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ABSTRACT

This paper introduces a methodology for estimating interdomain
Web traffic flows between all clients worldwide and the servers be-
longing to over one thousand content providers. The idea is to use
the server logs from a large Content Delivery Network (CDN) to
identify client downloads of content provider (i.e., publisher) Web
pages. For each of these Web pages, a client typically downloads
some objects from the content provider, some from the CDN, and
perhaps some from third parties such as banner advertisement agen-
cies. The sizes and sources of the non-CDN downloads associated
with each CDN download are estimated separately by examining
Web accesses in packet traces collected at several universities.

The methodology produces a (time-varying) interdomain HTTP

traffic demand matrix pairing several hundred thousand blocks of

client IP addresses with over ten thousand individual Web servers.

When combined with geographical databases and routing tables,

the matrix can be used to provide (partial) answers to questions

such as “How do Web access patterns vary by country?”, “Which

autonomous systems host the most Web content?”, and “How stable

are Web traffic flows over time?”.

Categories and Subject Descriptors C.2.3 [Computer Commu-

nication Networks]: Network monitoring

General Terms: Measurement, Management, Analysis, Algo-

rithm

Keywords: Traffic matrix, Web, Traffic demand, Interdomain, Es-

timation

1. INTRODUCTION

The reliable estimation and prediction of network traffic demands

has tremendous utility. Internet Service Providers (ISPs) routinely

employ traffic demand matrices for network capacity planning and

traffic engineering [1]; demand matrices enable the identification of

bottleneck links and the evaluation of failure scenarios. Network

security analysts rely on models of normative traffic demands to

detect new threats; worms and distributed denial of service (DDoS)

attacks often generate pathological traffic patterns. Traffic demand

matrices are also a critical input into simulators for the design and

development of new protocols and services.
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1.1 Our Contributions

Interdomain traffic estimation is the focus of this paper. An un-

derstanding of the complexity of this problem is best gained by con-

trasting with the case of intradomain traffic estimation which can

be done in several ways. In theory an ISP can read these demands

directly from its routers using tools such as Netflow (in practice the

volume of data introduces complications). An alternate approach

is to use SNMP to collect link-level load measurements, and then

to generate a “reasonable” traffic demand matrix compatible with

these measurements [2]. These approaches have proven effective

and are used in practice today. Modeling interdomain traffic de-

mands, on the other hand, is problematic because no single organi-

zation has the authority or the ability to measure all network traffic.

An ISP can measure the demands of its clients, and the “transit”

traffic that it carries on behalf of other ISPs, but even the largest

Tier-1 ISP has been estimated (folklore) to carry less than 7 % of

the Internet’s traffic.

This paper presents a methodology for estimating a significant

part of the interdomain traffic demand: HTTP traffic between over

one thousand (mostly) United-States-based content providers and

all clients worldwide. Our approach is based on four observations.

1. Content delivery networks (CDNs) deliver a significant frac-

tion of the bytes downloaded by university Web users. In

particular, Saroiu et al. [3] observed that about 4.3% of the

Web traffic received by clients at the University of Washing-

ton between May 28th and June 6th, 2002, was delivered by

Akamai.

2. For each HTTP request recorded in a CDN’s Web server logs,

the same client typically makes several additional requests

directly to the content provider’s Web servers.

3. For each object served by a CDN, the objects typically served

directly by the content provider can be identified by examin-

ing traces of Web usage from large groups of users, or by

examination of the content provider’s Web site.

4. The locations of the content provider’s Web servers can be

determined with the help of the DNS system and information

available from the interdomain routing system.

In this paper, we combine server logs from Akamai’s CDN net-

work with HTTP traces extracted from packet traces gathered at

several universities to build detailed traffic demand matrices. We

provide two types of matrices. Publisher demand matrices pair

hundreds of thousands of client IP blocks with over one thousand

publishers. Web traffic demand matrices pair these client blocks
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with tens of thousands of IP addresses belonging to publisher and

CDN Web servers. For each pair, in either type of matrix, we esti-

mate the rate at which data is transferred to the clients in the block.

1.2 Related Work

The book by Balachander and Rexford [4] contains an excellent

survey of Web usage studies. Some studies have focused on un-

derstanding user behavior [5, 6, 7, 8], while others have looked

at various aspects of changes in content [9] including the effects

of these changes on the traffic demands [10]. The effects of such

changes especially as imposed on a Tier-1 ISP have been studied

by [11, 12, 13, 14]. The impact on end-to-end performance expe-

rienced by the users has been explored using both passive [15] and

active measurements [16].

As mentioned earlier, there are a variety of approaches for esti-

mating intradomain traffic matrices. This topic has been the topic

of intense research over the past three years [17, 2, 18, 13, 12, 19,

20, 11].

A literature survey reveals that intradomain traffic engineering

algorithms [21, 1] have been a principal research focus. This is not

mere coincidence because a primary input to most traffic engineer-

ing algorithms is a traffic demand matrix.

Very recently a number of schemes for Interdomain traffic en-

gineering have been proposed [22, 23, 24, 25, 26, 27, 28]. How-

ever, to the best of our knowledge, there is no good methodology

for estimating interdomain traffic demands. It is our understanding

that even the question of whether interdomain traffic matrices and

intradomain traffic matrices have similar dynamics remains unan-

swered.

1.3 Outline

The remainder of this paper is organized as follows: in Section 2

we provide background information concerning content delivery

networks, and establish terminology for the paper. Section 3 intro-

duces the notions of publisher demand and Web traffic demand.

Section 4 discusses how to estimate publisher demands using a

CDN. Section 5 explains how we combine logs from a CDN with

packet traces to estimate publisher demands, and how we turn pub-

lisher demands into Web traffic demands (the details of our im-

plementation are provided in an appendix). A description of the

individual data sets we use is given in Section 6 while Section 7

presents initial results obtained by analyzing the spatial and tem-

poral properties of the traffic demands. Finally, in Section 8 we

summarize our experience and suggest future research directions.

2. BACKGROUND: CDN S AND

TERMINOLOGY

This section presents a brief overview of the process of content

delivery with and without content delivery networks (CDNs). We

also present a brief dictionary of the terms and abbreviations used

in the remainder of the paper.

2.1 Terminology

The following definitions, taken in part taken from the Web Char-

acterization Terminology & Definitions Sheet [29], will serve to

clarify the subsequent discussions.

Web site: A collection of interlinked Web objects hosted at the

same network location by a set of origin Web servers.

CDN server

Web server client

Web traffic

demand

router

client set B

AS1 AS3

AS4
AS2

adserver.ex

Legend

home.ex

(id: 42)

client set A
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Figure 1: Example of CDN deployment and traffic flows (Web

traffic demands).

URL: cdn.ex/ex1.gif

Referrer: home.ex/index.htm

http://home.ex/index.htm

URL: cdn.ex/ex4.jpg

Referrer: home.ex/index.htm

URL: adserver.ex/ex3.gif

Referrer: home.ex/index.htm

This is only 

an example
URL: home.ex/ex2.gif

Referrer: home.ex/index.htm

Figure 2: Example Web page with some CDN content.

Supersite: A single, logical Web site that extends over multiple

network locations, but is intended to be viewed as a single

Web site.

Web site publisher, or just publisher: A person or corporate body

that is the primary claimant to the rewards or benefits result-

ing from usage of the content of a Web site. A publisher may

distribute his content across multiple Web sites. Publishers

are also referred to as content providers.

Content delivery network: An alternative infrastructure operated

by an independent service provider on which some parts of a

Web site can be hosted.

2.2 Content delivery

The Internet is most commonly used to exchange or access infor-

mation. This information is typically hosted on origin Web servers.

Content Delivery Networks (CDNs) (see, e.g., [30, 31, 32, 33, 34,
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35, 3]) are designed to reduce the load on origin servers and at the

same time improve performance for the user. Most CDNs have

a large set of servers deployed throughout the Internet and cache

the content of the original publisher at these servers. Therefore

another view of CDNs is that they provide reverse proxy services

for content providers, the publishers. In order to take advantage of

their distributed infrastructure, requests for data are redirected to

the “closest” cache server. Intelligent redirection can reduce net-

work latency and load (and therefore network congestion) improv-

ing response time. CDNs differ in their approach to redirecting

traffic. Some (such as Akamai [36]), use DNS to translate the host-

name of a page request into the IP address of an appropriate server.

This translation may consider the location of the client, the location

of the server, the connectivity of the client to the server, the load on

the server, and other performance and cost based criteria.

An example that shows how the CDN infrastructure is embed-

ded in the Internet architecture is shown in Figure 1. The Internet

is divided into a collection of autonomous systems (ASs). Each

AS is managed by an Internet Service Provider (ISP), who oper-

ates a backbone network that provides connectivity to clients and

to other ISPs. Figure 1 shows four ASs, numbered 1–4, two Web

site publishers, home.ex and adserver.ex, and two sets of clients.

The publisher home.ex is connected to AS 3 while the publisher

adserver.ex is connected to AS 2. A set of clients is connected to

AS 1, another to AS 4. Traffic is routed between the ASs by means

of Exterior Gateway Protocols [37]; BGP [38] is the de-facto stan-

dard. Traffic within an AS is routed by means of Interior Gateway

Protocols [37].

The location of the CDN’s servers differ from CDN to CDN and

depends on contractual agreements between the CDN and the in-

dividual ISPs. In some instances, the CDN servers are deployed

within the data centers of the ISP and therefore belong to the same

AS, like AS 1, 2, 4 in Figure 1. Clients of the ISP (end users) will

typically be served by these servers in the same AS. With other

ISPs, the CDN may have a private peering agreement that allows

the CDN to serve requests from the ISPs clients via a direct con-

nection between the CDN and the AS. The CDN may also co-locate

servers with the ISP’s clients, e.g., on university campuses. With

other ISPs there may be no relationship with the CDN, and the traf-

fic to the ISP’s clients is routed via another AS.

Let us consider the steps that are necessary to download the Web

page shown in Figure 2. This page consists of one main page

located at home.ex/index.htm and four embedded objects. The

publisher responsible for home.ex has decided to use the services

of a CDN, cdn.ex. One object (ex2.gif) of the sample page is

located on the same server as the page itself (index.htm); another

object (ex3.gif) is served by a company providing dynamic ad-

vertisements, adserver.ex; and objects ex1.gif and ex4.jpg are

hosted by the CDN.

If a specific client from client set A in Figure 1 accesses the Web

page, publisher home.ex will serve the bytes for the main page and

one embedded object, publisher adserver.ex will serve the bytes

for the object located on its servers, and the “nearest” CDN server

will serve the two CDN-located objects—in this case, they will be

served from AS 1. In contrast, if a specific client from client set B

accesses the page, the two CDN objects will be delivered from a

different CDN server, namely the one in AS 4. Keep in mind that it

is the objective of the CDN to direct the client to a CDN server that

is close to the client.

3. INTERDOMAIN WEB TRAFFIC

DEMANDS

In this section we motivate and introduce abstractions for pub-

lisher demands and Web traffic demands and discuss some possible

applications based on these abstractions.

The interplay between content hosting, intra- and interdomain

routing, and the Internet architecture affects the set of traffic de-

mands we choose to estimate. In contrast to previous work [11, 12,

13, 39, 14, 40], we are not focusing on a single ISP. Rather the goal

of this study is interdomain traffic imposed by any client accessing

content provided by many publishers.

The situation naturally lends itself to two abstractions:

1. a publisher demand matrix that captures traffic behavior at

the aggregate level of a publisher or content provider; it pairs

each client IP block with various publishers and

2. a Web traffic demand matrix that captures the traffic at the

granularity of a Web server with a specific IP address; it pairs

each client IP block with various Web server IP addresses.

Motivation: Traffic demands usually specify the amount of traffic

flowing between two end-points, from the source to the destination,

which is sufficient as long as both end-points are of the same granu-

larity. In the context of Web traffic, treating end-points at the same

granularity is problematic, as there are many more clients than

servers or publishers. Distinguishing between individual clients is

moot due to the sheer size of the resulting matrix.

Just as the interplay between intra- and interdomain routing mo-

tivated a point-to-multipoint demand model [11], it motivates us to

define Web demands in terms of network prefixes that are consis-

tent with BGP. This enables us to address questions arising in the

context of inter- and intra-domain routing as well as questions re-

garding how to multi-home sites and how to balance traffic between

ISPs.

Summarizing clients according to network prefixes appears ap-

propriate. Network prefixes provide a way of aggregating client

traffic that preserves locality in terms of the Internet architecture.

Such an aggregation is necessary in order to avoid the severe scal-

ability problems of representing each client at the level of an IP

address. In addition, it reduces the statistical significance problem

caused by too little traffic per individual IP address.

Yet, summarizing publishers via network prefixes is hazardous.

A publisher that serves tens to hundreds of megabits/second to

clients is likely to use a distributed infrastructure together with

some load distribution mechanism, such as DNS round-robin or

proximity-aware routing. In general these mechanisms are very

similar to those employed by CDNs. This usually means that the

content is available via multiple IPs in different network prefixes.

Furthermore, it is sometimes impossible to deduce the Web site

publisher from its IP address: A server may host multiple sites

of several publishers. Even the URL of an object does not di-

rectly allow us to infer the identity of the publisher for the content,

e.g., that Vivendi Universal Interactive Publishing is responsible

for www.lordoftherings.com. Some publishers split their con-

tent into various sites, each with its own responsible organization

and its own independent infrastructure. This implies that one may

want to capture the traffic matrix at two levels of abstractions: at

the publisher level or at the level of each individual Web server.

Illustrative Examples: Having motivated the need for the two

kinds of matrices—publisher demand and Web traffic demand—

we now present some illustrative examples. Figure 3 shows two
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Figure 3: Publisher demands.

different publishers that are identified by id numbers 42 and 21,

and the domain names of the sites that they publish: home.ex for

42 and news.ex/weather.ex for 21. Their content is accessed by

two different client sets: A and B. Each client set accesses some

of the content provided by home.ex and news.ex/weather.ex.

This results in traffic flowing from the Web sites of home.ex and

news.ex/weather.ex to the client sets A and B. These traffic

flows are what we refer to as publisher demands.

If we want to improve, say, our routing decisions, then pub-

lisher demands are not of much use: They do not take into account

the server locations. In the distributed infrastructure for the pub-

lisher with ID 42 shown in Figure 1, some of 42’s content (namely

home.ex) is hosted at servers connected directly to AS 3, some of

42’s content has been offloaded to a CDN; furthermore there may

be third-party content such as banner ads hosted by adserver.ex

on some of 42’s pages. In Figure 1, the resulting three Web traffic

demands to client set A are indicated by the smooth arrows; the

Web traffic demands to client set B are depicted by the dotted ar-

rows.

Applications: These notions of demands enable experimentation

with changes to content hosting, to routing, to the AS level topol-

ogy, as well as to the location of the content and/or the clients. A

publisher that needs to upgrade its infrastructure has many choices:

upgrade the existing servers, add more servers, add more band-

width to existing network connections, add alternative network con-

nections, change the way requests are allocated to individual servers,

or outsource more of its content delivery. In order to decide on the

best option, the publisher may use the publisher demands to eval-

uate possible scenarios: the traffic volume imposed by different

client sets may influence his decisions. For such “what if” scenar-

ios he needs to understand the dynamics of both the publisher de-

mands as well as the Web traffic demands as well as the differences

in the dynamics between them.

An ISP may also need to predict the effects that adding or mov-

ing a link or peering session may have. This requires a model of

interdomain traffic. An important difference between traffic statis-

tics collected within an AS and the Web traffic demands discussed

here is that they describe traffic flows, not just through the network

of the ISP, but throughout the Internet. Therefore, given an un-

derstanding of the dynamics of Web traffic demands, it is easier to

estimate the effects that decisions (such as adding peering connec-

tions) may have. Furthermore it is possible to explore what effects

policy changes will have. For the first time this is now feasible not

just for policy changes by the ISP itself but also for policy changes

by other ISPs.

By combining Web traffic demands with topology and BGP rout-

ing information one can explore the impact of routing instabilities

on actual traffic flows and vice versa. Furthermore by combining

the Web traffic demands with performance measurements one can

explore how user feedback should be factored into future decisions.

Furthermore both demands, the Web traffic demand as well as the

publisher demand, are ideal inputs for driving interdomain network

simulations.

4. USING CDNS TO ESTIMATE

PUBLISHER DEMANDS

Computing the publisher demands is possible given either infor-

mation from each publisher regarding which clients access the con-

tent served by that publisher from which prefixes, or given informa-

tion from each client set about which Web sites they are requesting.

One way of deriving this information would be to collect fine-grain

traffic measurements at all publisher sites or all client sites. This

may enable us to identify the traffic as it reaches the Web site pub-

lisher or the clients. However, this approach is virtually impossible

since the huge number of publishers/client sets imposes a task that

is unmanageable. Furthermore it would still be necessary to ad-

dress the question of how to distinguish publishers co-located at a

server. Just analyzing a large proxy log does not help either, since it

does not allow us to gather information about any significant subset

of all possible clients.

Instead, we focus on publishers, because there are far fewer pub-

lishers than clients. Yet, instead of considering all publishers, we

take advantage of the fact that CDNs provide (Section 2.2) reverse

proxy services for the content providers (the publishers). They are

acting as “subcontractors” to the publishers. Using data collected

within CDNs has several advantages:

• CDNs serve the content on behalf of their customers (the

publishers). This implies that the CDN has a way of relat-

ing content to publishers.

• Due to the requirements imposed by volume-based billing,

CDNs collect data on behalf of the publishers regarding how

much traffic is served. This implies that the CDN has a way

of deducing the amount of traffic it serves on behalf of each

individual publisher.

• In addition, most publishers do not want to lose access to the

information they can collect when they serve content directly

to clients. For example, information about which clients are

accessing what content is derivable from Web server logs.

Accordingly the CDN has to collect this “Web server”-like

log information. As a consequence, it has a way of relating

traffic to clients.

Moreover the number of CDN service providers is significantly

smaller than the number of publishers. A list of CDN types and

their products is maintained by Teeuw [41] and Davison [42]. To

further reduce the candidate set, we observe that the market is dom-

inated by only a small number of CDNs such as Akamai, Speedera,

Cable & Wireless and Mirror Image.
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Focusing on CDNs limits us in terms of the number and kind of

publisher demands that can be estimated: If a publisher has no as-

sociation with a CDN, it will not be possible to derive his publisher

demands. This raises the question of which publisher demands we

are interested in, and if those are likely to be associated with a

CDN. Like a lot of other quantities in networking [43, 44, 11] and

elsewhere [45], we expect publisher demands to be consistent with

a Zipf-like distribution. A Zipf-like distribution is one where the

contribution of the k-th most popular item varies as 1/kα , for some

α. Since the heavy hitters account for a significant part of the traf-

fic, we are mainly interested in them. Luckily those are the ones

that are more likely to use the services of a CDN. Therefore CDNs

can provide us with a way of estimating the publisher demands for

those content providers that are most popular and thus account for

a large part of the traffic.

Still one problem remains: as discussed in Section 2.2 and as

shown in Figure 1, CDNs try to take advantage of their distributed

infrastructure by serving traffic locally. Thus, how can we expect to

derive estimates for interdomain Web traffic demands from traffic

to CDNs? Here it turns out that most publishers will not serve their

whole content via the CDN. Rather they will use some mixture as

shown in Figure 2. Note that not all content has to be served via

the Web site of the publisher or the CDN; rather some embedded

objects may be located on yet another server, e.g., banner adver-

tisements.

Together this provides us with the opportunity that we need. If

we know the ratio of a customer’s traffic serviced via a CDN vs. via

the servers of the publisher vs. via external sites, see Figure 4(a),

and if we know the traffic serviced by the CDN, see Figure 4(b),

we can estimate the other amounts, see Figure 4(c). These facts

allow us to estimate publisher and Web traffic demands for all client

prefixes world-wide and all publishers that are customers of the

CDN. Our methodology significantly improves the availability of

interdomain traffic estimation—so far at best a scarce quantity.

5. ESTIMATING INTERDOMAIN TRAFFIC

DEMANDS: REALIZATION IDEAS

With access to the logs of a CDN, determining the traffic served

by a CDN on behalf of a specific publisher is possible. Accordingly

we now discuss how we approach the remaining problems: how to

estimate traffic ratios between publisher and CDN traffic, as well

as how to map publisher demands to Web traffic demands. Further

details are provided in the Appendix.

Estimating traffic ratios: One way to proceed is to explore the

content provided by the Web site of the publisher offline. Given

a set of Web pages one can easily calculate the fractions of data

served by the CDN vs. the fraction of data served by the original

Web site. The problem with this approach is that it ignores the fact

that certain Web pages are more popular than others.

Hence, we really need access to information about user accesses.

There are many ways of doing this [46]: from users running mod-

ified browsers [5], from the logs of the publishers themselves [7],

from proxies logging information about which data is requested by

the users of the proxy [47, 48] or from the wire via packet moni-

toring [49, 50, 51]. Each of these methods has its advantages and

most have severe limitations regarding the detail of information that

they log. Distributing modified Web browsers suffers from access

to the browser software and from users not accepting the modified

browsers. While a few publishers might cooperate by revealing

their logs, most will not. In addition, this approach suffers from a

scalability problem. Using proxy logs or logs derived via packet

monitoring is more scalable with regards to ISPs. But with regards

to the size of the user population that can be monitored, it is more

limited.

To choose the appropriate solution let us consider the granularity

at which we need the information. The purpose of estimating the

publisher demands is mainly to understand their medium time-scale

fluctuations and their impact on traffic engineering, routing, etc.

We are not as interested in small time-scale events (and in any case

it is hard to understand their causes). Therefore some coarse-grain

estimation is sufficient for our purposes. Hence we propose the

following two-fold approach:

• to obtain from the publisher their estimate of the fraction

of traffic that is served by the CDN and other third party

providers; admittedly, we utilize the provider-customer re-

lationship between the CDN and the publisher to acquire this

information, which is provided by only a subset of the pub-

lishers.

• to use packet-level traces or proxy logs to derive the frac-

tions for some users and therefore for some sample client

sets. (While proxy logs suffice, since detailed timing infor-

mation is not required, the analysis in this paper is based on

packet-level traces.)

Figure 2 shows an example of a Web page. A log file, derived

from a proxy log or the packet traces, should show six entries per

access to this page, i.e., one for each object (unless it is cached

in the user’s cache). Each entry includes an object id (i.e., the

URL), the start and end time of the download of the object, the

transferred bytes, and the HTTP_REFERER field (if specified by the

user agent). Note that the referrer field, which lets a user agent

include the URL of the resource from which the requested object

was reached, is optional and not necessary. Nevertheless most pop-

ular Web clients, such as Internet Explorer and Netscape, include

them regularly. They prove to be extremely helpful. In our sample

page, all embedded objects have the same value for their referrer

field independent of where the object actually resides. Indeed the

value is the same as the URL of the base page. Thus the referrer

field provides us with the means to associate the objects and there-

fore provide us with the means of estimating the ratios between the

traffic flows.

One way of estimating the ratios would be to try to compute the

exact temporal and causal relationship between the pages and their

embedded objects. But past work, e.g., in the context of estimat-

ing the benefits of prefetching [48] or piggybacked cache valida-

tion [46], has shown that this is a nontrivial task, especially in the

presence of proxies and strange users. For our purpose the fact that

there is a relationship is sufficient. See Appendix B for details.

From publisher demands to Web traffic demands: In order to

derive the Web traffic demands from the publisher demands, we

first need to map the Web sites of the publishers to IP addresses.

This mapping may not be a one-to-one mapping. Recall that some

publishers use a distributed infrastructure and therefore apply DNS

mechanisms for “load balancing”, “proximity-aware”, or “server-

feedback dependent” name resolution, in a manner similar to Aka-

mai’s mechanism for distributing load, or even entrusting Akamai

to provide these mechanisms.

Again, we propose to take advantage of information available

to the CDN. It knows the set of hostnames that is associated with
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(a) Determining traffic ratio (b) Estimating unseen (c) Resulting interdomain
publisher traffic/CDN traffic non-CDN traffic traffic demand matrix

Figure 4: Web publisher demand estimation.

each publisher. Therefore the problem is reduced to associating

each hostname with its set of IP addresses.

This can be done using DNS queries. To account for “proximity-

aware” or “server-feedback dependent” policies used by the pub-

lisher, it is not sufficient to issue DNS queries from a single point

in the Internet—rather we need to use a set of DNS servers that are

distributed throughout the Internet. Since we have to issue recur-

sive queries1 to these servers in order to discover their view of the

server IP addresses, they have to allow recursive DNS queries.

In a second step, we determine which server is used by which

client. This problem can either be extremely simple or extremely

hard. If the site uses a single IP address or simple DNS round robin

across a number of different IP addresses, this step is trivial. Since

DNS round robin is supposed to partition the requests about evenly

across all of the servers, this is what we will do in estimating de-

mand. If the site uses a more sophisticated mechanism, we are left

with a fairly difficult problem. Here we have two possible ways to

approximate the decision of the physical Web site: We can either

use the result of the DNS server “closest” to the client set, or we can

assume that the client set is directed to the “closest” server. Here

we propose to capture the meaning of “close” in terms of AS dis-

tance. This seems reasonable, since other measures of closeness are

even harder to define, and since it is known that some distributed

infrastructures are using this information [52].

More details concerning our implementation are provided in Ap-

pendix C.

6. DATA SETS

The computation of the demands draws on several different data

sets, as summarized in Figure 5 and 6. This section describes our

approach for harvesting and preparing these various large data sets,

each collected at a different location at a different granularity.

From the CDN: Using logs that feed into the CDN billing system

of a major CDN provider, Akamai, we extract for each client set

how much content from which publisher is accessed (after appro-

priate anonymization). Each individual log file records all accesses

to some part of the CDN infrastructure during some time period and

is available for processing some time after the last recorded access.

1In an iterative query, the contacted name server tells the requesting
name server which name server to ask next, while in a recursive
query the contacted name server proceeds by sending a query to
the next name server on behalf of the original user.

We captured logs for three two-hour time periods: 9–11:00 h UTC

on Mon Apr. 26th, 2004 (CDN1) and 8:30–10:30 h UTC on Wed

Apr. 28th, 2004 (CDN2) and 17–19 h UTC on Wed May 5th, 2004

(CDN3) from more than 90 / 85 / 65% of all the operational servers

of the CDN 2. There are two reasons why we did not capture logs

from all servers: Logs for certain time periods arrive in bursts im-

posing a huge instantaneous burst overloading our limited research

collection infrastructure. Other logs can be delayed due to remote

network outages, and even arrive after we stopped our data collec-

tion process. In addition the online collection is augmented by an

offline retrieval of some subset of the logs via an archival system.

We initially aggregated this data using the methodology described

in Figure 19 using a time aggregation of half an hour. This time

aggregation was chosen to examine the spatial rather than the tem-

poral variability of the data.

From three user sets: Three sets of client access information were

extracted from packet-level traces at the 1 Gbit/s upstream link of

the Münchner Wissenschaftsnetz (MWN) in Germany. The MWN

provides external Internet connectivity to two major universities

(Ludwig-Maximilians-Universität München, Technische Universi-

tät München) and a number of smaller universities, government or-

ganizations, and research institutes. Overall the network contains

about 50,000 individual hosts and 65,000 registered users. On a

typical day the MWN exchanges 1–2 TB of data with its upstream

provider. On the 13th of May during the day (8–20 h), 295.5 GB

used the HTTP port, which corresponds to 26.5% of the traffic.

During the night 112.2 GB (18%) of the traffic was HTTP. This

indicates that the Web is still a major traffic contributor.

Monitoring is realized via a monitoring port on a Gigabit Eth-

ernet switch just before the traffic passes the last router to the In-

ternet. We captured the raw packet stream using tcpdump on disk

and then extracted the HTTP connections offline using the HTTP

analyzer of the intrusion detection system bro [53]. The resulting

trace contains all relevant HTTP header information and is much

more compact than the raw packet data.

Since extracting HTTP data at Gigabit speed is almost impossi-

ble using standard PC hardware [49] we split our client base into

three groups: one for each university (TUM, LMU) and one that

covers the other organizations (MISC). To ensure a reasonable cov-

erage of all client groups, we monitored each client group for a

2The relatively bad coverage for the May dataset is due to having
to use a compute server for retrieving and storing the logs.
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Dataset Obtained from Key Fields

CDN sites CDN List of Web sites and Web site publishers that use the CDN

CDN servers CDN List of hostnames of Web sites

CDN logs CDN billing system Per accessed object: client IP address, resource, start and end time, transferred bytes

HTTP logs external network connection Per accessed object: user IP address, url, start and end time, transfered bytes, referrer, hostname

DNS lookups set of name servers Per hostname and DNS server: set of IP addresses

BGP table peering points Per network: set of possible routes (AS-path)

Figure 5: Datasets and key fields used in computing and validating the publisher and content traffic demands.

Dataset Date Duration Size

CDN logs {04/26,04/28,05/05}/04 3×2 hrs 617.4 GB .gz

HTTP logs 01/30/04–05/11/04 102 days 28.5 GB .gz

DNS lookups 5/12/04–5/13/04 1 day 5.4M queries
BGP tables 4/28/04 — 270 tables

Figure 6: Per data set summary information.

2-hour period, rotating through the groups. Accordingly each trace

captures all downloads of all clients in the group from all publish-

ers as well as the CDN. In total, we collected 1,017 traces, each of

which covers a 2-hour period. This approach ensures reasonable

packet loss rates. Of the 1,017 measurement intervals, the number

of intervals with more than 0.1% / 1% / 10% packet drops (as re-

ported by tcpdump) was 124 / 22 / 1. The maximum packet loss

rate was 10.18%, the average is 0.23%, and the median is 0.0028%.

From the DNS system: We identified roughly 7,000 DNS servers

using a different packet level trace, while ensuring that each server

supports recursive queries. But the process does not pay attention

to the distribution of the DNS servers within the Internet infrastruc-

ture. Therefore in the next step we identified a subset of 516 DNS

servers that return different results when resolving the name of the

main CDN Web server. The 516 DNS servers are located in 437

ASs in over 60 countries. We restrict ourself to using this subset in

order to reduce the load on the overall DNS system while achiev-

ing a good coverage of the Internet infrastructure. To resolve which

publishers are using a distributed infrastructure, we selected a sub-

set of 12,901 hostnames used by the publishers. The resolution of

these hostnames resulted in more than 5.4 million queries of which

98.2% received a valid response.

From the Routing system: We constructed a joined BGP routing

table from the individual BGP tables on the 4/28/04 from Route-

View [54] and RIPE’s RIS project [55]. This table contains 161,991

routable entries. Furthermore we extracted an approximation of the

contractual relationships between the AS using a methodology sim-

ilar to that proposed by Gao [56].

7. EXPERIMENTAL RESULTS

In this section, we present our initial results of applying our

methodology to the various data sets discussed in Section 6.

7.1 Estimating CDN publisher demands

The first step is estimating how much traffic is sent by the CDN

on behalf of each publisher to each client set. For the initial analy-

sis in this paper, we decided to use static groups of /24 prefixes to

define client sets. We observe 1,130,353 different client sets within

the datasets CDN1 and CDN2. This corresponds to a 23.6% cover-

age of the overall IPv4 address space and 52% coverage of prefixes

within the routable IPv4 address space. 1.3% of the observed client

space is not publicly routable, perhaps due to placement of CDN

servers within private networks. In total the client sets accessed

roughly 41 Terabytes of data via the CDN network. Thus on aver-

age, each client set accessed about 36 MBytes over the three trace

periods.

The Internet has obviously many client sets and a sizable number

of publishers. But who is contributing the majority of the traffic—

is it a small set of client sets, or a small subset of the publishers?

Even by just studying the amount of traffic serviced by the CDN,

we can get a first impression of these relationships. In Figure 7, we

rank client sets by total traffic received from the CDN from largest

to smallest, and plot the percentage of the total traffic attributable

to each for each 30 minute time interval of the CDN2 trace. This

corresponds to plotting the (empirical) complementary cumulative

distribution function (CCDF) of the traffic volume per client set. In

order to not obscure the details in the curves we use lines instead

of marking each point for ranks greater than five. To better distin-

guish the curves we add some supporting markers. As predicted,

we find a “linear” relationship on the log-log scale, an indication

that the distribution is consistent with the characteristics of a Zipf-

like distribution [45, 43]. The client sets are sorted by their activity

in terms of downloaded bytes; the first client set is the most active

one. This implies that one has to look for the linear relationship in

the left part of the plot, while artifacts can be expected at the right

side.

But do client sets exhibit the same sort of activity distribution

even if we focus on individual publishers rather than on all pub-

lishers taken together? In Figure 8, we explore the characteristics

of the top 10 publishers, selected by the total number of bytes that

they serve to all client sets (using the same plotting technique as

before). The fact that we still observe a “linear” relationship on the

log-log scale indicates that even single publisher demands are dom-

inated by the behavior of a few client sets. One aspect that may be

contributing to these effects is that client sets are located in different

time zones. About 40.4% of the client sets in CDN1 and CDN2

are located in the US, 9.4% in Japan, 6.0% in Korea, 4.2% in the

UK, 4.2% in China, 3.9% in Germany. (The mapping of network

to country is done via Akamai’s EdgeScape tool.) One reason for

reduced demands is that for some client groups most are sleeping

while users of other client sets are at work, etc. While the impact of

time zones has to be further explored, we start by subselecting vari-

ous subsets of client sets. Each of these client sets covers either one

(Japan), two (UK, France, Germany), or four time zones (US). We

still observe activity drops that are consistent with Zipf-like distri-

butions (plots not shown) if we split the demands per client or per

time. The bends for Publishers 6 and 10 in Figure 8 are due to the

superpositions of access by client sets in the US and abroad. The

ones in the US have a higher demand than those outside the US.

Even though the client sets in Figure 8 are ranked separately,

according to their activity for each publisher, it also shows that

a client set that receives the most bytes from one publisher does

not do so from another publisher. Rather, there are significant dif-

ferences. This indicates that each publisher in the Internet has to
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from all publishers each 30 min).
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per top-10 publisher during the two hour period of CDN2.

determine for itself who the heavy hitters (contributors) among the

clients are—extrapolating from one client set to another can be mis-

leading.

But what is the behavior if we consider the data from the view-

point of the client sets? In Figure 9 we explore the popularity of

content served by the CDN on behalf the publishers (using the same

plotting technique as before). Again we observe a curve that indi-

cates a Zipf-like distribution in the range of 1–1,000. The dropoff

in the curve for less popular publishers indicates that there is a large

publishers sorted by popularity
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Figure 9: CCDF of publisher traffic volume (% bytes served to

all client sets each 30 min).

number of publishers that do not serve a lot of data via the CDN.

This does not disprove that, for the popular publishers, the distri-

bution is consistent with a Zipf-like distribution.

Generally, we observe the same kind of curves for all data sets

and for each subset of the datasets. For example, in Figure 9, the

curves for the publisher popularity in terms of traffic volume be-

tween consecutive 30-minute time periods fall on top of each other.

The same observations hold if we look at the individual publish-

ers or the client sets over consecutive 30-minute intervals. But this

does not imply that its always the same publisher or the same client

set that dominates the distribution. Accordingly Figure 10 plots the

bytes contributed by each country during one 30-minute time pe-

riod vs. another 30-minute time period. The left plot does so for

consecutive time periods. The nice concentration around the diag-

onal indicates that the volume changes are not rapid within any of

the three datasets. In contrast, the right plot shows the same kind

of plot comparing corresponding 30-minute time periods from the

26th of April to those of the 5th of May. (A 30-minute time period

starting at offset x in one trace corresponds to the 30-minute time

period starting at offset x within the other trace.) Note that, due to

the time shift, one should expect a larger spread. This is indeed the

case, indicating that the popularity changes have to be considered

not being just time-of-day variations.

7.2 Estimating relationships between CDN
and publisher flows

Once we know how much Web traffic is flowing from the CDN

to each client set, we need the ratios to extrapolate from the par-

tial CDN publisher demands to the Web publisher demands. Ac-

cordingly we apply the our methodology to the client access logs.

(Further details are provided in Figure 20 in the Appendix.) Note

that we are not necessarily capturing all of the traffic from the pub-

lisher since our methodology is based on the referrer fields in the

requests for CDN-delivered objects, i.e., there might be even more

CDN customer data being delivered than we are estimating.

We start with presenting some basic characteristics of the data

sets from the three client populations covering all monitored sub-

nets, see Figure 11. Overall, in the TUM, LMU, and MISC data sets,

we observed roughly 522 million different requests for Web objects

for more than 5.15 TBytes of data. This implies that the mean ob-

ject size in our data sets is about 9.5 KBytes. The mean size of an

object served by the CDN to the clients at TUM, LMU, and MISC is

a bit smaller at about 8 KBytes. This accounts for the difference be-

tween the % requests directed towards the CDN vs. the % of bytes.

While 4.2–4.9% of all HTTP requests are served by the CDN, this

corresponds to only 3.14–4.31% of the HTTP bytes.

From Figure 11, we see that the clients only retrieve 1.8–2.2%

of the HTTP bytes from the CDN customers themselves. This indi-

cates that the ratio of bytes served by the CDN vs. the bytes served

by the publishers can vary from 1.4 to 2.5: The relative percentage

of requests directed to the CDN customers is larger than the rela-

tive percentage of bytes retrieved from the CDN. This indicates that

CDN customers delegate their larger content to the CDN, which is

to be expected. Yet while publishers delegate a large amount, they

do not delegate all of their traffic. Therefore our approach for es-

timating publisher traffic can be expected to yield estimates of in-

teresting interdomain traffic flows for a significant fraction of the

overall traffic volume.

The fraction of bytes in the category related to non-CDN-cust-

omers gives us another possible avenue for estimating interdomain
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Figure 10: Scatterplot: publisher bytes for time period t vs. period t ′.

Users Description Requests (in K) Bytes (in Gbytes)

absolute relative absolute relative

TUM Total 357,621 100.00% 3795.83 100.00%
LMU Total 91,104 100.00% 721.60 100.00%
MISC Total 62,013 100.00% 636.47 100.00%

All Total 510,738 3×100% 5153.90 3×100%

TUM CDN 15,065 4.21% 119.00 3.14%
LMU CDN 4,449 4.88% 26.75 3.71%
MISC CDN 3,043 4.91% 27.40 4.31%

TUM CDN customer 10,650 2.98% 83.95 2.21%
LMU CDN customer 2,549 2.87% 13.75 1.91%
MISC CDN customer 2,107 3.40% 11.20 1.76%

TUM related non-CDN 6,121 1.71% 44.61 1.18%
LMU related non-CDN 1,325 1.45% 5.15 0.71%
MISC related non-CDN 1,212 1.76% 4.91 0.77%

Figure 11: Basic statistics of the user access characteristics.

traffic flows. There are two reasons why requests/traffic falls into

this category: publishers offload some of the content to other ser-

vice providers (e.g., those providing targeted advertisement), and

some of the publisher’s content is served in connection with other

sites (e.g., advertisements on someone else’s Web page). While this

indicates some additional potential, in this initial exploration phase

we focus on the ratio of traffic served by the CDN on behalf of a

publisher vs. the traffic to the publisher itself.

For this purpose we need to associate the bytes served by the

CDN and the bytes served by CDN customers’ own servers with the

appropriate publisher. Using Akamai-internal information sources,

we were able to identify 23 million requests from the MWN to

Akamai-hosted URLs (Figure 5). While 23 million requests are

a sizable number, the individual number of requests for objects

served by the CDN over smaller time period (2 hrs) are significantly

smaller. Averaged over the whole duration of the trace collection

this implies that one can expect to see only 2,000–20,000 requests

in each data set for each two hour time period. Of course just aver-

aging is unfair since there will be many more requests during busy

hours than during off-hours, e.g., in the middle of the night. In ad-

dition some subnets, e.g., those with Web proxies, generated many

more requests than others. Nevertheless it points out the problem of

observing enough samples for deriving a reasonable ratio estimate.

Here we receive help from a trend that has been observed in

many other contexts: some publishers have much more popular

content than others. We rank the number of requests (Figure 12)

and bytes (Figure 13) by provider from the largest to smallest for

both data sets, and plot the percentage of total requests/bytes at-

tributed to each. For those publishers that contribute a significant
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Figure 13: CCDF of bytes per publisher.

percentage of the bytes these curves are “linear” on a log-log scale.

Again this characteristic is consistent with a Zipf-like distribution.

Together these two observations imply that we can expect to find

time periods with a reasonable number of observations for some

significant subset of the publishers in our user access data sets. We

now focus on those (time period,publisher) pairs with enough ob-

servations.

Here we define “enough” as observing at least 50,000 requests

satisfied by the CDN on behalf of a publisher and 500 requests

served by each publisher itself per aggregation period. Using a

value of 500 is fairly arbitrary; further investigation is needed to
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provide a sound basis for a good cutoff value. Using these selection

criteria, we compute the ratios of bytes for each publisher and each

aggregation period. Not too surprisingly we found that the ratios

span quite a wide range of values: from 0.01 to 100. Comparing

ratios is awkward, e.g., is the “difference” between 0.03 and 0.06

the same as between 16 and 32? In this context the answer is yes

since both “differ” by a factor of 2. Therefore, to ease comparisons

of ratios we, in all further discussion, use the binary logarithm of

the ratios. Accordingly 0.03 is transformed to −5, 0.06 to −4,

16 to 4, and 32 to 5. Now the differences in both cases are 1.

Figure 14 plots the density of the transformed ratios for the TUM

and LMU data sets for both bytes as well as requests. We observe for

all data sets that the ratios span a significant range of values from

−10 to 10 both for requests as well as for bytes. This indicates that

different providers use different policies with regards to delegating

their information to the CDN. Furthermore we see, as expected, that

the CDN usually provides more bytes than the original publisher for

most but not all publishers. In addition with regards to requests the

distribution is more balanced. This indicates that some publishers

use the CDN for big objects, such as software distribution.

While the overall distribution of the ratios is interesting, more

relevant for the purpose of estimating the publisher demands is the

question: How stable are the ratios across time and user popula-

tions? Overall it is well known that traffic volume [6] and flow ar-

rival streams [57] are self-similar and exhibit significant burstiness.

Therefore we can expect some fluctuations with regards to the num-

ber of requests over time. In addition, not every user will access the

same pages from the publisher, and different subsets of pages will

lead to different ratios in terms of bytes from the publisher and the

CDN. But what are the impacts of all these causes of instability?

Our estimation methodology allows us to explore the size of these

instabilities since it will yield multiple samples of estimated ratio

values for various publishers. Figure 15 shows boxplots of the ra-

tios for the 15 most popular publishers for the samples of the three

data sets, TUM, LMU, and MISC. Boxplots can be used to display

the location, the spread and the skewness of several data sets in one

plot: the box shows the limits of the middle half of the data; the

line inside the box represents the median; the box widths are pro-

portional to the square root of the number of samples for the box;

whiskers are drawn to the nearest value not beyond a standard span

from the quantiles; points beyond (outliers) are drawn individually.

Most of the boxes have a reasonably small spread (less than two).

But others have quite a spread, e.g., index 4. This is partially due

to a fairly small sample size and partially due to the variability of

different content that is offered by that publisher. Further aggre-

gation and combining the information from different user sets can

sometimes be helpful—Figure 15 also shows the boxplots for the

samples from the combined data sets. While some estimations of

the ratios stabilize, as indicated by the smaller range of the box,

others expand due to the differences in the user behavior.

Generally, we can estimate the ratio of publisher demand ser-

viced by the CDN vs. that serviced by the publisher. But there are

drawbacks to this approach: A large number of requests needs to be

monitored in order to derive reliable estimations. The estimations

can vary across time and some attention has to be paid towards dif-

ferent subject/interest areas by different user sets. Furthermore not

all user sets will access sufficiently many objects from all publish-

ers that are customers of the CDN. Therefore this approach should

be combined with other approaches for estimating the ratios, e.g.,

static exploration of the Web site and information from the pub-

lisher itself.

7.3 Mapping of publisher demand to
Web traffic demands

The next step is to apply our methodology for mapping the pub-

lisher demands to Web traffic demands. (Further details are pro-

vided in Figure 21 in the Appendix.) The open question is: how

well does the proposed methodology of mapping each client set

and each hostname to a single server IP address work? This is a

two-step process. First, we need to identify the set of IP addresses

for each hostname. Then we need to identify which subset of the

IP addresses to choose for each client set.

If a hostname is hosted by the CDN itself or if the infrastructure

is using DNS round robin by itself, the latter step is simple. In the

first case we know which IP address serves the traffic and in the

second case all returned IP addresses are used. Using the data de-

scribed in Section 6 we observe that of the 12,901 hostnames, 2,106

(16.3%) are hosted by the CDN itself, 1,242 (9.6%) are using some

form of proximity-aware load balancing, while 10,906 (84.5%) are

consistently returning the same set of IP addresses. Of these host-

names, 9,124 (83.8%) are returning a single IP address while 1,079

(8.4%) are utilizing only DNS round robin. Most of these (830)

are using two IP addresses, while 79 are using more than five IP

addresses. Therefore we have solved the problem for 90.4% of the

considered hostnames. If most publishers are serving their content

out of a small number of servers, then most clients must be far away

from those servers, which indicates that a significant fraction of the

traffic that we capture will be interdomain traffic.

This leaves us the with 1,239 hostnames hosted on a distributed

infrastructure and using proximity-aware load balancing. To better

understand this infrastructure, we show a histogram of the number

of IP addresses (Figure 16) and the number of ASs (Figure 16). We

observe that most of these hostnames (83.5%) are only mapped to

a small number of IP addresses (≤ 5). Indeed more than 34.7%

are using only two distinct IP addresses. Next we examine if the

infrastructure crosses domains, see Figure 17. 377 (30.4%) of all

hostnames using proximity routing are in a single AS. This means

that from the view point of interdomain routing, we will not be

able to distinguish these demands. We observe that 44% of the

hostnames are located in at least two but at most five different ASs.

To explore how the infrastructure of the remaining 862 host-

names is embedded in the Internet we studied the minimal AS dis-

tances of the ASs of the IP addresses of the distributed infrastruc-

331



−
6

−
4

−
2

0
2

4
6

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

Figure 15: Boxplot of log2(ratios) for the 15 most popular publishers (labeled 1, 2, . . . , 15). For each publisher results for four data

sets are shown (from left to right): TUM / LMU / MISC / (TUM ∪ LMU ∪ MISC).

0 10 20 30 40

0
2
0
0

4
0
0

6
0
0

8
0
0

# of IP addresses per hostname

c
o
u
n
ts

 o
f 
IP

 a
d
d
re

s
s
e
s

Figure 16: Distributed infrastructures: IP addresses per host-

name.

0 5 10 15 20 25 30

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

# of ASs per hostname

c
o
u
n
ts

 o
f 
A

S
s
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ture to the ASs of 500 randomly selected IP client sets. In order to

compute the distances we consider the contractual relationships as

derived from the routing tables [56]. Each AS path may only cross

a single peering/sibling edge, and may never follow a customer-to-

provider edge once it has followed a provider-to-peer edge. Any

edge unclassified by the heuristic is treated as a “sibling/peer” link.

We observe, Figure 18, that providers that use more servers and

distribute them in various AS indeed gain some benefits. The mean

distance and the standard deviation to other ASs is reduced.

8. SUMMARY AND OPEN QUESTIONS

In this paper, we propose two models for interdomain traffic de-

mands, publisher demands and Web traffic demands, that capture

hostname index (sorted by # ASs)
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Figure 18: Distributed infrastructures: AS distance between

client sets and publisher hostnames.

the origin, the volume, and the destination of the data, and thus pro-

vide an interdomain traffic matrix for Web traffic. We believe that

this simple abstraction can facilitate a wide range of engineering

applications, ranging from traffic engineering, to planning of con-

tent delivery, to network simulation. We further present a method-

ology for populating parts of the demand model using logs from

CDN networks, observations from user sets, the DNS, and the rout-

ing system.

The experimental results obtained by applying our methodology

to logs from a major CDN and two large user sets are promising.

Our approach seems to allow us to capture a significant fraction

of all Web traffic. Viewed on any scale, but particularly in terms

of the number of pairs, our matrices are some of the largest ever

generated. We have demonstrated that it is indeed possible to com-

bine server log data from a CDN with packet level traces from large

user sets to estimate a good chunk of all interdomain Web traffic as

proven by the diversity and coverage of the demands. Nevertheless

our results (especially the numerical estimates) should be treated as

preliminary and viewed mainly as an indication of the potential of

the methodology.

We present a collection of directions for further research:

1. We have captured only one class of traffic, namely HTTP.

While several studies have shown that HTTP traffic is among

the most common, its dominance has recently been chal-

lenged by new classes of traffic such as peer-to-peer file shar-

ing data and streaming media. How well does HTTP traffic

demand effectively represent overall traffic demand? How

can traffic demand for other classes be estimated?
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2. In this work we assume that the number of bytes served by

the content provider for each Akamai-served object can be

estimated by examining traces from a small number of large

client sets. Is the observed ratio of bytes served by the cus-

tomer to bytes served by the CDN (reasonably) invariant across

diverse user sets? At this point we have examined only two.

It is possible that content providers might tailor their web

pages for different client sets; e.g., a U.S.-based site might

choose to serve more compact (fewer bytes) web pages to

overseas clients.

3. Now that we have a means of estimating interdomain traffic

demands, we are beginning to explore aspects such as tem-

poral (time-of-day) and spatial distributions and analyses of

publisher/user dynamics. But we expect it to be even more

fruitful to combine this data with routing information, specif-

ically BGP tables. How does BGP respond to network bot-

tlenecks? How do the demands shift in response to routing

changes?
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APPENDIX

In this section we present more details on how we estimate pub-

lisher demands and web traffic demands using logs from a CDN

provider, packet-level measurements at ingress links, and the DNS

system.

A. CDN LOG EVALUATION

To compute publisher demands using CDNs, fine-grain access

records from all servers of the CDN have to be collected. Usu-

ally servers generate a record summarizing each transaction. These

are exported on a regular basis for billing purposes and include

sufficient information for computing the publisher demand: the

accessed_object, the client IP address, the start and end

times of the transfer, and the number of transferred_bytes. (Any

additional information can be used to further refine the notion of

publisher demands.)

Computing the traffic demands requires information about the

CDN customer (i.e., publisher) associated with each record. This

aggregation process draws on a map, object_to_customerid, such

that every object can be associated with a unique customerid.

Furthermore, it uses another map, clientip to clientprefix,

of network addresses such that every source IP address, client,

can be associated with a network prefix client_prefix. The first

map can be derived from the customer information of the CDN

while the second can be derived with longest prefix match from a

joined BGP routing table joined_bgp_table from multiple dif-

For each accessed object: (client, start, end, transferred bytes)
customerid = object to customerid(accessed object);
clientprefix = longest prefix match(client, joined bgp table);
start bin = ⌊start/bin length⌋ * bin length;
end bin = ⌊end/bin length⌋ * bin length;
if (start bin == end bin)

volume[clientprefix, customerid, start bin]
+= transferred bytes;

else /* Compute volume of traffic for each time bin */
byte rate = transferred bytes/(end - start);
volume[clientprefix, customerid, start bin]

+= byte rate * (start bin + bin length - start);
for (time bin = start bin + bin length; time bin < end bin;

time bin += bin length)
volume[clientprefix, customerid, start bin]

+= byte rate * width;
volume[clientprefix, customerid, end bin]

+= byte rate * (end - end bin);
For each aggregate:

demand[clientprefix, customerid, end bin] =
customerid to demand[customerid] *
volume[clientprefix, customerid, end bin]

Output for each aggregate: (clientprefix, customerid, time bin, demand)

Figure 19: Estimating CDN publisher demands from CDN

transaction logs.

ferent viewpoints in the Internet or one can use static groups such

as up to the /24 level, which (given that most ISP will not allow

propagation of prefixes smaller than /19s) does not hinder any later

application specific aggregation.

No content transfer is instantaneous. Rather, they last for some

time interval starting at start, ending at end, and contributing

some amount of traffic, transferred_bytes. In order to avoid

problems in time resolution, e.g., discrepancies between clocks at

the record collectors, granularity of the data sources, etc., and since

most applications making use of publisher demands are on a larger

time scale, we compute the demands on time scales of multiples of

minutes rather than seconds. Time is partitioned in bins of duration

bin_length, according to the considered resolution. If a record

spans multiple bins, we subdivide the traffic in proportion to the

fraction of time spent in each time period.

To derive the final publisher demands we draw on another map,

customerid_to_demand. It specifies for each customerid the rela-

tionship between the CDN-hosted traffic flows and the self-hosted

traffic and is the result of the computation detailed in Section B.

The algorithm for computing the publisher demands in summarized

in Figure 19.

B. ESTIMATING FLOW RATIOS

BETWEEN CDN AND PUBLISHER

In Section 5 we suggest using proxy and/or packet level traces

to estimate the relationships between the various flows shown in

Figure 4(b). Here we present a three pass approach which auto-

matically ensures that Web pages referring to other Web pages are

handled appropriately.

The first two passes serve preparative purposes. In the first pass

we separate the set of accessed objects according to users IP ad-

dresses. In the second pass (Fig. 20) we determine the set of ob-

jects served by the CDN under consideration, cdn_set, and some

additional information that we specify below. For this purpose we

check each object against the appropriate CDN customer base in-

formation determine_customer_id() and, if appropriate, com-

pute the CDN customerid and add it to the cdn_set.

In the third pass we compute for each CDN object cdn_id within
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Pass 1:
Sort the accessed objects according to user IP addresses
Pass 2:
For each user IP and object id: (url, start, end, trans bytes, referrer, hostname)

if (determine customer id(object id) evaluates to CDN object) then {
customerid[object id] = determine customer id(object id);
cdn set ∪= object id;

}
base candidate set[url] ∪= object id;
embedded candidate set[url] ∪= object id;

Pass 3:
For each object id from cdn set

with (url, start, end, trans bytes, referrer, hostname)
if (done[object id]) then next;
done[object id] = true;
end bin cdn = ⌊end/bin length⌋ * bin length;
cdn customer id = customerid[object id];
volume[cdn customer id, end bin cdn] ∪= trans bytes;
For each candidate in (base candidate set[referrer]

or embedded candidate set[referrer]) {
if (∃ customerid[candidate] or done[candidate]) then next;
done[candidate] = true;
associated hosts[cdn customer id] ∪= hostname[candidate]
end bin candidate = ⌊end[candidate]/bin length⌋ * bin length;
volume related[cdn customer id, hostname[candidate],

end bin candidate] ∪= trans bytes;
}

Output for each customerid and host from the associated hosts the ratios:
(customerid, hostname, time bin, volume[customerid, time bin],
volume related[host, time bin]/volume[customerid, time bin])

Figure 20: Computing flow ratios: CDN vs. Publisher from

user access logs.

this set the possible base pages base_candidate_set and the pos-

sible other embedded objects embedded_candidate_set. For an

object to fall into these sets either its URL or its referrer has to be

equal to the referrer value of the CDN object. For this purpose we

stored some additional information in the second pass: each object

with URL url and referrer referrer is added to the set of possible

home pages for this URL base_set(url). Furthermore, we add

the object to the set of possible embedded objects for the current

referrer embedded_set(referrer). Once we have retrieved the

candidate sets, we can determine the hostnames for each of the ob-

jects within the candidate sets and add the bytes in the correspond-

ing object to the appropriate traffic flow. The appropriate traffic

flow is either determined by the cdn_customer_id for CDN ob-

jects or the hostname for non-CDN objects. If the hostname is not

used in the users request, we propose to use the server IP address

instead. In order to keep the relationship information, we can now

establish the link associated_hosts between cdn_customer_id

and the hostname of the objects in the candidate sets. In order to

avoid double counting, e.g., if the exact same page is accessed mul-

tiple times, one needs to mark every object that has already been

accounted for.

Again it is the case that no content transfer is instantaneous, but

rather than spreading the contribution of each transfer across multi-

ple time periods of duration bin_length, we propose to just add it

to the last bin. It is known [58] from aggregating Netflow data that

this can lead to artifacts. But if the aggregation periods are long

enough, size and impact of these artifacts decrease significantly.

C. MAPPING PUBLISHER DEMANDS TO

WEB TRAFFIC DEMANDS

In order to map the publisher demands to Web traffic demands

we need to find out which IP addresses are actually in use by the

publisher’s infrastructure. As an initial step, we derive the set of

For each customer id:
hostname set = customerid to hostname(customer id);
For each host in (hostname set) {

For each dns server in (dns server set) {
ip set[customer id] ∪= dns query(dns server, host);
ip set dns[customer id, dns server]

∪= dns query(dns server, host);
dns policy[customer id] = classify dns policy(ip set)

}
}

For each client prefix:
closest dns server[client prefix] = closest(client prefix, dns server set);

For each customer id and client prefix:
if (dns policy[customer id] == “round robin”)

split traffic evenly among ip set[customer id]
if (dns policy[customer id] != “round robin”)

split traffic evenly among
ip set dns[customer id, closest dns server[client prefix]]

Figure 21: Mapping site publishers to Web traffic demands.

hostnames associated with each site publisher (customer_id) (via

the mapping customerid_to_hostname), utilizing the knowledge

of the CDN provider. Therefore the problem is reduced to associ-

ating each hostname (host) with its set of IP addresses (ip_set).

To account for the distributed infrastructure of the site we have to

issue recursive DNS queries from a set of DNS servers distributed

throughout the Internet. We propose identifying a set of candi-

date DNS servers from traffic measurements, such as Netflow or

packet level traces, or by checking Akamai’s DNS server logs. Us-

ing packet traces has the advantage that its easy to check if the DNS

servers support recursive DNS queries. Otherwise one can issue a

recursive query to the DNS server and see if it is willing to respond

to the query and second if it supports recursive queries. Once we

have derived a candidate set of DNS servers, we can either use all

of them or a subset. We propose to concentrate on a subset such that

each DNS server in the subset will return a different IP address for

at least one Web site publisher that utilizes a distributed infrastruc-

ture. Since the CDN runs a highly distributed infrastructure we use

the main Web server of the CDN, www.cdn.ex, for this purpose.

The next step involves identifying what kind of access distribu-

tion mechanism (dns_policy) is used by the physical Web site.

We propose to concentrate on the popular mechanisms and look

for indications of their use. If all queried DNS servers return al-

most the same set of IP addresses then we can assume that DNS

round robin (“round robin”) is used. We use “almost” instead

of “exactly” since one cannot query all DNS servers at the same

time. This lack of synchrony can cause anomalies. If different DNS

servers return different IP addresses in a consistent fashion (at least

two times) then we can assume that some form of proximity-aware

load balancing is used (“proximity”). In the first case we propose

to split the load evenly between all IP addresses used to implement

the physical infrastructure. Otherwise we propose to split the traffic

only between the IP addresses resolved by the closest DNS server

queried to the users in question. All other cases are currently re-

solved via manual inspection.
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