
A Methodology for Energy-Quality Tradeoffs  

Using Imprecise Hardware 
Jiawei Huang 

Computer Engineering 
University of Virginia 
jh3wn@virginia.edu 

John Lach 
Electrical and Computer Engineering 

University of Virginia 
jlach@virginia.edu 

Gabriel Robins 
Computer Science 

University of Virginia 
robins@cs.virginia.edu 

 
ABSTRACT 

Recent studies have demonstrated the potential for reducing 

energy consumption in integrated circuits by allowing errors 

during computation. While most proposed techniques for 

achieving this rely on voltage overscaling (VOS), this paper 

shows that Imprecise Hardware (IHW) with design-time structural 

parameters can achieve orthogonal energy-quality tradeoffs. Two 

IHW adders are improved and two IHW multipliers are 

introduced in this paper. In addition, a simulation-free error 

estimation technique is proposed to rapidly and accurately 

estimate the impact of IHW on output quality. Finally, a quality-

aware energy minimization methodology is presented. To validate 

this methodology, experiments are conducted on two 

computational kernels: DOT-PRODUCT and L2-NORM – used 

in three applications – Leukocyte Tracker, SVM classification and 

K-means clustering. Results show that the Hellinger distance 

between estimated and simulated error distribution is within 0.05 

and that the methodology enables designers to explore energy-

quality tradeoffs with significant reduction in simulation 

complexity. 

Categories and Subject Descriptors 

G.1.6 [Numerical Analysis]: Constrained optimization 

General Terms 

Algorithms 

Keywords 

Imprecise hardware, energy-quality tradeoff, static error estimation 

1. INTRODUCTION 
High power consumption is one of the greatest challenges 

currently facing IC designers. Although circuit-level techniques 

such as dynamic voltage and frequency scaling (DVFS), as well 

as sub- and near-threshold operation have proved effective in 

power reduction, they are fundamentally limited by the critical 

path of the circuit. Recently, a new design philosophy has 

emerged that relaxes the absolute correctness requirement to 

achieve further power reductions. For example, application noise 

tolerance [1] combines a voltage-overscaled computation core 

with a low-precision error-compensation core. Significance driven 

computation [2] identifies functionally non-critical parts of an 

algorithm and employs VOS to save power. Both techniques 

exploit the error-tolerant nature of the algorithms being 

implemented and use Vdd as the leverage to tradeoff quality for 

power. However, a good understanding of the algorithm is usually 

required to identify functionally non-critical components that 

could be “imprecisely” implemented without excessively 

degrading the output quality. In addition, the system must be 

simulated under a range of Vdd in order to find the optimal power-

quality tradeoff, which is typically a time-consuming process. 

This paper presents a generalized methodology for energy  

1-

quality tradeoffs with two unique features. First, it incorporates 

“variables” for imprecise computation other than Vdd; namely 

RTL structural parameters for deterministic design-time energy-

quality tradeoffs. The specific IHW components introduced here 

are parameterized ALUs. IHW is 1 orthogonal to existing Vdd-

lowering techniques, as VOS can be applied on top of IHW to 

achieve even higher energy reduction. Second, the methodology 

utilizes a novel static error estimation method that models the 

output error distribution based on the input distribution and design 

parameters. This method enables the automated exploration of the 

energy-quality space without computational-intensive simulations 

at each design point. It is also general enough to be used by VOS 

designs for rapid quality evaluation to speed up Vdd selection. 

Table 1 lists two kernel functions common in multimedia, 

recognition and mining applications [3] and three examples of 

such applications. These kernels and applications will be used to 

demonstrate and validate the proposed methodology. In principle, 

this methodology can be used to explore energy-quality tradeoffs 

in any error-resilient applications with computational kernels that 

can be implemented with IHW. 

Table 1. % application runtime spent in computation kernels 

Kernel Application Runtime% 





n

i

ii yxYXPRODUCTDOT
1

),(

 

Leukocyte 

Tracker 
22% 





n

i

ii yxYXNORML
1

2)(),(2
 SVM 98% 

K-means 49% 

Major contributions of this work include: 

 a generalized quality-aware energy minimization methodology, 

 a fast and accurate static error estimation method, and 

 design of imprecise multipliers based on imprecise adders. 

The rest of the paper is organized as follows. Section 2 reviews 

related work in this area and highlights the motivation of this 

work. Section 3 introduces two existing imprecise adders as well 

as some improvements and adaptations to use them to build 

imprecise multipliers. Section 4 introduces the static error 

estimation method. The quality-aware energy-minimization 

methodology is described in Section 5, followed by application-

                                                                 

1 This paper will focus on energy per operation (E/op) instead of 

power, but the methodology is applicable to any hardware 

metric such as power, area, energy-delay product, etc. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

DAC’12, June 3–7, 2012, San Francisco, CA, USA. 

Copyright 2012 ACM 978-1-4503-1199-1/12/06...$10.00. 

 



level energy-quality tradeoff results in Section 6. Section 7 

concludes the paper. 

2. BACKGROUND AND RELATED WORK 
Most of the prior work on imprecise computation focuses on 

power reduction through VOS [1, 2]. Since traditional circuits are 

designed such that most paths have delays close to those of 

critical paths, naive VOS will likely induce massive timing 

violations and circuit failure. These techniques attempt to either 

correct errors with redundant circuits [1] or delay the onset of 

massive errors through timing path rebalancing [4]. Mohapatra et. 

al. [3] suggest a way to memorize the timing errors in a counter 

and make corrections over longer time intervals. However, these 

techniques do not fundamentally change the circuit structure to 

enable energy-quality tradeoffs at design time. Another problem is 

finding the optimal Vdd. There is no easy way to predict the output 

quality at a certain Vdd level except through time-consuming 

detailed circuit simulation. 

The correctness requirement in error-tolerant applications can be 

further relaxed, leaving errors uncorrected. For example, users are 

unlikely to notice small/rare degradations in multimedia quality, 

and computation errors often do not affect the results of 

recognition or data mining analyses. Therefore, many high-energy 

circuit structures could be simplified (such as breaking long adder 

carry propagation chains with constant 1s or 0s) with a tolerable 

impact on application-level quality. Such design-time techniques 

could be used in conjunction with runtime techniques (e.g., VOS) 

to achieve more desirable energy-quality tradeoffs. 

Since IHW inevitably leads to some loss of accuracy, it is 

particularly important to be able to evaluate its effect on output 

quality. The static error estimation technique proposed in Section 

4 achieves this goal by leveraging statistical analysis to propagate 

the error distribution through a system of arithmetic operators. 

Although the application-level quality impact still needs to be 

evaluated through simulation, arithmetic kernel-level quality 

estimation can significantly reduce the number of design points 

that need to be simulated. Most suboptimal design points are 

eliminated at the kernel level by the static error estimator. With 

the exception of the initial simulation to characterize IHW 

components, no simulation is required at the kernel-level, and the 

same characterization data can be reused for arbitrary input 

distributions.  

3. IMPRECISE ADDERS AND 

MULTIPLIERS 
Adders and multipliers are used extensively in multimedia and 

data mining applications. Imprecise implementations of adders 

and multipliers have the most direct impact on system energy and 

output quality. This section presents two imprecise adder designs 

in the literature, and introduces new imprecise multiplier designs. 

3.1 ACA Adder 
The Almost Correct Adder (ACA) [5] is a modified version of the 

traditional Kogge-Stone adder (KSA). ACA leverages the fact that 

under random inputs, the vast majority of the actual timing paths 

are much shorter than the worst-case critical path. Table 2 gives 

the probability of two random 64-bit inputs triggering a critical 

path longer than K. Even with K much smaller than 64, the 

probability of critical path violation is quite small and that 

probability decreases rapidly with larger K. ACA then uses a tree 

structure to compute the propagate and generate signals similar to 

KSA but assumes the longest run of propagate never exceeds K, 

i.e., Sumi is computed using only AiAi−K+1 and BiBi−K+1. Its 

worst case delay is log2(K). ACA’s structure is essentially a 

trimmed KSA tree. A smaller tree translates to lower delay, 

smaller area and less energy per addition. 

Table 2. Prob. of a random propagate chain exceeding K bits 

K 12 16 24 30 

Probability 0.0024 41022.1   7104.2   10101.9   

Errors occur in ACA when the inputs trigger a propagate chain 

longer than K. For example, when A and B are exactly 

complementary, the propagate chain will extend the full adder’s 

length. To produce the correct Sumi, all the bits from both inputs 

will be needed, but ACA speculates and approximates it with the 

propagate chain from bit i down to i−K+1 with the carry-in set to 

constant 0. In case of incorrect speculation, a large error will 

appear in Sumi. The largest error occurs when bit i is the MSB. 

Errors with such characteristics are called infrequent large-

magnitude (ILM) errors [6]: they occur rarely, but whenever they 

do, their magnitude tends to be large. Energy-quality tradeoffs can 

be achieved by tuning the design parameter K. 

3.2 ETAIIM Adder 
The Modified Error-Tolerant Adder Type II (ETAIIM) [7] is 

another type of imprecise adder based on the Ripple-carry adder 

(RCA). RCA has a simple linear propagate chain. ETAIIM works 

by partitioning the propagate chain into segments of variable 

widths. The carry bits across two segments are truncated to zero. 

In order to provide higher precision for higher-order bits, 

segments are wider (i.e., contain more bits) on the MSB side than 

on the LSB side. ETAIIM has two parameters: BPB (bits per 

block) and L (the number of blocks used for generating the MSB). 

A block refers to the smallest segment, which is usually located at 

the LSB. The maximum error magnitude of ETAIIM is limited by 

BPB × L. However, carry generation across blocks is common; 

therefore, errors occur quite frequently in ETAIIM. These errors 

are called frequent small-magnitude (FSM) errors [6] because 

their magnitudes are bounded by the design parameters and are 

usually small compared to ILM errors. 

3.3 Improving Imprecise Adders 
The original ACA and ETAIIM designs do exhibit a weakness. 

For simplicity, both designs use a constant 0 as the carry-in at the 

cut-off point of the critical path, but this leads to negatively-

biased errors because 0 is an underestimation of the carry-in bit. 

Similarly, constant 1 will produce positively-biased errors. One 

possible improvement is to take the carry-in from the bit 

immediately before the propagate chain. For ACA, this means the 

propagate chain formed by AiAi−K+1 and BiBi−K+1 will take 

Ai−K (or Bi−K) as the carry-in. For ETAIIM, it means the carry bit 

across blocks will be taken from the highest bit in the previous 

block. If the inputs are random during the computation, every bit 

has a 50% probability of being 0 or 1. This will eventually 

produce an unbiased error distribution in the sum. Table 3 is 

obtained from simulating the summation of 20 numbers randomly 

drawn from [-0.5, 0.5] using ETAIIM adder (BPB=8, L=4). The 

anti-biasing technique notably improves statistical error metrics. 

Table 3. Error metrics improvement with anti-biasing 

Metrics Original w. Anti-biasing 

Error Rate 12.3% 6.9% 

Mean Error Magnitude 8103.6   8103.3   



3.4 Imprecise Multipliers 
Despite the lack of imprecise multipliers in the literature, it is 

possible to build imprecise multipliers based on imprecise adders. 

A typical multiplier consists of three stages: partial product 

generation, partial product accumulation and a final stage adder 

[8]. The idea of building an imprecise multiplier is simple: replace 

the final stage adder with an imprecise adder. The ACA and 

ETAIIM adders will thus yield corresponding ACA and ETAIIM 

multipliers. For the other two stages, we adopt the popular simple 

partial product generation (shifted versions of the multiplicand 

without recoding) [8] and Wallace-tree partial product 

accumulator (3:2 compressor tree) [9]. These choices will 

influence the actual energy numbers but they do not affect the 

ability to perform energy-quality tradeoffs. 

Table 4 compares the energy-delay product (EDP) of various 

precise and imprecise adders and multipliers. They are all 

synthesized to their respective critical path delays in 130nm 

technology, and imprecise ALUs are operated at lower voltages to 

match the speed of their precise counterparts. As seen from the 

table, imprecise ALUs consume significantly less E/op than their 

precise counterparts at the same delay due to their simplified logic 

structures. 

Table 4. E/op and area of precise and imprecise ALUs 

ALU E/op (pJ) Delay (ns) EDP (pJ∙ns) 

KSA64 8.47 
0.8 

6.776 

ACA64 (K=16) 4.96 3.968 

RCA64 5.48 
5.3 

29.044 

METAII  

(BPB=4, L=4) 
0.527 2.793 

MULT64_KSA 413.18 

2.6 

1074.268 

MULT64_ACA 

(K=32) 
365.98 951.548 

MULT64_RCA 174.8 

11.1 

1940.28 

MULT64_METAII 

(BPB=4, L=4) 
82.56 916.416 

4. STATIC ERROR ESTIMATION 
While many CAD tools exist to evaluate the energy consumption 

of an integrated circuit, quality evaluation capability is far less 

common – i.e., determining how much the imprecise output 

differs from the precise output. In all VOS techniques, quality is 

evaluated by running Monte Carlo simulations, since the 

relationship between the circuit variables and the output cannot be 

easily derived. There is a fundamental drawback to this approach: 

the simulation time grows exponentially with data width and 

computation length. For example, a length-10 DOT-PRODUCT 

with 32-bit numbers would require 3020 103.132  different 

input vectors to cover the entire input space. 

This section presents a static error estimation technique that 

eliminates the need for simulation during quality evaluation at the 

kernel level. We make two assumptions here: 1) the only 

operations involved are additions and multiplications, and 2) input 

data (X and Y) are independent. Assumption 1 is satisfied in both 

kernel functions in Table 1 and in many error-tolerant application 

domains. Assumption 2 is necessary to prevent, for example, the 

product     reducing to certain forms of   . If a squaring 

operation is treated as a normal two-operand multiplication, the 

estimation accuracy will be significantly lower. In the DOT-

PRODUCT kernel, the probability of any Xi=Yi is quite low so 

this assumption is usually satisfied. Estimation of the squaring 

operation in L2-NORM will be discussed in Section 4.3. All the 

adders and multipliers in this discussion will be 64-bit wide. The 

number representation is 2’s complement 4_60, with 4 bits 

(including sign bit) before the decimal point and 60 bits after. In 

multiplication, the product format is 8_120. All input data are 

scaled to prevent overflow during computation. 

4.1 Probability Mass Function (PMF) 
Probability Mass Function (PMF) is a way of representing the 

statistical distribution of any discrete data/error. It can be 

visualized as a bar chart on the magnitude vs. frequency plane as 

shown in Figure 1.  

 

Figure 1. PMF examples 

Each bar indicates a non-zero data probability. The location of a 

bar on the x-axis indicates the magnitude range of the data and the 

height indicates its frequency of occurrence. The taller a bar is, 

the more frequent the data occur. Both the x-axis and y-axis are 

logarithmic-scaled in order to cover a wider frequency-magnitude 

range. For example, a bar bounded by marker -8 and -7 with a 

height -10 means that the probability of observing the data 

between magnitude 82  and 72  is 102 . The e symbol in the 

middle of the x-axis represents zero; thus, bars to the left have 

negative magnitude and those to the right have positive 

magnitude. The sum of the heights of all the bars in a PMF is 

equal to the probability of the data being non-zero (PNZ);. The 

probability of zero is therefore implicitly obtained by 1−PNZ. 

When PMF is used to represent an error distribution, it is possible 

that PNZ < 1. In this case PNZ represents the total error probability 

Pe and 1−Pe gives the error-free probability. Within each bar, the 

data is assumed to be uniformly distributed. 

4.2 Modified Interval Arithmetic (MIA) 
Interval Arithmetic (IA) [10] is a classical method to estimate 

variable ranges during numerical computations. It uses a single 

interval [xl, xr] to represent each variable. When the variable takes 

part in computation, its interval goes through corresponding IA to 

produce the output interval. Provided that data are not correlated, 

the bounds given by IA are tight. However, in many cases data 

and error distributions such as in Figure 1 cannot be represented 

by a single uniform distribution.  

Modified Interval Arithmetic (MIA) [11] extends IA by using 

multiple intervals to represent a distribution to enhance accuracy. 

MIA can be easily mapped to PMF: each PMF bar corresponds to 

one interval in MIA. The entire MIA can be formalized as 

bxabxaPxMIA   if ,)()(  

When an error distribution is represented in MIA, the total error 

probability is given by    A   . 

When two intervals operate with each other, their resulting 

interval observes the following rules: 

)],,,max(                                

),,,,[min(],[*],[

],[],[],[

21212121

212121212211

21212211

rrlrrlll

rrlrrlllrlrl

rrllrlrl

xxxxxxxx

xxxxxxxxxxxx

xxxxxxxx





 For operations between two MIAs, each IA from the first MIA 

must perform that operation with each IA from the second MIA 



and the resulting IAs are merged into a single MIA. While 

merging, IAs of the same intervals are combined into one IA with 

its probability being equal to the sum of the constituent IA 

probabilities. 

4.3 Propagating MIA across IHW 
Rules in the previous subsection assume precise operation. They 

must be modified to account for imprecise operators. 

The first step is to use a common data structure (MIAd, MIAe) to 

represent any data during imprecise operation. MIAd
 
is the error-

free MIA obtained assuming all operators are precise, while MIAe 

is the pure error MIA introduced by imprecise operators. The sum 

of MIAd and MIAe gives the actual data MIA. 

It then becomes necessary to build a model to obtain the output 

(MIAd_out, MIAe_out) from input (MIAd_in, MIAe_in). The imprecise 

operator (marked with *) will also introduce MIAe_op, which can 

be regarded as additive noise to the system. We have derived the 

relationships between these quantities (Figure 2). 

 

 

 
 

squareeineindineoute

indoutd

muleineine

ineindineindoute

indindoutd

addeineineoute

indindoutd

MIAMIAMIAMIAMIA

MIAMIA

MIAMIAMIA

MIAMIAMIAMIAMIA

MIAMIAMIA

MIAMIAMIAMIA

MIAMIAMIA

___

2

__

2

__

_2_1_

1_2_2_1__

2_1__

_2_1__

2_1__

**2

:

*

**

*:

:















                   

SQUARE

                             

            

MUL

            

ADD

 

Figure 2. MIA propagation rules for ADD/MUL/SQUARE 

Operations between MIAs follow the rules given in Section 4.2. 

Notice that SQUARE is separated from MUL because it cannot be 

obtained from simple MIA operations such as * and +. Even if X 

and Y have the same distribution, the distribution of YX *  and 
2X will be different. The modeling of SQUARE will rely on 

characterization. 

MIAe_add, MIAe_mul and MIAe_square are attributes of the operator 

determined by the circuit design parameters. They can be obtained 

by simulation. The process of obtaining MIAe_op through 

simulation is called characterization of IHW. To characterize 

ADD and MUL, we randomly draw data from single bars from 

both inputs’ MIAs (i.e., draw first operand from [2i, 2i+1] and draw 

second operand from [2j, 2j+1]) and perform the imprecise 

operation. Simulation is made possible by creating a functional 

model of the imprecise adders and multipliers written in C. The 

resulting MIAd and MIAe are then stored into a matrix at index (i, 

j). When the entire matrix is populated, we can later use it to 

quickly retrieve MIAe_op during MIA propagation. For the unary 

operator SQUARE, the result is stored in a vector instead of a 

matrix and we need two vectors for SQUARE: one for looking up 

errors (MIAe_square), and the other for looking up squared data 

(  A    
2  and   A    

2 ). IHW can be characterized a priori and 

each IHW configuration (i.e., a unique setting of BPB, L and K) 

needs to be characterized only once. The characterization data can 

then be reused many times for different kernel input workloads. 

In summary, kernel-level MIA propagation follows three steps: 

1) Construct the characterization vector/matrix by simulating the IHW 

with inputs being drawn from various [±2i, ±2i+1] intervals. 

2) During propagation, use the input MIAs to look up the 

characterization vector/matrix to obtain MIAe_op. 
3) Apply rules in Figure 2 to obtain output MIA. 

Step 2 and 3 may need to be repeated because the output MIA 

normally becomes the input MIA of the next round of 

computation. The final MIAd and MIAe accurately describe the 

data and error distribution of the kernel output and they can be 

used to evaluate output quality. Common quality metrics such as 

error rate and mean error magnitude are computed as follows: 

error rate =    A    
 mean error magnitude =       A     

 
Static MIA propagation is much faster than Monte Carlo 

simulation because no actual computation is performed. It is the 

distributions (in the form of MIA) rather than actual data that are 

being propagated. 

4.4 Experimental Results 

 

Figure 3. Error MIAs of DOT-PRODUCT and L2-NORM 

Figure 3 shows the final error MIAs after performing a size-25 

DOT-PRODUCT and a size-49 L2-NORM using both Monte 

Carlo simulation and static estimation. DOT-PRODUCT contains 

an ACA adder with K=16 and an ETAIIM multiplier with BPB=8 

and L=4; L2-NORM contains an ACA adder with K=16 and an 

ACA multiplier with K=24. Table 5 compares the speed and 

accuracy of simulated and estimated error MIAs. All experiments 

are run on a dual-core Xeon 2.4GHz with 32GB memory. The 

simulation size is 500,000 and is regarded as the ground truth. As 

seen in the table, the speed improvement is dramatic and the 

simulated and estimated error distributions are very close. For 

example, a Hellinger distance2 of 0.05 is comparable to 1 million 

random samples from two uniform distributions between [-1, 1] 

generated by Matlab’s default Mersenne Twister algorithm [13].  

Table 5. Speed and accuracy comparison between simulation 

and static estimation 

Kernel Sim. time Est. time Hellinger 

distance 

DOT-PRODUCT 565 hr 13 s 0.05 

L2-NORM 620 hr 6 s 0.02 

5. QUALITY-AWARE ENERGY 

MINIMIZATION FLOW 
The energy-quality optimization problem can be formulated in 

many different ways, such as energya/qualityb cost minimization 

or quality maximization subject to an energy constraint. This 

paper focuses on solving the quality-constrained energy 

minimization problem: 

minimize:      E(x0,x1,...,xn) 

subject to:    Q(x0,x1,...,xn) >= Q0 

                                                                 

2  Statistical measure of similarity between two distributions – 

smaller values indicate higher similarity [12]. 

op* MIAd_out 

MIAe_out 

MIAe_in1 

MIAd_in2 

MIAe_in2 

MIAd_in1 
MIAe_op 



where E denotes the energy consumed while performing a kernel 

computation; Q denotes the resultant quality. x0,x1,...,xn are 

circuit structural parameters such as BPB, L and K. Assuming the 

adders and multipliers are restricted to 64-bit, then the x vector for 

the DOT-PRODUCT kernel is as follows: 

[addmode BPBadd Ladd Kadd mulmode BPBmul Lmul Kmul] 

addmode/mulmode is an integer representing IHW type: 0=KSA, 1=ACA, 

2=ETAIIM, 3=RCA. L2-NORM needs four additional parameters for 

its subtractor. Circuit operating conditions such as Vdd and 

frequency can also be included in the x vector, and it is part of the 

ongoing work of combining IHW with VOS. There are certain 

restrictions on each parameter, such as the requirement that the 

adder width (64) must be divisible by BPB and BPB × L cannot 

exceed 64. Parameters will be swept in their valid ranges only. 

Including precise (KSA/ACA) designs, there are a total of 39 

adder designs and 101 multiplier designs. DOT-PRODUCT needs 

1 adder and 1 multiplier, forming a space of 8 variables and 3939 

design points. L2-NORM needs 2 adders and 1 multiplier, 

forming a space of 12 variables and 154,000 points. 

Since all the parameters must be integers, this is an integer 

programming problem. Matlab offers a genetic algorithm function 

(GA) to solve these types of problems. It requires two routines to 

calculate E and Q respectively. For energy calculation, 

parameterized RTL models were developed for ACA/ETAIIM 

adders and multipliers and the RTL for KSA/RCA was obtained 

online [14]. We then synthesized the models into netlists using 

Cadence RC Compiler in ST 130nm CMOS technology and 

simulated 1000 random additions and 100 random multiplications 

using Cadence Ultrasim. Energy per operation can be extracted 

from the simulation waveforms. An energy model is subsequently 

built using curve-fitting to extrapolate to the entire parameter 

space. For simplicity, the energy consumed in the control logic is 

ignored and the sum of ALU energies is used to represent the 

energy of the kernel. 

For calculation of quality, MIA propagation was implemented in 

C++ as an extension to the libaffa project [15]. The workload is 

written into a text file with each line in the following format: 

MUL ETAIIM 8 4 0 4 60 -1 1 -1 1 

This specifies the operator’s parameters (ETAIIM multiplier with 

BPB=8, L=4), input format (4_60), and input data ranges ([-1, 1]). 

A program parses this file and the characterization vector/matrix 

files, performs the MIA propagation, and writes the output data 

and error MIA into a result file. A final Matlab script extracts 

error rate and mean error magnitude metrics from the result file. 

5.1 Experimental Results 
The methodology was tested on two kernels: size-8 DOT-

PRODUCT with inputs in [-1, 1] and size-10 L2-NORM with 

inputs in [-0.25, 0.25]. Their sizes and dynamic ranges are based 

on the actual computation and data range profiled while running 

their corresponding applications. Two quality metrics are 

evaluated: error rate and mean error magnitude. By setting the 

quality constraint at different values between [ 102
,

12 ], the 

optimizer is able to produce the energy-quality tradeoff curves in 

Figure 4. As a comparison, we also show curves obtained by 

running an exhaustive search on all possible design points. In all 

four figures, the optimizer curves follow the exhaustive-search 

curves with a maximum deviation of 2%. Both kernels enjoy a 

region of about 10% energy reduction with graceful quality 

degradation. All the curves are significantly lower than the lowest 

energy achievable by precise designs (136.44pJ for DOT-

PRODUCT and 140.4pJ for L2-NORM). 

6. APPLICATION-LEVEL ANALYSIS 
Since the application-level quality can only be obtained through 

simulation, it is difficult to extend the previous methodology to 

the application level. Simulating the application with IHW is 

usually 2-3 orders of magnitude slower than with precise 

hardware, because the host machine cannot use a single ALU 

instruction to perform an imprecise operation. However, kernel-

level solutions can facilitate the application-level exploration 

process. The first step is to solve the kernel-level problem 

multiple times using static analysis, each time with a different 

quality constraint value. Then, assuming application-level quality 

is a monotonic function of kernel-level quality, the application can 

be simulated using only the points identified during the kernel-

level exploration. The same genetic algorithm (GA) can then be 

applied to obtain the minimum-energy point given an application-

level quality requirement. This section presents experimental 

results at the application level assisted by kernel-level exploration. 

The goal of these experiments is to demonstrate the energy-

quality behavior of different applications under IHW 

implementation and the benefits of the proposed methodology. 

The three applications chosen to evaluate the proposed 

methodology are shown in Table 1. Leukocyte Tracker 

implements an object-tracking algorithm [16] in which an 

important step is to compute the sum of gradients on the 8 

neighboring pixels. SVM is a classification algorithm that consists 

of a training stage and a prediction stage. The training stage 

involves computing the Euclidean distance of two data points 

(called radial basis function) in order to map them into a higher 

dimensional space. K-means is a data clustering algorithm; the 

basic operation is calculating the distance between two data 

points. The Euclidian distance is commonly used. Both K-means 

and SVM use the L2-NORM kernel, whereas Leukocyte Tracker 

uses the DOT-PRODUCT kernel. In each application, the 

corresponding kernel represents a significant percentage of the 

runtime (Table 1). The source code for Leukocyte and K-means is 

obtained from the Rodinia benchmark suite [17] and SVM from 

libSVM [18]. All benchmarks provide sample input data. In 

Leukocyte tracker we tracked 36 cells in 5 frames; in SVM we 

attempted to classify 683 breast cancer data points with 10 

features into 2 classes; in K-means, we tried to cluster 100 data 

points with 34 features into 5 clusters. 

Quality metrics for the three applications are defined as follows. 

For Leukocyte, the center locations of the tracked cells are 

compared with the locations returned by the precise 

implementation. The average cell-center deviation serves as a 

good negative quality metric. Classification accuracy is a well 

established quality metric for SVM. Finally, for K-means, mean 

centroid distance [3] is used. 

Before simulation, the programs are first profiled to determine the 

dynamic range of data during kernel computation. If the dynamic 

range is greater than the characterized data range, it is necessary 

to perform scaling on the input and output data. Certain 

applications, such as SVM and Leukocyte, already incorporate 

data normalization into their algorithm so no scaling is necessary.  

The design points returned during kernel-level optimization are 

then used to rewrite the kernel portions of the three applications 

using those imprecise designs. 

 



 

Figure 4. Kernel-level energy-quality tradeoffs 

 

Figure 5. Application-level energy-quality tradeoffs 

The final application-level energy-quality tradeoff curves are 

shown in Figure 5. Since running a SPICE simulation of the entire 

application to obtain its energy is prohibitively slow, the kernel’s 

energy was used to represent the entire application’s energy. 

Among the three applications, Leukocyte has a smooth quality-

energy transition region. At its lowest-energy point (102.24pJ), 

the mean deviation from precise outputs is merely 0.1 pixels. Its 

energy is 25% lower than the 136.44pJ precise design. For K-

means, the mean centroid distance remains unchanged (1429.22) 

above the 103.8pJ energy point (i.e., a 26% reduction over precise 

design). Any design below that energy point failed to converge 

during simulation. A similar situation is observed in SVM where 

the critical energy point is 103.76pJ. 

Table 6. Number of designs points simulated 

Search method Leukocyte 

Tracker 
SVM K-means 

Exhaustive search 3,939 153,621 153,621 

GA (app-level) 887 1,343 1,343 

Proposed methodology 15 17 17 

Table 6 compares the number of design points that needed to be 

simulated in order to generate the application-level energy-quality 

tradeoff curves in Figure 5. Exhaustive search simulates all the 

design points once, while applying GA at the application-level 

simulates only a subset. The proposed methodology simulates the 

least number of design points because it only chooses those points 

on the optimal kernel-level energy-quality curves. 

7. CONCLUSIONS AND FUTURE WORK 
This paper presents a methodology to find the lowest-energy 

design for certain computation kernels given a quality-constraint. 

This methodology leverages IHW with design-time structural 

parameters to achieve energy-quality- tradeoffs. It requires no 

simulation at the kernel level, and the simulation effort at the 

application level is significantly reduced. Experiments show that 

the methodology can produce results close to exhaustive search 

and the runtime is orders-of-magnitude shorter than Monte Carlo 

simulation. Extending this methodology to support VOS and peak 

error bounding estimation are valuable future research projects. 

8. ACKNOWLEDGMENTS 
This work was supported in part by the National Science 

Foundation, under grants IIS-0612049 and CNS-0831426. 

9. REFERENCES 
[1] Shim, B., Sridhara, S., Shanbhag, N. 2004, Reliable low-

power digital signal processing via reduced precision 

redundancy, IEEE Transactions on VLSI Systems, 12(5):497-

510. 

[2] Mohapatra, D., Karakonstantis, G., Roy, K. 2009, 

Significance driven computation: a voltage-scalable, 

variation-aware, quality-tuning motion estimator, ISLPED, 

pp. 195-200. 

[3] Mohapatra, D., Chippa, V.K., Raghunathan, A., Roy, K. 

2011, Design of voltage-scalable meta-functions for 

approximate computing, DATE, pp. 1-6. 

[4] Kahng, A., Kang, S., Kumar, R., Sartori, J. 2010, Slack 

redistribution for graceful degradation under voltage 

overscaling, ASP-DAC, pp. 825-831. 

[5] Verma, A.K., Brisk, P., Ienne, P. 2008, Variable latency 

speculative addition: A new paradigm for arithmetic circuit 

design, DATE, pp. 1250-1255. 

[6] Huang, J., Lach, J. 2011, Exploring the fidelity-efficiency 

design space using imprecise arithmetic, ASP-DAC, pp.579-

584. 

[7] Zhu, N., Goh, W.L., Yeo, K.S. 2009, An enhanced low-

power high-speed adder for error tolerant application, ISIC, 

pp. 69-72. 

[8] Ercegovac, M.D., Lang, T. 2004, Digital Arithmetic. Morgan 

Kaufmann Publishers. 

[9] Wallace, C.S. 1964, A suggestion for fast multipliers. IEEE 

Trans. Electron. Comput. EC-13(1):14-17. 

[10] Moore, R.E. 1966, Interval Analysis, Prentice-Hall. 

[11] Huang, J., Lach, J., Robins G. 2011, Analytic error modeling 

for imprecise arithmetic circuits, SELSE. 

[12] Nikulin, M.S. 2001, Hellinger distance, Encyclopaedia of 

Mathematics, Springer, ISBN 978-1556080104. 

[13] Matsumoto, M., Nishimura, T. 1998, Mersenne twister: a 

623-dimensionally equidistributed uniform pseudo-random 

number generator, ACM Transactions on Modeling and 

Computer Simulation, 8(1):3-30. 

[14] http://www.aoki.ecei.tohoku.ac.jp/arith/mg/index.html 

[15] http://savannah.nongnu.org/projects/libaffa 

[16] Ray, N., Acton, S.T. 2004, Motion gradient vector flow: an 

external force for tracking rolling leukocytes with shape and 

size constrained active contours, IEEE Transactions 

on Medical Imaging, 23(12):1466-1478. 

[17] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, 

S.-H., Skadron, K. 2009, Rodinia: A benchmark suite for 

heterogeneous computing, IISWC, pp. 44-54. 

[18] Chang, C., Lin, C. 2011, LIBSVM: a library for support 

vector machines, ACM Transactions on Intelligent Systems 

and Technology, 2(1)27:1-27:27.


