
A Methodology for Mining Document-Enriched

Heterogeneous Information Networks

Miha Grčar1 and Nada Lavrač1

1 Jožef Stefan Institute, Dept. of Knowledge Technologies, Jamova cesta 39,

1000 Ljubljana, Slovenia

{Miha.Grcar, Nada.Lavrac}@ijs.si

Abstract. The paper presents a new methodology for mining heterogeneous

information networks, motivated by the fact that, in many real-life scenarios,

documents are available in heterogeneous information networks, such as

interlinked multimedia objects containing titles, descriptions, and subtitles. The

methodology consists of transforming documents into bag-of-words vectors,

decomposing the corresponding heterogeneous network into separate graphs

and computing structural-context feature vectors with PageRank, and finally

constructing a common feature vector space in which knowledge discovery is

performed. We exploit this feature vector construction process to devise an

efficient classification algorithm. We demonstrate the approach by applying it

to the task of categorizing video lectures. We show that our approach exhibits

low time and space complexity without compromising classification accuracy.

Keywords: text mining, heterogeneous information networks, data fusion,

classification, centroid-based classifier, diffusion kernels

1 Introduction

In many real-life data mining scenarios involving document analysis, the

accompanying data can be represented in the form of heterogeneous information

networks. We address this data analysis setting by proposing a methodology which

takes advantage of both research fields, text mining and mining heterogeneous

information networks.

Text mining [3], which aims at extracting useful information from document

collections, is a well-developed field of computer science. In the last decade, text

mining research was driven by the growth of the size and the number of document

collections available in corporate and governmental environments and especially by

the rapid growth of the world‘s largest source of semi-structured data, the Web. Text

mining extracts knowledge from document collections by using data mining, machine

learning, natural language processing, and information retrieval techniques. Unlike in

typical data mining, the data preprocessing step plays a crucial role in text mining. In

this step, documents are transformed into feature vectors according to a certain

representational model and then processed with the available machine learning

algorithms that can handle sparse vector collections with high feature dimensionality

and continuous or binary features (such as k-NN, k-Means, SVM, and Naive Bayes).

Naturally, not all data comes in the form of documents. A lot of the recent data

mining research is done on the data from networked systems where individual agents

or components interact with other components, forming large, interconnected, and

heterogeneous networks. For short, such networks are called heterogeneous

information networks [6]. Some examples of heterogeneous information networks are

communication and computer networks, transportation networks, epidemic networks,

social networks, e-mail networks, citation networks, biological networks, and also the

Web (with the emphasis on its structure). In general, such networks can be formed

from data in relational databases and ontologies where the objects are interlinked with

heterogeneous links. In heterogeneous information networks, knowledge discovery is

usually performed by resorting to social network analysis [20], link analysis

techniques [21], and other dedicated approaches to mining heterogeneous information

networks [6].
In many real-life scenarios, documents are available in information networks. This

results in heterogeneous information networks in which some objects are associated
each with its corresponding set of text documents. Examples of such networks include
the Web (interlinked HTML documents), multimedia repositories (interlinked
multimedia descriptions, subtitles, slide titles, etc.), social networks of professionals
(interlinked CVs), citation networks (interlinked publications), and even software
code (heterogeneously interlinked code comments). The abundance of such
document-enriched networks motivates the development of a new methodology that
joins the two worlds, text mining and mining heterogeneous information networks,
and handles the two types of data in a common data mining framework.

The methodology presented in this paper is based on decomposing a heterogeneous

network into (homogeneous) graphs, computing feature vectors with Personalized

PageRank [14], and constructing a common vector space in which knowledge

discovery is performed. Heterogeneity is taken into account in this final step of the

methodology where all the structural contexts and the text documents are ―fused‖
together.

We demonstrate the methodology by applying it to the categorization of video

lectures on VideoLectures.net <http://videolectures.net/>, one of the world‘s largest
academic video hosting Web portals.

The paper is structured as follows. In Section 2, we first present the related work.

In Section 3, we present the proposed methodology. We present a new classifier that

exploits the properties of the presented feature vector construction process in Section

4. Section 5 presents the experimental results and Section 6 concludes the paper with

several ideas for future work.

2 Related Work

Text mining employs basic machine learning principles, such as supervised and

unsupervised learning [19], to perform higher-level tasks such as text categorization

(also known as ―text classification‖), topic ontology construction, text corpora

visualization [4], and user profiling [10]. Most text mining tasks rely on a bag-of-

words vector representation of documents [15].

Text categorization is a widely researched area due to its value in real-life

applications such as indexing of scientific articles, patent categorization, spam

filtering, and Web page categorization [16]. In [18], the authors present a method for

categorizing Web pages into the Yahoo! Taxonomy <http://dir.yahoo.com/>. They

employ a set of Naive Bayes classifiers, one for each category in the taxonomy. For

each category, the corresponding classifier gives the probability that the document

belongs to that category. A similar approach is presented in [5], where Web pages are

being categorized into the DMoz taxonomy <http://www.dmoz.org/>. Each category

is modeled with the corresponding centroid bag-of-words vector and a document is

categorized simply by computing the cosine similarity between the document‘s bag-

of-words vector and each of the computed centroids. Apart from Naive Bayes [19]

and centroid-based classifiers [22], SVM [9] is also a popular classifier for text

categorization.

In the field of mining heterogeneous information networks, a different family of

analysis algorithms was devised to deal with data analysis problems. Important

building blocks are the techniques that can be used to assess the relevance of an object

(with respect to another object or a query) or the similarity between two objects in a

network. Some of these techniques are: spreading of activation [2], hubs and

authorities (HITS) [11], PageRank and Personalized PageRank [14], SimRank [7],

and diffusion kernels [12; 24]. These methods are extensively used in information-

retrieval systems. The general idea is to propagate ―authority‖ from ―query nodes‖
into the rest of the graph or heterogeneous network, assigning higher ranks to more

relevant objects.

ObjectRank [1] employs global PageRank (importance) and Personalized

PageRank (relevance) to enhance keyword search in databases. Specifically, the

authors convert a relational database of scientific papers into a graph by constructing

the data graph (interrelated instances) and the schema graph (concepts and relations).

To speed up the querying process, they precompute Personalized PageRank vectors

(PPVs) for all possible query words. HubRank [25] is an improvement of ObjectRank

in terms of space and time complexity at no expense to accuracy. It examines query

logs to compute several hubs for which PPVs are precomputed. In addition, instead of

precomputing full-blown PPVs, they compute fingerprints [27] which are a set of

Monte Carlo random walks associated with a node. Stoyanovich et al. [26] present a

ranking method called EntityAuthority which defines a graph-based data model that

combines Web pages, extracted (named) entities, and ontological structure in order to

improve the quality of keyword-based retrieval of either pages or entities. The authors

evaluate three conceptually different methods for determining relevant pages and/or

entities in such graphs. One of the methods is based on mutual reinforcement between

pages and entities, while the other two approaches are based on PageRank and HITS,

respectively.

For the classification tasks, Zhu and Ghahramani [30] present a method for

transductive learning which first constructs a graph from the data and then propagates

labels along the edges to label (i.e., classify) the unlabeled portion of the data. The

graph regularization framework proposed by Zhou and Schölkopf [31] can also be

employed for categorization. However, most of these methodologies are devised for

graphs rather than heterogeneous networks. GNetMine [32] is built on top of the

graph regularization framework but takes the heterogeneity of the network into

account and consequently yields better results. CrossMine [33] is another system that

exploits heterogeneity in networks. It constructs labeling rules while propagating

labels along the edges in a heterogeneous network. These approaches clearly

demonstrate the importance of handling different types of relations and/or objects in a

network separately.

Even though in this paper, we deal with feature vectors rather than kernels, the

kernel-based data fusion approach presented by Lanckriet et al. [13] is closely related

to our work. In their method, the authors propose a general-purpose methodology for

kernel-based data fusion. They represent each type of data with a kernel and then

compute a weighted linear combination of kernels (which is again a kernel). The

linear-combination weights are computed through an optimization process called

Multiple Kernel Learning (MKL) [28; 29] which is tightly integrated into the SVM‘s
margin maximization process. In [13], the authors define a quadratically constrained

quadratic program (QCQP) in order to compute the support vectors and linear-

combination weights that maximize the margin. In the paper, the authors employ their

methodology for predicting protein functions in yeast. They fuse together 6 different

kernels (4 of them are diffusion kernels based on graph structures). They show that

their data fusion approach outperforms SVM trained on any single type of data, as

well as the previously advertised method based on Markov random fields. In the

approach employed in our case study, we do not employ MKL but rather a stochastic

optimizer called Differential Evolution [17] which enables us to directly optimize the

target evaluation metric.

From a high-level perspective, the approaches presented in this section either

(1) extract features from text documents for the purpose of document categorization,

(2) categorize objects by propagating rank, similarity, or labels with a PageRank-like

authority propagation algorithm, or (3) take network heterogeneity into account in a

classification setting. In this work, we employ several well-established approaches

from these three categories. The main contribution is a general-purpose framework

for feature vector construction establishing an analogy between bag-of-words vectors

and Personalized PageRank (P-PR). In contrast to the approaches that use authority

propagation algorithms for label propagation, we employ P-PR for feature vector

construction. This allows us to ―fuse‖ text documents and different types of structural

information together and thus take the heterogeneity of the network into account. Our

methodology is thoroughly discussed in the following sections.

3 Proposed Methodology

This section presents the proposed methodology for transforming a heterogeneous

information network into a feature vector representation. We assume that we have a

heterogeneous information network that can be decomposed into several

homogeneous undirected graphs with weighted edges, each representing a certain type

of relationship between objects of interest (see Section 5.1 for an example, where

edge weights represent either video lecture co-authorship counts or the number of

users viewing the same video lecture). We also assume that several objects of interest

are associated with text documents, which is not mandatory for the methodology to

work. Fig. 1 illustrates the proposed feature vector construction process.

Feature vector

Feature vector

Feature vector

Feature vector

w0 w1 w2 w3

Fig. 1. The proposed methodology for transforming a heterogeneous information network and

the corresponding text documents into a feature vector format. Feature vector construction is

shown for one particular object.

Text documents are first transformed into feature vectors (i.e., TF-IDF bag-of-

words vectors) as briefly explained in Section 3.1. In addition, each graph is

transformed into a set of feature vectors. We employ Personalized PageRank for this

purpose as explained in Section 3.2. As a result, each object is now represented as a

set of feature vectors (i.e., one for each graph and one for the corresponding text

document). Finally, the feature vectors describing a particular object are combined

into a single concatenated feature vector as discussed in Section 3.3. We end up with

a typical machine learning setting in which each object, representing either a labeled

or unlabeled data instance, is represented as a sparse feature vector with continuous

feature values. These feature vectors can then be used as input for solving typical data

mining tasks.

3.1 Constructing Feature Vectors from Text Documents

To convert text documents into their bag-of-words representations, we follow a

typical text mining approach [3]. The documents are tokenized, stop words are

removed, and the word tokens are stemmed (or lemmatized). Bigrams are considered

in addition to unigrams. Infrequent words are removed from the vocabulary. Next,

TF-IDF vectors are computed and normalized in the Euclidean sense. Finally, from

each vector, the terms with the lowest weights are removed (i.e., their weights are set

to 0).

3.2 Constructing Structural-Context Feature Vectors with Personalized

PageRank

For computing the structural-context feature vectors, we employ Personalized

PageRank (P-PR) [14]. ―Personalized‖ in this context refers to using a predefined set
of nodes as the source of rank. In our case, P-PR is run from a single source node

representing the object for which we want to compute the feature vector. The process

is equivalent to a random walk that starts in the source node. At each node, the

random walker decides whether to teleport back to the source node (this is done with

the probability (1 – d) where d is the so-called damping factor) or to continue the

walk along one of the edges. The probability of choosing a certain edge is

proportional to the edge‘s weight compared to the weights of the other edges
connected to the node. In effect, for a selected source node i in a given graph, P-PR

computes a vector of probabilities with components PRi(j), where j is any node in the

graph. PRi(j) is the probability that a random walker starting from node i will be

observed at node j at an arbitrary point in time.

“word_7 word_6 word_4 word_3 …”

word_7

word_8

word_4word_3

word_5

word_6word_2

word_1

v7 = <0.03, 0.03, 0.06, 0.18, 0.09, 0.19, 0.27, 0.15>

Fig. 2. The random writer principle: the random walker is ―writing down‖ words that it
encounters along the way. This is similar to generating random texts with a language model.

Recall that each node is a feature to be used in feature vector construction. For

simplicity, consider that each feature is named by a single word, and that the random

walker is ―writing down‖ words that it encounters along the way (this principle is

illustrated in Fig. 2). It is not difficult to see that a structural-context feature vector

computed with P-PR is in fact the l1-normalized (i.e., the sum of vector components is

equal to 1) term-frequency bag-of-words vector representation of this random text

document. This is also one of the main reasons for employing P-PR over other

methods for computing structural features: it allows an interpretation that relates P-PR

vectors to bags-of-words and thus nicely fits into the existing text mining frameworks.

In text mining, cosine similarity is normally used to compare bag-of-words vectors.

Cosine similarity is equal to computing dot product provided that the two vectors are

normalized in the Euclidean sense (i.e., their l2-norm is equal to 1). Since we use dot

product as the similarity measure in the proposed framework, the P-PR vectors need

to be normalized in the Euclidean sense in order to conform to the analogy with text

mining. Given a P-PR vector vi = PRi(1), PRi(2), …, PRi(n) for object i, the

corresponding structural-context feature vector vi' is thus computed as

vi' = || vi ||–1 PRi(1), PRi(2), …, PRi(n) .

3.3 Combining Feature Vectors

The final step in the proposed methodology is to combine the computed feature
vectors—either structural-context or bag-of-words vectors—describing a particular
object with a single concatenated feature vector. To explain the theoretical
background, we first establish a relationship between feature vectors and linear
kernels. Suppose that for a given object i, the concatenated feature vector is obtained
by ―gluing‖ m feature vectors, i.e., m – 1 structural feature vectors and a bag-of-words
feature vector. For a given set of n objects, let us denote the m sets of feature vectors
with V1, …, Vm, where each Vk is a matrix with n rows, in which i-th row represents
the feature vector corresponding to object i. The corresponding kernels, one for each
set of feature vectors, are computed as Kk = VkVk

T.

This relationship is important because there has been a lot of work done recently

on Multiple Kernel Learning (MKL) which can also be employed for data fusion [13].

In MKL, multiple kernels are combined into a weighted convex combination of

kernels which yields a combined kernel K = kαkKk, kαk = 1, αk ≥ 0. In analogy, we

derive the following equation which shows how the above weights αk can be used to

combine feature vectors:

mmVVVV ...2211 . (1)

In this equation, represents concatenation of matrix rows. To prove that the

resulting combined vectors correspond to the kernel K, we have to show that

VV
T = K:

T

1111
T

...... mmmm VVVVVV

 KKVV
k kkk kkk T

 .

Note that the weights wk from Fig. 1 directly correspond to the above weights, i.e.,

kk
w .

In general, weights αk can be set in several different ways. We can resort to trial-

and-error or a greedy heuristic. We can also consider ―binary weights‖ and either
include or exclude a certain type of vectors. Employing MKL is also an option. In the

presented case study (see Section 5), we employ a stochastic optimizer and directly

optimize the target evaluation metric.

4 Efficient Classification with PageRank-based Centroid

Classifier

The combined feature vectors are ready to be employed for solving data mining tasks.
For classification and clustering, any kernel or distance-based algorithm can be used
(e.g., SVM, k-NN, k-Medoids, agglomerative clustering). With some care, the

algorithms that manipulate feature vectors (e.g., Centroid Classifier and k-Means) can
also be employed.

We empirically evaluated some of these algorithms (see Section 5) where we
applied the methodology for a categorization task. It turned out that Centroid
Classifier offers a very good performance and is much more efficient than its
competitors. This outcome has motivated the development of a new centroid-based
classifier which exploits the flexibility of the proposed feature-vector construction
process in order to compute centroids extremely efficiently.

Suppose we have several sets of feature vectors represented as rows in matrices

V1, …, Vm. Let R be the set of row indices identifying objects that we want to ―group‖
into a centroid. Finally, let V[i] denote the i-th row in matrix V. In the proposed

framework, in order not to invalidate the intuitions provided in Sections 3.2 and 3.3,

the centroid needs to be computed as follows (kαk = 1, αk ≥ 0):

||||
...

|||||||| 2

2
2

1

1
1

m

m

m
C

C

C

C

C

C
C

,

mki
i kk

 1],[||where 1

R
VRC .

(2)

Let us now focus on one of the ―inner‖ centroids representing one of the structural

contexts, Ck (1 ≤ k ≤ m). The methodology suggests that, in order to compute Ck, we

should construct | R | P-PR vectors and compute their average. However, it is possible

to do this computation a lot more efficiently by computing just one P-PR vector.

Instead of running P-PR from a single source node, we set R to be the set of source

nodes (when the random walker teleports, it teleports to any of the nodes in R with

equal probability). It turns out that a centroid computed in this way is exactly the

same as if it was computed in the ―slow way‖ by strictly following the methodology.

In case of having r classes and n objects, n r, this not only speeds up the process

by factor n / r but also reduces the time complexity from computing O(n) P-PR

vectors to computing O(1) P-PR vectors. Practical implications are outlined in Section

5.4.

5 VideoLectures.net Categorization Case Study

The task in the VideoLectures.net case study was to develop a method that will assist
in the categorization of video lectures hosted by one of the largest video lecture
repositories VideoLectures.net. This functionality was required due to the rapid
growth of the number of hosted lectures (150–200 lectures are added each month) as
well as due to the fact that the categorization taxonomy is rather fine-grained (129
categories in the provided database snapshot). We evaluated the methodology in this
use case, confronting it with a typical text mining approach and an approach based on
diffusion kernels.

5.1 Dataset

The VideoLectures.net team provided us with a set of 3,520 English lectures, 1,156 of

which were manually categorized. Each lecture is described with a title, while 2,537

lectures also have a short description and/or come with slide titles. The lectures are

categorized into 129 categories. Each lecture can be assigned to more than one

category (on average, a categorized lecture is categorized into 1.26 categories). There

are 2,706 authors in the dataset, 219 events at which the lectures were recorded, and

3,274 portal users‘ click streams.
From this data, it is possible to represent lectures, authors, events, and portal users

in a heterogeneous information network. In this network, authors are linked to

lectures, lectures are linked to events, and portal users are linked to lectures that they

viewed. Data preprocessing was performed by employing the proposed methodology,

using as input the following textual and structural information about video lectures.

 Each lecture is assigned a textual document formed out of the title and, if

available, extended with the corresponding description and slide titles.

 The structural information of this heterogeneous network is represented in the

form of three homogeneous graphs in which nodes represent video lectures:

 Same-event graph. Two nodes are linked if the two corresponding lectures were

recorded at the same event. The weight of a link is always 1.

 Same-author graph. Two nodes are linked if the two corresponding lectures

were given by the same author or authors. The weight of a link is proportional to

the number of authors the two lectures have in common.

 Viewed-together graph. Two nodes are linked if the two corresponding lectures

were viewed together by a group of portal user. The weight of a link is

proportional to the number of users that viewed both lectures.

5.2 Results of Text Mining and Diffusion Kernels

We first performed a set of experiments on textual data only, by following a typical

text mining approach. In addition, we employed diffusion kernels (DK) [12] for

classifying lectures according to their structural contexts.

In the text mining experiments, each lecture was assigned a text document formed

out of the title and, if available, extended with the corresponding description and slide

titles. We represented the documents as normalized TF-IDF bag-of-words vectors.

We performed 10-fold cross validation on the manually categorized lectures. We

performed flat classification as suggested in [5]. We employed several classifiers for

the task: Centroid Classifier, SVM, and k-Nearest Neighbors (k-NN). In the case of

SVM, we applied SVMmulticlass [9] for which we set (termination criterion) to 0.1 and

C (tradeoff between error and margin) to 5,000. In the case of k-NN, we set k (number

of neighbors) to 20. We used dot product (i.e., cosine similarity) to compute the

similarity between feature vectors.

In addition to the text mining experiments, we computed DK for the three graphs

(we set the diffusion coefficient to 0.0001). For each kernel separately, we

employed SVM and k-NN in a 10-fold cross validation setting. The two classifiers

were configured in the same way as before in the text mining setting.

We measured classification accuracy on 1, 3, 5, and 10 top categories predicted by

the classifiers. The results are shown in Fig. 3, where different evaluation metrics are

stacked on top of each other thus forming one column for each of the performed

experiments. Standard errors are shown next to the accuracy values given in the chart.

The results show that text mining approaches perform relatively well. They achieve

55.10% accuracy on the topmost item (k-NN) and 84.78% on top 10 items (Centroid

Classifier). The same-author graph contains the least relevant information for the

categorization task. The most relevant information is contained in the viewed-together

graph. k-NN applied to the textualized viewed-together graph achieves 72.74%

accuracy on the topmost item and 93.94% on top 10 items. Noteworthy, the choice of

the classification algorithm is not as important as the selection of the data from which

the similarities between objects are inferred.

55±2 55±2 54±2

71±2 73±2

32±1 32±1

19±1 20±1

81±1 82±2 85±1

94±1 94±1

59±1 61±1

36±1

44±1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
cc

u
ra

cy
 [

%
]

TOP 10

TOP 5

TOP 3

TOP 1

Fig. 3. Results of the selected text categorization algorithms and diffusion kernels.

5.3 Results of the Proposed Methodology

In the next set of experiments, we applied the proposed methodology. The results are
shown in Fig. 4.

The first nine experiments in Fig. 4 were performed by employing the proposed
methodology on each graph separately. As before, we performed 10-fold cross
validation on the manually categorized lectures and employed SVM and k-NN for the
categorization task (we used the same parameter values as before). In addition, we
employed the PageRank-based Centroid Classifier (PRCC) discussed in Section 4.
We set the PageRank damping factor to 0.4 when computing structural-context
feature vectors.

In the last three experiments in Fig. 4, we employed the data fusion method

explained in Section 3.3. In Experiment 10, we weighted all types of data (i.e., bags-

of-words, viewed-together, same-event, and same-author) equally. We only show the

results for PRCC (SVM and k-NN demonstrated comparable results). In Experiment

11, we employed Differential Evolution (DE) to directly optimize the target

evaluation metric. The objective function to be maximized was computed in an inner

10-fold cross validation loop and was defined as c=1,3,5,10 accc where accc stands for

accuracy of the categorization algorithm on top c predicted categories. We only

employed PRCC in this setting as it is fast enough to allow for numerous iterations

required for the stochastic optimizer to find a good solution. DE computed the

following weights: 0.9651, 0.0175, 0.0045, and 0.0130 for the bag-of-words, viewed-

together, same-event, and same-author data, respectively. In the last experiment, we

removed the viewed-together information from the test set. The reason is that in real-

life, new lectures are not connected to other lectures in the viewed-together graph

because they were not yet viewed by any user.

70±1 71±2
75±2

31±1 32±2
28±1

16±1 15±1 15±1

62±2

76±2

57±1

94±1 93±1 95±1

60±1
65±1 65±1

33±1 33±1

43±2

93±1
96±1

88±1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
cc

u
ra

cy
 [

%
]

TOP 10

TOP 5

TOP 3

TOP 1

Fig. 4. Results of employing the proposed methodology.

From the results of the first 9 experiments, we can confirm that the most relevant

information is contained in the viewed-together graph. PRCC applied to the
textualized viewed-together graph exhibits 74.91% accuracy on the topmost item and
95.33% on top 10 items. We can also confirm that the choice of the classification
algorithm is not as important as the selection of the data from which the similarities
between objects are inferred. Even so, PRCC does outperform SVM and k-NN on top
10 items and in the case of the viewed-together graph, also on the topmost item.
PRCC is outperformed by the other two classifiers on the topmost item in the case of
the same-event graph.

When comparing approaches based on our methodology to DK-based approaches,
we can see that PRCC applied to textualized viewed-together graph outperforms SVM
and k-NN applied to the viewed-together diffusion kernel. On the other hand, with
respect to the same-event and same-author graphs, PRCC is outperformed by the DK-
based approaches on the topmost predicted category.

The results of Experiment 10 show that weighting all types of data equally does not

produce the best results. The accuracy falls in comparison with exploiting the viewed-

together graph alone. The optimized weights indeed yield the best results (Experiment

11). Since most of the relevant information is contained in the viewed-together graph,

the accuracy achieved through combining feature vectors is not much higher than that

demonstrated by exploiting the viewed-together graph alone. However, as clearly

demonstrated by the last experiment, the combined feature vectors excel when the

viewed-together information is not present in the test set. The classifier is able to

exploit the remaining data and exhibit accuracies that are significantly higher than

those achieved by resorting to text mining alone (88.15% versus 84.78% accuracy on

top 10 items). A classifier based on combined feature vectors is thus not only more

accurate but also robust to missing a certain type of data in test examples.

5.4 Notes on Time and Space Complexity

Whenever a set of new lectures enters the categorization system—whether we use the

proposed methodology (termed ―bags-of-features‖ in Fig. 5) or the DK approach—the

following procedure is applied: (1) kernel or feature vectors are recomputed, (2) a

model is trained on manually categorized lectures, and (3) new lectures are

categorized. Each fold in the 10-fold cross validation roughly corresponds to this

setting. We focused on the viewed-together graph only and measured the times

required to perform each of these 3 steps in each of the 10 folds, computing average

values in the end. The results are given in Fig. 5.

1193 s

286 s

35 s

85 s

34 s

1

10

100

1000

10000

1: DK - kNN 2: bags-of-features -

kNN

3: bags-of-features -

PRCC

T
im

e
 [

s]

(l
o

g
a

ri
th

m
ic

 s
ca

le
)

predicting

training

feature vector /

kernel computation

Fig. 5. The time spent for feature vector or kernel computation, training, and prediction. Note

that the chart is plotted on a logarithmic scale.

The results show that the DK-based approach (column 1) is more demanding than

the proposed methodology represented by column 2 (1,193 seconds vs. 371 seconds).

Roughly speaking, this is mostly due to the fact that in our use case, the diffusion

kernel is computed over 3,520 objects (resulting in a 3,520 by 3,520 kernel matrix)

while by using the proposed methodology, ―only‖ 1,156 P-PR vectors of length 3,520

need to be computed, where 1,156 is the number of manually categorized lectures.

Note also that computing a series of P-PR vectors is trivially parallelizable as one

vector is computed entirely independently of the others (the so-called ―embarrassingly
parallel‖ problem). On a quad-core machine, for example, the time required to

compute the P-PR vectors in our case would be approximately 80 seconds. Even

greater efficiency is demonstrated by PRCC (the last column). When PRCC is used,

the feature vectors are not precomputed. Instead, in the training phase, approximately

130 P-PR vectors are computed, one for each category in the training set. In addition,

in the prediction phase, approximately 115 additional P-PR vectors are computed

(115 objects is roughly the size of the test set). PRCC thus requires only 70 seconds

for the entire process. Needless to say, the PRCC-based approach is also trivially

parallelizable which makes it even more suitable for large-scale scenarios. Let us also

point out that this efficiency is not achieved at the cost of decreased accuracy. In fact,

of all our experiments involving the viewed-together graph, the one employing PRCC

demonstrates the best accuracy.

The thorough analysis of the space complexity is beyond the scope of this paper.

Let us just point out that PRCC computes and stores only around 130 P-PR vectors of

length 3,520 (i.e., the PRCC model) which makes it by far the most efficient approach

in terms of required memory. In comparison, the DK-based approach stores a 3,520

by 3,520 kernel matrix and k-NN employed by the proposed methodology stores

around 1,040 P-PR vectors of length 3,520 (roughly 1,040 objects constitute the

training set in each fold). For simplicity, we assumed that these vectors are not sparse,

which is actually not the case and would speak even more in favor of the proposed

methodology.

6 Conclusions and Future Work

We presented a new methodology for mining heterogeneous information networks.
The methodology is based on building a common vector space for textual and
structural information. We use Personalized PageRank (P-PR) to compute structural-
context features. We also devised and presented an extremely efficient PageRank-
based centroid classifier. We applied the proposed methodology and the devised
classifier in a video lecture categorization use case and showed that the proposed
methodology is fast and memory-efficient, and that the devised classifier is accurate
and robust.

In future work, we will develop the analogy between text mining and the proposed

methodology further, considering stop nodes (analogous to stop words). We will also

look for a more efficient way to compute weights when combining feature vectors.

We will apply the methodology to larger problem domains to fully utilize the

efficiency demonstrated by the devised PageRank-based Centroid Classifier.

Acknowledgements

This work has been partially funded by the European Commission in the context of

the FP7 project FIRST, Large scale information extraction and integration

infrastructure for supporting financial decision making, under the grant agreement n.

257928. The authors would also like to thank Center for Knowledge Transfer at Jožef

Stefan Institute and Viidea Ltd. for providing the dataset and use case presented in the

paper.

References

1. A. Balmin, V. Hristidis, Y. Papakonstantinou: ObjectRank: Authority-based

Keyword Search in Databases. Proceedings of VLDB ‗04, pp. 564–575 (2004)

2. F. Crestani: Application of Spreading Activation Techniques in Information

Retrieval. Artificial Intelligence Review, vol. 11, pp. 453–482 (1997)

3. R. Feldman, J. Sanger: The Text Mining Handbook: Advanced Approaches in

Analyzing Unstructured Data. Cambridge University Press (2006)

4. B. Fortuna, M. Grobelnik, D. Mladenic: OntoGen: Semi-Automatic Ontology

Editor. HCI International ‘07, Beijing (2007)

5. M. Grobelnik, D. Mladenic: Simple Classification into Large Topic Ontology of

Web Documents. Journal of Computing and Information Technology, vol. 13(4),

pp. 279–285 (2005)

6. J. Han: Mining Heterogeneous Information Networks by Exploring the Power of

Links. Proceedings of Discovery Science ‗09, pp. 13–30 (2009)

7. G. Jeh, J. Widom: SimRank: A Measure of Structural Context Similarity.

Proceedings of KDD ‗02, pp. 538–543 (2002)

8. M. Ji, Y. Sun, M. Danilevsky, J. Han, J. Gao: Graph Regularized Transductive

Classification on Heterogeneous Information Networks, 2010. Machine Learning

and Knowledge Discovery in Databases ‗10, pp. 570–586 (2010)

9. T. Joachims, T. Finley, C.-N. J. Yu: Cutting-Plane Training of Structural SVMs.

Journal of Machine Learning, vol. 77(1) (2009).

10. H. R. Kim, P. K. Chan: Learning Implicit User Interest Hierarchy for Context in

Personalization. Journal of Applied Intelligence, vol. 28(2) (2008)

11. J. M. Kleinberg: Authoritative Sources in a Hyperlinked Environment. Journal of

the Association for Computing Machinery, vol. 46, pp. 604–632 (1999)

12. R. I. Kondor, J. Lafferty: Diffusion Kernels on Graphs and Other Discrete

Structures. Proceedings of ICML ‗02, pp. 315–322 (2002)

13. G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, W. S. Noble: Kernel-

based Data Fusion and Its Application to Protein Function Prediction in Yeast.

Proceedings of the Pacific Symposium on Biocomputing, pp. 300–311 (2004)

14. L. Page, S. Brin, R. Motwani, T. Winograd: The PageRank Citation Ranking:

Bringing Order to the Web. Technical Report, Stanford InfoLab (1999)

15. G. Salton: Automatic Text Processing: The Transformation, Analysis, and

Retrieval of Information by Computer. Addison-Wesley (1989)

16. F. Sebastiani: Machine Learning in Automated Text Categorization. ACM

Computing Surveys, vol. 34(1), pp. 1–47 (2002)

17. R. Storn, K. Price: Differential Evolution: A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Journal of Global Optimization,

vol. 11, pp. 341–359, Kluwer Academic Publishers (1997)

18. D. Mladenic: Machine Learning on Non-Homogeneous, Distributed Text Data.

PhD thesis (1998)

19. T. Mitchell: Machine Learning. McGraw Hill (1997)

20. W. de Nooy, A. Mrvar, V. Batagelj: Exploratory Social Network Analysis with

Pajek, Cambridge University Press (2005)

21. L. Getoor, C. P. Diehl: Link Mining: A Survey. SIGKDD Explorations, vol. 7(2),

pp. 3–12 (2005)

22. S. Tan: An Improved Centroid Classifier for Text Categorization. Expert Systems

with Applications, vol. 35(1–2) (2008)

23. T. Gärtner: A Survey of Kernels for Structured Data. ACM SIGKDD

Explorations Newsletter, vol. 5(1), pp. 49–58, ACM, NY (2003)

24. S. Chakrabarti: Dynamic Personalized PageRank in Entity-Relation Graphs. In

Proceedings of WWW 2007, pp. 571–580 (2007)

25. J. Stoyanovich, S. Bedathur, K. Berberich, G. Weikum: EntityAuthority:

Semantically Enriched Graph-based Authority Propagation. In Proceedings of the

10th International Workshop on Web and Databases (2007)

26. D. Fogaras, B. Rácz: Towards Scaling Fully Personalized PageRank. In

Proceedings of the Workshop on Algorithms and Models for the Web-graph

(WAW 2004), pp. 105–117 (2004)

27. A. Rakotomamonjy, F. Bach, Y. Grandvalet, S. Canu: SimpleMKL. Journal of

Machine Learning Research, vol. 9, pp. 2491–2521 (2008)

28. S. V. N. Vishwanathan, Z. Sun, N. Theera-Ampornpunt, and M. Varma: Multiple

Kernel Learning and the SMO Algorithm. Advances in Neural Information

Processing Systems 23 (2010)

29. X. Zhu, Z. Ghahramani: Learning from Labeled and Unlabeled Data with Label

Propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University

(2002)

30. D. Zhou, B. Schölkopf: A Regularization Framework for Learning from Graph

Data. ICML Workshop on Statistical Relational Learning and Its Connections to

Other Fields (2004)

31. M. Ji, Y. Sun, M. Danilevsky, J. Han, J. Gao: Graph Regularized Transductive

Classification on Heterogeneous Information Networks. In Proceedings of

PKDD, pp. 570–586 (2010)

32. X. Yin, J. Han, J. Yang, P. S. Yu: CrossMine: Efficient Classification Across

Multiple Database Relations. In Proceedings of Constraint-Based Mining and

Inductive Databases, pp. 172–195 (2004)

