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Abstract-Signal detection techniques based on time-frequency sig- 
nal analysis with the Wigner-Ville distribution (WVD) and the cross 
Wigner-Ville distribution (XWVD) are presented. These techniques are 
shown to provide high resolution signal characterization in a time-fre- 
quency space, and good noise rejection performance. This type of de- 
tection is applied to the signaturing, detection, and classification of 
specific machine sounds: the individual cylinder firings of a marine en- 
gine. For this task, a four step procedure has been devised. 1) The 
autocorrelation function (ACF) is first employed for ascertaining the 
number of engine cylinders and the firing rate of the engine. 2) Further 
correlation techniques are then used to detect the time at which indi- 
vidual cylinder firing events occur. 3) WVD and XWVD based analyses 
follow to produce high resolution time-frequency signatures. 4) Fi- 
nally, 2D correlations are employed for classification of the individual 
cylinders. The proposed methodology is tested on real data. XWVD 
based detection is also applied to detection of a transient with unknown 
waveshape (using real data). 

I. INTRODUCTION 

HE detection of transients in noise is a problem of T major importance in underwater acoustics, seismic 
processing, and radar. In these applications, the transient 
is to be detected and its beginning and end determined. 
In some circumstances, when a set of reference templates 
is available, a second stage of processing is needed to 
perform classification. 

A particular example where this type of detection is im- 
portant is an underwater surveillance system, where the 
detection of transients can signal the presence of an un- 
derwater vessel. In many situations, no reference tem- 
plates are available for comparison; this problem of de- 
tecting transients of unknown waveshape is considered in 
Sections 11-A, 111, and V of this paper. Ideally, however, 
one would have a library of profiles for all possible ves- 
sels, with each profile containing as much information as 
possible for the task of discrimination. One such piece of 
information is the power spectral density (PSD), which 
gives indications of the engine’s structure. Others could 
be characteristic “signatures” of particular transient ac- 
tivity unique to that vessel. In this paper. signaturing, 
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using time-frequency analysis with the Wigner-Ville dis- 
tribution (WVD) and cross Wigner-Ville distribution 
(XWVD) is considered, with specific application to clas- 
sification of individual cylinder firings. In this scheme, 
the ACF is used as an aid for determining the engine firing 
rate and number of cylinders. The WVD is then used suc- 
cessfully to form time-frequency signatures of the indi- 
vidual cylinders of a marine engine, with these being used 
for subsequent detection and classification. An example 
of application of XWVD based techniques to detection of 
an unknown transient is also provided. The transient was 
from an unknown source in a marine diesel. The data was 
provided by the Australian Defence Science and Tech- 
nology Organisation (DSTO). 

11. DETECTION A N D  CLASSIFICATION OF TRANSIENTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADetection 

To solve the problem of detecting a signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ( t ) ,  having 
unknown waveshape, a number of approaches have ap- 
peared in the literature. The problem is to determine, in 
a noisy environment, whether a signal is present (hypoth- 
esis HI ) or not (hypothesis H ( , )  

H,: r ( r )  = n ( r )  

HI: r ( t )  = s ( t )  + n ( t )  ( 1 )  

where n ( t )  is an additive noise process. Some of the ear- 
liest detectors were the energy detector [ I ]  and the spec- 
tral density correlator [2]. More recently, adaptive detec- 
tors have been proposed. For these, a minimum variance 
estimate of the signal is first obtained, then this estimate 
is used as the reference signal for a conventional detector 
[ 11. One method for performing this critically important 
estimation in a background of white Gaussian noise in- 
volves modeling the signal as the impulse response of a 
filter having a rational system function [3]. It was shown 
in [ 3 ]  that this adaptive detector is better than the energy 
detector, at least when the noise variance is known and 
when the number of parameters to be estimated is small 
compared with the number of data points (“better” in the 
sense of having higher detection probability for a given 
false alarm probability). 

B. Cluss$cution 

Where classification is required as well as detection, 
one must first segment the signal by determining the tran- 
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sient’s beginning and end. AR modeling is often used [4], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 5 ] .  Because of the short duration of transients, parame- 
tric modeling has also often been used to represent the 
information content of the transient. In such cases, the 
feature vectors can contain the model parameters, along 
with other variables such as the transient duration, the 
number of subevents, instantaneous amplitude, instanta- 
neous phase, and various moments of the envelope and 
frequency histogram data [4], [6]. High order AR param- 
eters were used as features for a classification procedure 
in [6], which was based on a minimization of the “spec- 
tral distance” between the unknown transient and any one 
of a set of known or& 

111. SIGNAL DETECTION USING THE WVD 

While the model based approaches presented in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 3 ]  and 
[4] perform well under a number of circumstances, their 
performance is limited for nonstationary signals in high 
noise environments, particularly when the arrival times of 
the transients are unknown. For this, and other reasons, 
several authors have proposed detection and estimation 
methods based on time-frequency distributions. Spectro- 
gram correlators, for example, have been in use for tran- 
sient analysis for some time and are reviewed in [7]. While 
they provide very good intuitive representations of the 
signal’s spectral content, resolution is poor, the detector 
is suboptimal due to the loss of phase information, and 
reconstruction of the signal often occurs at some cost. 

The Gabor representation has also been used to detect 
transients of unknown waveshape and arrival time [8]. 
This representation was chosen largely because of its in- 
herent ability to localize signals in time and frequency. 
The authors of [8] chose a one sided Gaussian window to 
match the often abrupt changes characteristic of transients 
and formed a detection statistic which is a function of the 
Gabor coefficients. 

The Wigner-Ville distribution, a member of Cohen’s 
class of generalized time-frequency representations [9], 
has been proposed by several authors as a tool for the 
detection problem [IO]-[12] and [15]. It is defined by 

’! 

f m  

w ; , ( t , f )  = Z , ( f  -t T / 2 ) 2 , * ( t  - T/2)e-’2T’7 d7 
- m  

(2 )  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ,  ( t )  is the analytic signal corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ( t )  

Similarly, the XWVD of two signals, s (  I )  and r (  I ) ,  is 
1101. 

f m  

w L , ( t r f )  = [ Z , ( t  + 7/2)Z;(t - 7/2)e-’2T’7d7 
-m 

( 3 )  
where z,.( t )  is the analytic signal corresponding to r (  f ). 

One of the reasons for using the WVD (XWVD) for 
detection purposes stems from the equivalence between 
time domain correlations and XWVD correlations. The 
time domain correlations, which appear as the solutions 

to many classical detection problems, may thus be re- 
placed by equivalent WVD (XWVD) correlations [ 161. 
The advantage of this replacement is that time-frequency 
feature isolation and consequent noise suppression using 
time-varying filtering is easier [lo], especially where the 
signal waveshape is unknown. Classical detectors and es- 
timators have used autocorrelation functions to represent 
nonstationary processes. The Wigner-Ville spectrum 
(which is simply the expected value of the Wigner-Ville 
distribution) of a nonstationary process has been shown 
to contain essentially the same information as its autocor- 
relation function (they form a Fourier transform pair) [lo], 
but describes time-varying signals well. We are led nat- 
ut-ally, then, to substitute the WVD for the autocorrelation 
function, and the XWVD for the cross-correlation func- 
tion. 

A .  Detection with the WVD and the XWVD 

Theoretical results for detection of a signal using the 
Wigner distribution (WD), as well as for the cross Wigner 
distribution (XWD) were derived by Kumar and Carroll 
in [12], [ 131, and compared with matched filter detection. 
Their results are summarized here and extended for ap- 
plication to the WVD, which uses the analytic signal 
rather than the real signal, and therefore provides funda- 
mental and practical advantages over the WD [ 171. 

Consider a signal s ( t )  with energy = A ,  sent through 
a noisy transmission channel, so that the output of the 
channel is r (  t )  = s (  t )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ( t ) ,  where n (  t )  is a zero mean, 
white Gaussian noise process of spectral height No.  A de- 
tection statistic ( q )  is formed, such that if q exceeds a 
certain threshold, the signal is considered present; if less, 
it is decided that no signal is present. A signal-to-noise 
ratio (SNR), which provides a‘ measure for comparison 
between WVD, XWVD, and the matched filter detection 
methods, is defined in [ 121 as 

IE(?lHl) - E(?IH,)l 
SNR = (4)  

{ 1 /2 [va r (q lHJ  + var(?IHo)]}1’2 

where E (  q I HI ) and E (  q I H O )  are the expected values of 
q given HI and HO, respectively, and var ( q  I HI ) and var 
( q  I H O )  are the variances of q given HI and H,, respec- 
tively. 

1) Detection with a Matched Filter: For a matched fil- 
ter we have 

r f m  

where ( z,z,  ) denotes the inner product of z,( t )  and z, ( t ) ,  
as defined by (3, and 

SNR = a. (6 )  

2) Detection with the WVD: For WVD based detection 
r f m  r f m  
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Now Moyal’s formula zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 181 states that for two XWVD’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r + m  r + c =  

= (z,z3)(z27.4)*.  

Hence (7) reduces to 

(9) 

and the noise performance for WVD detection is given by 
[I21 

SNR = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJA/N, - I/-. ( 10) 

This expression equals the SNR for a matched filter scaled 
by a factor of 1 /W. For small values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ N o ,  
the SNR is substantially reduced from the matched filter 
case. This reduction is due to the nonlinearity of the WVD 
which accentuates the effects of noise by producing both 
autoterms and cross-terms of the noise in its spectral for- 
mulation. That is, the WVD propagates noise from one 
region of the t-fplane to another, even showing noise at 
a particular time when there is none present [14]. How- 
ever, even for low SNR, estimators based on the WVD 
can be more useful than time-domain based estimators, 
since they allow a “built-in” time-varying filtering op- 
eration not possible in the time domain (see Sections IV 
and V). Furthermore, the noise propagating properties of 
the WVD can be reduced by windowing the distribution. 

3) Detection with the XWVD: The XWVD based de- 
tection statistic is 

p f w  p + m  

Using Moyal’s formula [ 181, this statistic becomes 

Vxwvd = ( W , > < z J , > *  = A(7 .A) .  (12) 

The XWVD detection statistic is thus the matched filter 
detection statistic multiplied by the signal energy (i.e., by 
a constant). Hence, the SNR for XWVD detection will be 
identical to that of the matched filter. 

Hence, the detection statistics formed by the correlation 
of the reference signal WVD and the XWVD of the ref- 
erence and observed signals is the same as that of the stan- 
dard cross correlator except for a constant. The former 
statistic may then be used equivalently in any detection 
schemes. We will see later that due to the extra degree of 
freedom given by the 2D nature of the WVD, XWVD 
based estimators can perform better if this extra flexibility 
is used. 

B. Interpretation and Application of XWVD Scheme 

In general, the XWVD is complex, becoming the WVD 
(which is real) for z ,  = z,. Thus any distortion of the 
signal other than a real valued scaling causes real and 
imaginary oscillating “noise” components to appear in 
the XWVD. When a 2D correlation with the reference 
WVD is performed over the time-frequency plane, the 

imaginary part is rejected, and additionally, almost all the 
real oscillations are smoothed out, which accounts for the 
improved noise performance. 

For practical purposes one may also form a “modified 
XWVD” detection statistic 

+ m  

TI,!! = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI,” j - m  w ; l ; ~ ( r , f ) w ~ ; , ( r , f ) d t d f  (13 )  

= ( Z , Z , > ( Z , Z , > *  = A,(z,z,)  (14) 

where A ,  is the energy of the arbitrary signal z ,  ( t ) .  
This statistic is again equivalent to the cross-correlator 

statistic, so that it is possible to form a class of optimal 
2D correlation statistics by varying z ,  ( t ) .  The usefulness 
of the class of detectors specified by (13) is that the esti- 
mation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ( r )  has now been replaced by estimation of 
WZ,:$ (t, f ). Thus the estimation problem has been trans- 
ferred into a time-frequency space, where feature selec- 
tion and time-varying filtering are easier. Normally, in the 
WVD (XWVD) plane, the presence of cross terms makes 
it very difficult to distinguish multicomponent signals from 
the noise, prohibiting the appropriate filtering. If, how- 
ever, z ,  ( t )  is chosen wisely, the autoterms and the cross- 
terms can be isolated, allowing relatively easy 2D feature 
extraction with built-in noise suppression. 

C. Signal Estimation Examples 

Previous work has demonstrated that for monocompo- 
nent asymptotic FM signals, the instantaneous frequency 
(IF) law J ( t )  is a very useful characteristic of the signal 
for detection [ 101. Since the signal contribution is con- 
centrated aroundJ ( t ) ,  the application of a 2D windowing 
which preserves all the points ( r , f )  in the neighbourhood 
J ( t )  and filters out the others preserves the useful infor- 
mation in the signal and indeed increases by an order of 
magnitude the SNR. The subsequent application of a 2D 
cross correlation should then enhance the detection 
scheme [ 1 13. 

According to the theory in the previous section, the 
modified XWVD scheme is used in preference to the 
WVD based one. The signal z . ~ (  t )  referred to in (13) is 
taken to be a unit amplitude signal, reconstructed from 
the IF estimate of the signal 

z x ( t )  = n,(t - T/2)ej2**(‘) 

where + ( r )  = SoJ(a )daand I I , ( t )  = 1 for -T/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 t 
5 T/2 and 0 elsewhere. 

From this signal, one can construct the cross Wigner- 
Ville distribution W:,-, ( t ,  f ). See, for example, Fig. 1 
which shows the WVD of a noisy linear FM signal, and 
Fig. 2 which shows the XWVD (magnitude) of the same 
signal, with the reference being formed as in (15). Noise 
reduction through thresholding or windowing may then be 
affected to yield the estimate Wct:-(t, f )  in Fig. 3.  This 
estimate can be used in ( 1  3) to form the appropriate de- 
tection statistic q,,,. Note that what is particularly useful 
about this approach is the ability to localize the signal in 
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the time-frequency plane, so that the noise (which is dis- 
persed broadly over the time-frequency plane) can be 
largely eliminated. 

The method may be generalized to multicomponent sig- 
nals, by forming a z ,  ( r ) ,  such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z , ( t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc Z r , ( f )  (16) 

I =  I 

where the z,,( t )  represent the instantaneous frequency laws 
o,f the various components. The procedure for estimating 
W2,:\ (t ,  f ) then involves estimation of the individual 

Wzt y 5  (t ,  f ) and summing 
I1 

W:&"f) = c @:,:&,f). (17) 
I =  I 

With this approach, the cross-terms can be isolated from 
the autoterms, with resultant noise suppression and time- 
frequency feature selection being relatively easy. Fig. 4 
shows the WVD of three linear FM sjgnals of unknown 
slope in 3-dB noise. Fig. 5 shows a W.. , ; ( r , f )  estimate, 
where the frequency laws have been estimated by an al- 
gorithm based on dechirping techniques [ 191. Note that 
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here the cross-terms have been discarded to achieve good 
noise suppression. In some situations, one may not need 
to specifically estimate the laws at all, but may rely on 
data averaging and feature selection techniques. Such an 
example is presented in Section IV. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Digital Implementation 

A degradation in SNR of up to 0.5 dB was reported in 
1131 when using the discrete WD for detection, as op- The main advantage of classification techniques based 
posed to the continuous time WD. It was shown explicitly on time-frequency distributions such as the WVD 
in [20] and implicitly in [21] that in using the WVD there (XWVD), and as proposed in this paper, is the greater 
is no SNR degradation. The degradation of the WD potential for formation of the feature vector, which is af- 

scheme as presented in [ 131 is due to the analytic signal 
not being used in the formulation of time-frequency rep- 
resentation, with aliasing occurring as consequence. As 

pointed out in [ 171, the practical use of the WD for time- 
frequency signal analysis must involve calculation of the 
analytic signal. 

E. Signal Class$cation Using the WVD 
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forded by the 2D nature of the representations. If, for ex- 
ample, one knows that a certain transient has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn time-fre- 
quency features, one can form a number of individual 
estimates W,,,, ,( t ,  f ), with the overall estimate being 
given by their sum according to (17). 

ber of cylinders. One example used was a 4 cylinder die- 
sel tractor engine running at 1100 r/min. For this case, 
the engine speed (CSR) is given by CSR = 1100/60 = 

18.33 Hz. Since the engine is four-stroke, the CFR is half 
this amount, while the EFR is four times the CFR, i.e., 

IV. APPLICATION I-SIGNATURING, DETECTION, A N D  CFR = CSR/2 = 9.16 Hz and 
CLASSIFICATION OF INDIVIDUAL CYLINDER FIRINGS 

In this section, we develop a methodology for detection 
and classification of particular underwater transients: the 
individual firings of an engine. The aim is to classify a 
given firing according to the cylinder which produced it. 
The application highlights the concepts outlined in pre- 
vious sections. A four step procedure has been devised to 
this effect. 

A .  Step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Estimation of the Number of Cylinders and 
Engine Firing Rate 

This first step is a preprocessing stage used for segmen- 
tation of the engine signal into individual cylinder firings. 
The segmentation techniques referred to in Section 11-B 
are not appropriate here, since we are not considering iso- 
lated transients, but rather, “repeating” transients. Per- 
forming this segmentation requires knowing the engine’s 
rate of firing as well as the number of cylinders. The 
method for predetermining them is based on the engine’s 
autocorrelation function (ACF). The following terms are 
used throughout the text: CSR = the Crankshaft rotation 
rate (i.e., engine speed); CFR = the cylinder firing rate 
(firing rate of a particular cylinder); EFR = engine firing 
rate. 

For a four stroke engine, we have CFR = CSR/2 and 
EFR = CFR X number of cylinders. 

Several engines were used to provide test data to “cal- 
ibrate” this technique for determining the EFR and num- 

EFR = 4 * CFR = 36.66 Hz. 

The PSD for this sound is seen in Fig. 6 and its ACF in 
Fig. 7. The EFR from either the PSD or the ACF is found 
to be 36.3 Hz. Strong harmonics of the EFR are also ev- 
ident in the PSD. The CFR spacing (indicated on the PSD 
and ACF) is found to be 9.2 Hz,  and again seems to cor- 
relate with the calculated value. The number of cylinders 
is determined either by dividing the EFR by the CFR or, 
more easily, by inspection from the ACF (by noting the 
obvious periodicities). The ACF also shows every second 
peak to be stronger than the surrounding ones. This pat- 
tern is due to the periodicity of two cylinder firings (for a 
4 cylinder 4-stroke) corresponding to the engine speed. 

Note that while there is theoretically no difference in 
information content between the two representations, the 
PSD and ACF, apart from any windowing which may be 
applied in forming them, the autocorrelation can often 
show up periodicities in a way which is easier to interpret 
[22]. This can be clearly seen in Figs. 8 (autocorrelation 
for a length of signal from an underwater diesel sound) 
and Fig. 9 (PSD for the same signal segment). The peri- 
odicity every fourth cycle is much easier to detect in Fig. 
8 than it is in Fig. 9. The autocorrelation function, then, 
can be a more natural tracker of short-term periodicities, 
and is thus preferred in this preprocessing stage. 

The ACF of another machine sound is shown in Fig. 
10. It corresponds to a 3 cylinder tractor engine. This fig- 
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ure shows a sequence of peaks corresponding to the cyl- 
inders firing, with very obvious major peaks appearing at 
every third one. A number of other engines were tested 
and, for simple engine sound signals, the EFR and the 
number of cylinders were easily obtained. Problems arose, 
however, when the engines became larger and more com- 
plicated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Step 2. Detection 

In this and the subsequent sections, we deal with the 
problem of determining whether a particular cylinder fir- 
ing could be detected and identified (classified) from a 
given set of signatures. To determine whether a cylinder 
firing event has occurred and at what time, we examine 
the ACF once more. Examination of Figs. 7-9 shows that 
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cylinder firing events are detected quite easily by corre- 
lation techniques (by noting when a specified threshold is 
exceeded). The reference time for a specific'ev'ent occur- 
ring was taken as the time of local maximum correlation. 

C. Step 3. Signaturing 

The ACF representation of an underwater machine 
sound is shown in Fig. 8, and the presence of a 4 cycle 
periodicity is clearly indicated. It is intended to demon- 
strate that WVD signaturing of each of the 4 cylinders is 
possible, such that a particular cylinder firing could be 
identified (classified) using these signatures. To do the 
signaturing the sound signal was first segmented with each 
segment length corresponding to one cylinder firing. The 
time span in the first instance is most easily found from 
the ACF, as explained above, although an estimate can 
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I shows the correlation between segments 5-8 and seg- 
ments 1-4 (the “References”). The values of highest cor- 
relation for a particular segment are underlined, and it is 
seen that these underlined values correspond to segments 
which are four segments apart (i.e., along the diagonal), 
just as they should be for a four-cylinder engine. Thus 
classification has been successfully achieved. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. Comparison Between Time Domain Correlations and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
WVD Correlations 

Table I1 was constructed to compare the performance 
of WVD signaturing and time domain signaturing. It rep- 
resents the time correlations between the same eight sig- 
nal segments shown in Table I. For this table, signal seg- 
ments 1 to 4 again correspond to the table columns, and 
signal segments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 to 8 correspond to the rows. The table 
elements are the peak correlation values between the var- 
ious time signals. For each row, the value of highest cor- 
relation is underlined; the underlined values are seen to 
not lie along the diagonal. Thus it appears that a simple 
time correlation procedure is unable to differentiate be- 
tween the different cylinders. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0.5 > 
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Fig. IO. Autocorrelation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 3 cylinder diesel. 

also be obtained by noting the periodicity in the variation 
of the instantaneous frequency [23]. Wigner-Ville anal- 
ysis was then performed on 8 consecutive segments of 
signal (numbered 1-8) from the signal file, with a view to 
producing signatures for each cylinder. 

To produce the WVD plots, a windowing procedure had 
to be applied [24]. The window length was selected such 
that there was good frequency resolution as well as good 
resolution in time; a window length of 395 sample points 
(5  kHz sampling frequency) was found to give adequate 
frequency resolution, and 50% overlapping of the win- 
dows was used to ensure sufficient detail in the time do- 
main. WVD plots were produced for all eight signal seg- 
ments (Fig. ll(a)-(h)). Note that in this case the 
signatures were formed using Wigner-Ville distributions. 
One could also form signatures using Wigner-Ville spec- 
tra, by ensemble averaging the WVD’s of many cylinder 
firings (see Section 111). 

It was observed that good correspondence existed in the 
low frequency region of the WVD for segments corre- 
sponding to the same cylinder. This result is illustrated by 
comparing Fig. 1 l(a) and (e) which correspond to the first 
and second firings of cylinder 1. Rectangles have been 
used to highlight the relevant parts of the time-frequency 
distribution. Similarly Fig. 1 l(b) and (f), 1 I(c) and (g), 
and Fig. 1 l(d) and (h) represent the first and second fir- 
ings of cylinders 2, 3, and 4, respectively. It seemed that 
the cylinders had indeed been signatured. The same sort 
of signaturing was found to be possible when a 4-cylinder 
diesel Holden Gemini car was tested [23]. 

Comment: In Section 111-A we indicated that time cor- 
relations (for white noise) are equivalent to WVD corre- 
lations. One reason for the apparent anomaly seen here is 
that the WVD estimators were formed by performing the 
2D cross correlations over the low frequency region shown 
bounded by rectangles in the time-frequency plots rather 
than over an infinite frequency range (see Fig. 1 l(a)-(h)). 
This calculation corresponds to an effective prefiltering 
with a low-pass filter. Note that it could, in fact, be ob- 
tained in the time domain in this simple case. However, 
if the signal to be detected has nonstationary spectral 
characteristics (as in the example presented in Section V) 
then we apply an effective time-varying prefiltering by 
multiplying the WVD of the reference signal by a time- 
varying function W,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( f ,  f ) which preserves (or even en- 
hances) the important features of the signal. Note that this 
cannot be achieved in the time domain. This approach suf- 
fers from problems due to the nonlinearity of the WVD, 
but as discussed previously, these can be overcome by 
using the XWVD instead. 

For the purposes of comparison, a low-pass filtering was 
then performed on data in the time domain as described 
above, and time correlations were again performed be- 
tween the various signal segments. A sample filtered sig- 
nal (for firing 2) is shown in Fig. 12). The correlation 
values thus obtained are shown in Table 111. The values 
of highest correlation (identified by underlining) in Table 
111 do not fall on the diagonal, showing that the time cor- 
relations of filtered signal segments are also not reliable 
in signaturing cylinders. The better performance of the 
WVD in this case is explained by the fact that the WVD 
estimators in this case have been formed by a windowing 
procedure, which has absorbed some of the energy from 
either side of the actual cylinder boundary to give the sig- 
nature some information as to the context in which it ap- 
pears. Thus, while we see that time correlation techniques 

D. Step 4. Classijicarion 

For classification of the cylinder to which each of the 
test signatures belonged, 2D WVD correlation techniques 
were used (based on the principles in Section 111). Table 
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TABLE I 
WVD CORRELATIONS 

Ref. I Ref. 2 Ref. 3 Ref.4 

0.583 0.555 
0.438 0.467 0.692 
0.589 0.535 0.585 

Seg.8 0.326 0.52 I 0.540 

are theoretically equivalent or better in performance than 
WVD correlations, the potential for preprocessing of the 
WVD (through window selection, etc.) and postprocess- 
ing (time-varying filtering, feature selection, etc.) can 
make it more a reliable discriminator. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAData Averaging 

Table I illustrates the separation achievable between dif- 
ferent cylinders of a diesel engine with WVD correla- 
tions. Given that it is possible to isolate the interval over 
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Ref. 2 Ref. 3 Ref.4 

TABLE 111 
FILTERED TIME CORRELATIONS 

Ref. I Ref. 2 Ref. 3 Ref.4 

0.624 0.502 0.758 
0.395 0.752 0.612 
0.738 0.684 0.786 0.564 
0.644 0.663 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.541 

Ref. I 

which a particular cylinder is firing, we decided to aver- 
age a number of realizations of a particular cylinder fir- 
ing. The effects of the averaging were evaluated quanti- 
tatively by reforming the correlation tables using reference 
signatures obtained by the averaging procedure. Tables I, 
IV, and V represent the correlation values between cyl- 
inder firings for 3 different time intervals, with each in- 
terval having all cylinders fire once. For these tables, seg- 
ments 1-4 were used as the reference signatures. Tables 
VI-VI11 represent correlation values for the same three 
intervals (with a small offset) with averaged reference sig- 
natures. These correlation values show significantly 
higher separation between cylinders, indicating quite 
clearly the importance of averaging these signals. It must 
be noted that some of this improved separation may be 
due to using the test signature to form the reference sig- 
nature (through the averaging process); despite this, gen- 
uine improvement does seem to be substantial. 

To establish the generality of the techniques, several 
other known engines were tested to see if their cylinders 
could also be signatured using this method. The results 
were affirmative and may be found in (231. It should be 
noted, however, that the signatures do change over time 

Ref. 2 Ref. 3 Ref.4 

TABLE IV 
WVD CORRELATIONS FOR  TIM^ D ISPLACFM~NT = 2/CFR 

Ref. I I=+===- 
1 Seg.12 1 0.402 

TABLE V 
WVD CORRELATIONS FOR T IME DISPLACEMENT = 3/CFR 

Ref. I Ref. 2 Ref. 3 Ref.4 

Seg. I3 0.481 0.475 0.551 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Seg. I4 0.462 0.407 0.523 
Seg. I5 0.601 0.512 0.712 0.502 

0.514 

1 0.589 0.476 1 ill;O; 1 0.836 0.498 0.644 
0.566 0.892 
0.480 0.61 I 0.917 

TABLE VI1 
AVFRAGFD WVD CORRFLArlON5 FOR TIMt DISPLACFMENT = 2/CFR 

0.916 

seg. 1 1  0.577 
Seg. I2 0.482 

seg. 10 0.556 
0.464 0.527 0.545 

0.485 0.542 

0.587 

Seg. I3 0.826 

Seg.15 0.431 
Seg.16 0.338 

Seg.14 0.sZs 
0.467 I 0.525 I 0.555 1 

0.485 0.535 
0.479 
0.354 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUse of the XWVD to Signature Cylinders 

In Section 111 it was shown that for optimal detection in 
the time-frequency domain, the detection statistic should 
be formed by a 2D correlation between the WVD of the 
reference signal and the XWVD of the reference and ob- 
served signals. This section aims to apply XWVD based 
detection to the underwater diesel sound, and to compare 
the results obtained with WVD based detection. 

For the initial WVD based scheme implemented in Sec- 
tion IV-D the first firings of cylinders 1-4 were initially 
assigned as the reference signals. The second set of firings 
were then assigned to be the observed signals. Table I 
shows the detection statistics based on these assignments. 

v 
~~ ~ ~ ~ ~ ~ - .  In Section IV-F the scheme was modified suchthat the 
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Obs. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.975 0.594 0.655 
Obs. 2 0.577 Q.953 0.513 
Obs. 3 0.609 0.530 0.957 
Obs. 4 0.503 0.595 0.508 
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Fig. 13. WVD of transient in 3-dB noise. 

reference signal was obtained by an averaging of several 
firings from the same cylinder. Table VI shows the cor- 
responding detection statistics. There is a general im- 
provement in cylinder separation. Table IX shows the de- 
tection statistics when the reference signal is obtained by 
an averaging, and when the XWVD is used. Significant 
improvement in separation of the cylinders can be seen, 
thus supporting the usefulness of the XWVD based 
scheme. 

v. APPLICATION 2-DETECTION OF TRANSIENT OF 

UNKNOWN WAVESHAPE 

Another example of the effectiveness of XWVD based 
time-frequency correlations incorporating time-varying 
filtering, is illustrated for real data in Figs. 13-16. Fig. 
13 represents the WVD of a real transient (which exhibits 
a predominantly monocomponent structure) in 3-dB noise. 
We use the techniques described in Section 111-C to first 
estimate the region in the time-frequency domain where 
the signal energy is concentrated, and to then adaptively 
detect the signal. The procedure is as follows. 

1) The instantaneous frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ; ( t )  of the signal is 
first estimated [ 101. 

2) J ;  ( r )  is used to resynthesize a signal z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I ) .  
3) The XWVD, W:,< , ( r , f ) ,  is then formed, with its 

magnitude being shown in Fig. 14. 

4) From this magnitude representation, a preliminary 
bandpass filtering operation is performed, and then 
thresholding is applied to form a time-frequency window 
function Wh(t, f )  (see Fig. 15). This procedure is ex- 
pected to enhance the important features of the signal and 
to eliminate noise. 

5) The final estimate for I+':,:,( t ,  f ) is obtained by mul- 
tiplying WzrZr ( r , f )  by Wh(t,f), and is shown in Fig. 16. 

The value of the detection statistic for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH I  divided by 
the statistic for H,, determined according to (13), was 
found to be 12.9. The corresponding ratio for the case 
where the signal was estimated using conventional filter- 
ing only was found to be 9.7. XWVD based time-fre- 
quency correlations, then, perform better in this case. 

Simulations were also performed to evaluate the noise 
performance of the above scheme when applied to a fre- 
quency modulated signal with the following parameters: 
duration: 0.64 s, sampling frequency: 200 Hz, frequency 
law: linear 15-96 Hz, amplitude envelope: Gaussian rise 
with standard deviation = 0.1 s and Gaussian fall with 
standard deviation = 0.56 s, sample length: 128. The 
performance of the XWVD scheme and the energy detec- 
tor are shown plotted in Fig. 17. It is seen that the XWVD 
scheme performs better at all SNR. A different approach 
to a similar problem was provided in [25]. There the au- 
thors used unsupervised weighted maximum likelihood 
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Fig. 17. Performance of the XWVD scheme and the energy detector. 

clustering in the Wigner-Ville plane to track and detect 
mono- and multicomponent frequency modulated signals. 

VI. CONCLUSION 

A number of schemes for transient detection have been 
reviewed, with emphasis on WVD and XWVD based 
schemes. For the case of white noise, detection schemes 
using the XWVD are equivalent to the familiar optimal 
matched filter, while WVD based detection schemes are 
roughly equivalent for high SNR but degrade in perfor- 
mance as the SNR decreases. 

The WVD and XWVD detection schemes were applied 
to the signaturing of individual engine cylinders. An en- 
gine sound signal was segmented into intervals corre- 
sponding to one cylinder firing, and time-frequency anal- 
ysis was performed on each of the segments. It was found 
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that a consistent time-frequency pattern was produced for 
each particular cylinder. Using one set of time-frequency 
patterns from each of the cylinders as the reference sig- 
natures, a methodology to detect cylinder firing events and 
to identify the cylinders to which they belonged was de- 
scribed. Correlation techniques were used for the detec- 
tion, while WVD based techniques were used for the 
identification. Using the WVD detection scheme and ex- 
tracting only part of the time-frequency plane, it was pos- 
sible to correctly identify the particular cylinder, while 
with the simple time-correlation scheme it was not pos- 
sible to do so. When the XWVD scheme was used the 
cylinder could be identified with even greater confidence 
than with the WVD. The XWVD has also been applied to 
detection of a nonstationary signal with unknown wave- 
shape and has been shown to perform better than the en- 
ergy detector. 
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