo
assembly implementation.

The last step should be automated so that code for an expression involving
tensor products is produced from the implementation of the basic tensor product
operations given in the first step. Once this step is automated, programming
can be carried out using a mathematical description of the FT based on tensor
products. This paper gives the basic ideas behind the automation.

The benefits of this design procedure are that a wide class of FT algorithms
can easily be programmed on any architecture once the basic tensor product
operations have been implemented. Moreover, the same basic procedure can be
followed independent of the architecture. Finally, optimizations can be obtained
at a high level based on properties of the FT. For example, vectorization and
segmentation were obtained for the CRAY X-MP using tensor product proper-
ties. With the inclusion of these optimizations, and the ability to design specific
FT’s for specific architectures, we believe that the methodology presented in this
paper can be used to obtain programs that are as efficient as optimized hand
coded implementations. Moreover the development time should be significantly
reduced.

Even when the procedure is not automated, the tools can help produce
efficient programs in a systematic manner. In the appendix we review the
application of this methodology to AT&T’s DSP32 signal processing chip.

In steps one and two of the outline we study the special features of the chip’s
instruction set that can be used to implement tensor products. In this case there
are no special vector or parallel operations; however, the chip has special fea-
tures for loop instructions. Therefore we choose a basic loop implementation of
tensor products along the lines of section 4. Furthermore, the looping constructs
incorporate various memory accesses at strides, which can be used to implement
stride permutations.

In step three we formulate a tensor product version of the Cooley-Tukey
algorithm. The only modifications to the basic algorithm are due to the num-
ber of registers. A radix eight FFT was chosen so that the building blocks of
the tensor product decomposition could fit inside the register set and be per-
formed efficiently. Further optimizations were obtained by incorporating some
of the stride permutations into the loops implementing the tensor products.
This formulation could then be implemented by translating the tensor prod-
uct operations into loop constructs. Even though this translation process has
not been automated yet, it is straightforward to carry it out by hand. Thus
the programming process is governed by the tensor product notation used to
describe the algorithm. In [7] Granata and Rofheart carried out this process
and obtained an implementation that was roughly twice as fast as the standard
library routines.

Since this methodology was carried out by hand, only several algorithms
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were tried. If steps three and four could be done by a compiler, as suggested
in section 6, many other variations could have been tried, possibly obtaining an
even faster program. Furthermore, the compiler would eliminate the potential
for translation errors that can easily occur when this is done by hand. Finally,
given a set of heuristics, the compiler could generate a class of algorithms suit-
able for the DSP32. These algorithms could then be timed and the fastest
chosen.

A Appendix: A Loop Implementation of the FT

on the AT&T DSP32

Using techniques similar to those described in this paper, J. Granata and M.
Rofheart [7] have implemented efficient FTs for 8, 16, . . . , 1024 points on the
AT&T DSP32 signal processing chip. Their implementation was roughly twice
as fast as the “standard” library implementation and is now being distributed
as the new “standard” library routines.

The DSP32 is a single chip, programmable digital signal processor, developed
by AT&T Bell Laboratories [3]. It has three architectural features that are
significant in choosing an implementation of the FT.

1. A 32 bit floating point multiply-accumulate instruction.

2. A four stage pipeline that effectively increases the number of floating point
registers.

3. two separate execution units: one for floating point arithmetic (DAU) and
one for address generation and control (CAU) which operate in parallel.

All three features are used in the Granata-Rofheart implementation. We will
discuss in detail only the implication of the third feature.

The general DAU instruction has the form

(Z=) aN = {-}aM{+,-}Y*X

or

aN = {-}aM{+,-}(Z=Y)*X

where X, Y, Z are general operands and aN and aM are one of the four accumulators
in the DAU. In the instruction, the parentheses indicate that Z is optional in
the position indicated, and the braces indicate that the enclosed operator is
optional or a choice must be made. X, Y, Z can be operands in memory whose
addresses are developed in the CAU. The addresses can be one of the following
forms where the 16 bit CAU registers rP and rI are defined for P = 1, . . . , 14;
I = 15, . . . , 19.
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1. *rP where rP contains the address of the operand.

2. *rP++ (*rP--) where rP is to be post incremented (decremented).

3. *rP++rI where rP is post incremented by the contents of rI.

Now every DAU instruction is executed in four states during which 3 memory
reads (fetch,X,Y) and one memory write (Z) are possible. These are “free” in
the sense that the instruction will take the same amount of time to execute
regardless of the number of memory operations used. In the same sense, the
address calculations implied by the various addressing modes are also free. They
are executed in the CAU in parallel with the DAU.

These addressing features can be used to implement the following loop con-
structs at the same cost. Each loop is given in pseudo Pascal along with its
implementation on the DSP32.

for i = 0, . . . n − 1

y(i) = x(i)

CNT = n-1

r1 = X

r2 = Y

LOOP: *r2++ = a0 = *r1++

if (CNT-- >= 0) goto LOOP

Without the free post increment two extra increment instructions would be
required. The next loop incorporates a constant stride different than 1. Such a
loop can be written as

for i = 0, 1, . . . (n − 1)

y(di) = x(di)

or alternatively

for i = 0, d, . . . d(n − 1)

y(i) = x(i)

These loops would be implemented on the DSP with

CNT = n-1

r1 = X

r2 = Y

r15 = d

LOOP: *r2++r15 = a0 = *r1++r15

if (CNT-- >= 0) goto LOOP
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at no extra cost than the preceeding loop. The last loop can be further gener-
alized so that the input and output strides are different. In this case we have

for i = 0, 1, . . . (n − 1)

y(bi) = x(ai)

which again gets implemented with no extra cost.

CNT = n-1

r1 = X

r2 = Y

r15 = a

r16 = b

LOOP: *r2++r15 = a0 = *r1++r16

if (CNT-- >= 0) goto LOOP

The most general loop construct described allows us to efficiently implement
the parameterized macro F2(X, a, Y, b) which has different input and output
strides. This macro can then be incorporated in a loop obtained from In ⊗ F2.
In the implementation of the FT on the DSP, Granata and Rofheart choose F8 as
the base macro instead of F2. The reason for this choice is that a multiplicative
Winograd F8 can be used which takes advantage of the multiply-accumulate
instruction.

We begin with a radix 8 factorization of F1024.

F1024 = (F2 ⊗ I512)T
1024
512

(I2 ⊗ F8 ⊗ I64)(I2 ⊗ T 512
64 )

(I2 ⊗ I8 ⊗ F8 ⊗ I8)(I2 ⊗ I8 ⊗ T 64
8 )

(I2 ⊗ I8 ⊗ F8)(I2 ⊗ I8 ⊗ L64
8 )(I2 ⊗ L512

8 )L1024
2 .

This factorization can be rewritten to obtain a direct loop implementation

F1024 = S1024
512 (I512 ⊗ F2)L

1024
512 T 1024

512

(I2 ⊗ S512
64 (I64 ⊗ F8)L

512
64 )(I2 ⊗ T 512

64 )

(I16 ⊗ S64
8 (I8 ⊗ F8)L

64
8 )(I16 ⊗ T 64

8 )

(I2 ⊗ I8 ⊗ I8 ⊗ F8)(I2 ⊗ I8 ⊗ L64
8 )(I2 ⊗ L512

8 )L1024
2 .

The various stages in this factorization can be composed at compile time to
obtain an efficient implementation. Most importantly, the initial generalized
bit reversal permutation should be incorporated into the addressing of I2 ⊗
I8 ⊗ I8 ⊗ F8. Since the bit reversal permutation takes e8

j1
⊗ e8

j2
⊗ e8

j3
⊗ e2

j4
to

e2
j4⊗e8

j3⊗e8
j2⊗e8

j1 , we get the following loop implementation of the permutation.

for j4 = 0, . . . , 1
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for j3 = 0, . . . , 7

for j2 = 0, . . . , 7

for j1 = 0, . . . , 7

y(512j4 + 64j3 + 8j2 + j1) = x(128j1 + 16j2 + 2j3 + j4)

This permutation can be composed with the preceeding stage to obtain the
following loop.

for j4 = 0, . . . , 1

for j3 = 0, . . . , 7

for j2 = 0, . . . , 7

F8(y(512j4 + 64j3 + 8j2), 1, x(16j2 + 2j3 + j4), 128)

It is only the inner loop that can take special advantage of the DSP instruction
set. However, in this case, the most general loop is required since the input and
output strides are different.

Rather than doing the multiplications required in the remaining part of the
address calculation, we can obtain the same effect by adding a constant stride
for each of the nested loops. This implementation corresponds to composing
each factor in the bit reversal permutation separately into the Fourier transform
stage. For example, the j2 loop can be combined with I2 ⊗L512

8 with the use of
the macro IF8(n, y, b, t, x, a, s). This macro has parameters for two input and
output strides, one stride for the individual elements of F8 and another stride
for the base address of the input and output to F8. Using this macro we have
the following double loop equivalent to the preceeding triple loop. The only
difference is how the addresses are computed.

for j4 = 0, . . . , 1

for j3 = 0, . . . , 7

F8(y(512j4 + 64j3), 8, 1, x(2j3 + j4), 16, 128)

This process can be continued to eliminate the remaining multiplications in the
address computation.

A macro of the preceeding form can be used in the implemenation of the
remaining Fourier transform stages, since each stage is of the form In ⊗F . The
implementation of the remaining stages has already been discussed in the sec-
tion on programming tensor products and the section on the C-T algorithm,
where the implemenation of twiddle factors was discussed. Since the twiddle
factors can be composed with Fourier transform stages, the original factoriza-
tion, which needs 8 run time stages, can now be computed with 4 stages after
applying the compile time optimizations. Finally, we should mention that the
implementation of the bit reversal permutation takes advantage of the DSP ar-
chitecture in one of the 3 nested loops needed to implement it. This suggests
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that an alternative factorization might be tried, where the bit reversal is brought
into the computation and only one permutation of the form I ⊗ L is done at
each stage.
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