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Abstract. The paper presents a new methodology for mining heterogeneous 

information networks, motivated by the fact that, in many real-life scenarios, 

documents are available in heterogeneous information networks, such as 

interlinked multimedia objects containing titles, descriptions, and subtitles. The 

methodology consists of transforming documents into bag-of-words vectors, 

decomposing the corresponding heterogeneous network into separate graphs 

and computing structural-context feature vectors with PageRank, and finally 

constructing a common feature vector space in which knowledge discovery is 

performed. We exploit this feature vector construction process to devise an 

efficient classification algorithm. We demonstrate the approach by applying it 

to the task of categorizing video lectures. We show that our approach exhibits 

low time and space complexity without compromising classification accuracy. 

Keywords: text mining, heterogeneous information networks, data fusion, 

classification, centroid-based classifier, diffusion kernels 

1 Introduction 

In many real-life data mining scenarios involving document analysis, the 

accompanying data can be represented in the form of heterogeneous information 

networks. We address this data analysis setting by proposing a methodology which 

takes advantage of both research fields, text mining and mining heterogeneous 

information networks. 

Text mining [3], which aims at extracting useful information from document 

collections, is a well-developed field of computer science. In the last decade, text 

mining research was driven by the growth of the size and the number of document 

collections available in corporate and governmental environments and especially by 

the rapid growth of the world‘s largest source of semi-structured data, the Web. Text 

mining extracts knowledge from document collections by using data mining, machine 

learning, natural language processing, and information retrieval techniques. Unlike in 

typical data mining, the data preprocessing step plays a crucial role in text mining. In 

this step, documents are transformed into feature vectors according to a certain 

representational model and then processed with the available machine learning 



algorithms that can handle sparse vector collections with high feature dimensionality 

and continuous or binary features (such as k-NN, k-Means, SVM, and Naive Bayes).  

Naturally, not all data comes in the form of documents. A lot of the recent data 

mining research is done on the data from networked systems where individual agents 

or components interact with other components, forming large, interconnected, and 

heterogeneous networks. For short, such networks are called heterogeneous 

information networks [6]. Some examples of heterogeneous information networks are 

communication and computer networks, transportation networks, epidemic networks, 

social networks, e-mail networks, citation networks, biological networks, and also the 

Web (with the emphasis on its structure). In general, such networks can be formed 

from data in relational databases and ontologies where the objects are interlinked with 

heterogeneous links. In heterogeneous information networks, knowledge discovery is 

usually performed by resorting to social network analysis [20], link analysis 

techniques [21], and other dedicated approaches to mining heterogeneous information 

networks [6]. 
In many real-life scenarios, documents are available in information networks. This 

results in heterogeneous information networks in which some objects are associated 
each with its corresponding set of text documents. Examples of such networks include 
the Web (interlinked HTML documents), multimedia repositories (interlinked 
multimedia descriptions, subtitles, slide titles, etc.), social networks of professionals 
(interlinked CVs), citation networks (interlinked publications), and even software 
code (heterogeneously interlinked code comments). The abundance of such 
document-enriched networks motivates the development of a new methodology that 
joins the two worlds, text mining and mining heterogeneous information networks, 
and handles the two types of data in a common data mining framework. 

The methodology presented in this paper is based on decomposing a heterogeneous 

network into (homogeneous) graphs, computing feature vectors with Personalized 

PageRank [14], and constructing a common vector space in which knowledge 

discovery is performed. Heterogeneity is taken into account in this final step of the 

methodology where all the structural contexts and the text documents are ―fused‖ 
together.  

We demonstrate the methodology by applying it to the categorization of video 

lectures on VideoLectures.net <http://videolectures.net/>, one of the world‘s largest 
academic video hosting Web portals. 

The paper is structured as follows. In Section 2, we first present the related work. 

In Section 3, we present the proposed methodology. We present a new classifier that 

exploits the properties of the presented feature vector construction process in Section 

4. Section 5 presents the experimental results and Section 6 concludes the paper with 

several ideas for future work. 

2 Related Work 

Text mining employs basic machine learning principles, such as supervised and 

unsupervised learning [19], to perform higher-level tasks such as text categorization 

(also known as ―text classification‖), topic ontology construction, text corpora 



visualization [4], and user profiling [10]. Most text mining tasks rely on a bag-of-

words vector representation of documents [15]. 

Text categorization is a widely researched area due to its value in real-life 

applications such as indexing of scientific articles, patent categorization, spam 

filtering, and Web page categorization [16]. In [18], the authors present a method for 

categorizing Web pages into the Yahoo! Taxonomy <http://dir.yahoo.com/>. They 

employ a set of Naive Bayes classifiers, one for each category in the taxonomy. For 

each category, the corresponding classifier gives the probability that the document 

belongs to that category. A similar approach is presented in [5], where Web pages are 

being categorized into the DMoz taxonomy <http://www.dmoz.org/>. Each category 

is modeled with the corresponding centroid bag-of-words vector and a document is 

categorized simply by computing the cosine similarity between the document‘s bag-

of-words vector and each of the computed centroids. Apart from Naive Bayes [19] 

and centroid-based classifiers [22], SVM [9] is also a popular classifier for text 

categorization. 

In the field of mining heterogeneous information networks, a different family of 

analysis algorithms was devised to deal with data analysis problems. Important 

building blocks are the techniques that can be used to assess the relevance of an object 

(with respect to another object or a query) or the similarity between two objects in a 

network. Some of these techniques are: spreading of activation [2], hubs and 

authorities (HITS) [11], PageRank and Personalized PageRank [14], SimRank [7], 

and diffusion kernels [12; 24]. These methods are extensively used in information-

retrieval systems. The general idea is to propagate ―authority‖ from ―query nodes‖ 
into the rest of the graph or heterogeneous network, assigning higher ranks to more 

relevant objects.  

ObjectRank [1] employs global PageRank (importance) and Personalized 

PageRank (relevance) to enhance keyword search in databases. Specifically, the 

authors convert a relational database of scientific papers into a graph by constructing 

the data graph (interrelated instances) and the schema graph (concepts and relations). 

To speed up the querying process, they precompute Personalized PageRank vectors 

(PPVs) for all possible query words. HubRank [25] is an improvement of ObjectRank 

in terms of space and time complexity at no expense to accuracy. It examines query 

logs to compute several hubs for which PPVs are precomputed. In addition, instead of 

precomputing full-blown PPVs, they compute fingerprints [27] which are a set of 

Monte Carlo random walks associated with a node. Stoyanovich et al. [26] present a 

ranking method called EntityAuthority which defines a graph-based data model that 

combines Web pages, extracted (named) entities, and ontological structure in order to 

improve the quality of keyword-based retrieval of either pages or entities. The authors 

evaluate three conceptually different methods for determining relevant pages and/or 

entities in such graphs. One of the methods is based on mutual reinforcement between 

pages and entities, while the other two approaches are based on PageRank and HITS, 

respectively.  

For the classification tasks, Zhu and Ghahramani [30] present a method for 

transductive learning which first constructs a graph from the data and then propagates 

labels along the edges to label (i.e., classify) the unlabeled portion of the data. The 

graph regularization framework proposed by Zhou and Schölkopf [31] can also be 

employed for categorization. However, most of these methodologies are devised for 



graphs rather than heterogeneous networks. GNetMine [32] is built on top of the 

graph regularization framework but takes the heterogeneity of the network into 

account and consequently yields better results. CrossMine [33] is another system that 

exploits heterogeneity in networks. It constructs labeling rules while propagating 

labels along the edges in a heterogeneous network. These approaches clearly 

demonstrate the importance of handling different types of relations and/or objects in a 

network separately. 

Even though in this paper, we deal with feature vectors rather than kernels, the 

kernel-based data fusion approach presented by Lanckriet et al. [13] is closely related 

to our work. In their method, the authors propose a general-purpose methodology for 

kernel-based data fusion. They represent each type of data with a kernel and then 

compute a weighted linear combination of kernels (which is again a kernel). The 

linear-combination weights are computed through an optimization process called 

Multiple Kernel Learning (MKL) [28; 29] which is tightly integrated into the SVM‘s 
margin maximization process. In [13], the authors define a quadratically constrained 

quadratic program (QCQP) in order to compute the support vectors and linear-

combination weights that maximize the margin. In the paper, the authors employ their 

methodology for predicting protein functions in yeast. They fuse together 6 different 

kernels (4 of them are diffusion kernels based on graph structures). They show that 

their data fusion approach outperforms SVM trained on any single type of data, as 

well as the previously advertised method based on Markov random fields. In the 

approach employed in our case study, we do not employ MKL but rather a stochastic 

optimizer called Differential Evolution [17] which enables us to directly optimize the 

target evaluation metric. 

From a high-level perspective, the approaches presented in this section either  

(1) extract features from text documents for the purpose of document categorization, 

(2) categorize objects by propagating rank, similarity, or labels with a PageRank-like 

authority propagation algorithm, or (3) take network heterogeneity into account in a 

classification setting. In this work, we employ several well-established approaches 

from these three categories. The main contribution is a general-purpose framework 

for feature vector construction establishing an analogy between bag-of-words vectors 

and Personalized PageRank (P-PR). In contrast to the approaches that use authority 

propagation algorithms for label propagation, we employ P-PR for feature vector 

construction. This allows us to ―fuse‖ text documents and different types of structural 

information together and thus take the heterogeneity of the network into account. Our 

methodology is thoroughly discussed in the following sections. 

3 Proposed Methodology 

This section presents the proposed methodology for transforming a heterogeneous 

information network into a feature vector representation. We assume that we have a 

heterogeneous information network that can be decomposed into several 

homogeneous undirected graphs with weighted edges, each representing a certain type 

of relationship between objects of interest (see Section 5.1 for an example, where 

edge weights represent either video lecture co-authorship counts or the number of 



users viewing the same video lecture). We also assume that several objects of interest 

are associated with text documents, which is not mandatory for the methodology to 

work. Fig. 1 illustrates the proposed feature vector construction process. 
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Fig. 1. The proposed methodology for transforming a heterogeneous information network and 

the corresponding text documents into a feature vector format. Feature vector construction is 

shown for one particular object. 

 

Text documents are first transformed into feature vectors (i.e., TF-IDF bag-of-

words vectors) as briefly explained in Section 3.1. In addition, each graph is 

transformed into a set of feature vectors. We employ Personalized PageRank for this 

purpose as explained in Section 3.2. As a result, each object is now represented as a 

set of feature vectors (i.e., one for each graph and one for the corresponding text 

document). Finally, the feature vectors describing a particular object are combined 

into a single concatenated feature vector as discussed in Section 3.3. We end up with 

a typical machine learning setting in which each object, representing either a labeled 

or unlabeled data instance, is represented as a sparse feature vector with continuous 

feature values. These feature vectors can then be used as input for solving typical data 

mining tasks. 

3.1 Constructing Feature Vectors from Text Documents 

To convert text documents into their bag-of-words representations, we follow a 

typical text mining approach [3]. The documents are tokenized, stop words are 

removed, and the word tokens are stemmed (or lemmatized). Bigrams are considered 

in addition to unigrams. Infrequent words are removed from the vocabulary. Next, 

TF-IDF vectors are computed and normalized in the Euclidean sense. Finally, from 

each vector, the terms with the lowest weights are removed (i.e., their weights are set 

to 0). 

3.2 Constructing Structural-Context Feature Vectors with Personalized 

PageRank 

For computing the structural-context feature vectors, we employ Personalized 

PageRank (P-PR) [14]. ―Personalized‖ in this context refers to using a predefined set 
of nodes as the source of rank. In our case, P-PR is run from a single source node 

representing the object for which we want to compute the feature vector. The process 



is equivalent to a random walk that starts in the source node. At each node, the 

random walker decides whether to teleport back to the source node (this is done with 

the probability (1 – d) where d is the so-called damping factor) or to continue the 

walk along one of the edges. The probability of choosing a certain edge is 

proportional to the edge‘s weight compared to the weights of the other edges 
connected to the node. In effect, for a selected source node i in a given graph, P-PR 

computes a vector of probabilities with components PRi(j), where j is any node in the 

graph. PRi(j) is the probability that a random walker starting from node i will be 

observed at node j at an arbitrary point in time.  
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Fig. 2. The random writer principle: the random walker is ―writing down‖ words that it 
encounters along the way. This is similar to generating random texts with a language model. 

 

Recall that each node is a feature to be used in feature vector construction. For 

simplicity, consider that each feature is named by a single word, and that the random 

walker is ―writing down‖ words that it encounters along the way (this principle is 

illustrated in Fig. 2). It is not difficult to see that a structural-context feature vector 

computed with P-PR is in fact the l1-normalized (i.e., the sum of vector components is 

equal to 1) term-frequency bag-of-words vector representation of this random text 

document. This is also one of the main reasons for employing P-PR over other 

methods for computing structural features: it allows an interpretation that relates P-PR 

vectors to bags-of-words and thus nicely fits into the existing text mining frameworks. 

In text mining, cosine similarity is normally used to compare bag-of-words vectors. 

Cosine similarity is equal to computing dot product provided that the two vectors are 

normalized in the Euclidean sense (i.e., their l2-norm is equal to 1). Since we use dot 

product as the similarity measure in the proposed framework, the P-PR vectors need 

to be normalized in the Euclidean sense in order to conform to the analogy with text 

mining. Given a P-PR vector vi =  PRi(1), PRi(2), …, PRi(n)  for object i, the 

corresponding structural-context feature vector vi' is thus computed as  

vi' = || vi ||–1 PRi(1), PRi(2), …, PRi(n) . 



3.3 Combining Feature Vectors 

The final step in the proposed methodology is to combine the computed feature 
vectors—either structural-context or bag-of-words vectors—describing a particular 
object with a single concatenated feature vector. To explain the theoretical 
background, we first establish a relationship between feature vectors and linear 
kernels. Suppose that for a given object i, the concatenated feature vector is obtained 
by ―gluing‖ m feature vectors, i.e., m – 1 structural feature vectors and a bag-of-words 
feature vector. For a given set of n objects, let us denote the m sets of feature vectors 
with V1, …, Vm, where each Vk is a matrix with n rows, in which i-th row represents 
the feature vector corresponding to object i. The corresponding kernels, one for each 
set of feature vectors, are computed as Kk = VkVk

T. 

This relationship is important because there has been a lot of work done recently 

on Multiple Kernel Learning (MKL) which can also be employed for data fusion [13]. 

In MKL, multiple kernels are combined into a weighted convex combination of 

kernels which yields a combined kernel K = kαkKk, kαk = 1, αk ≥ 0. In analogy, we 

derive the following equation which shows how the above weights αk can be used to 

combine feature vectors: 
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In this equation, represents concatenation of matrix rows. To prove that the 

resulting combined vectors correspond to the kernel K, we have to show that 
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Note that the weights wk from Fig. 1 directly correspond to the above weights, i.e., 

kk
w  . 

In general, weights αk can be set in several different ways. We can resort to trial-

and-error or a greedy heuristic. We can also consider ―binary weights‖ and either 
include or exclude a certain type of vectors. Employing MKL is also an option. In the 

presented case study (see Section 5), we employ a stochastic optimizer and directly 

optimize the target evaluation metric. 

4 Efficient Classification with PageRank-based Centroid 

Classifier 

The combined feature vectors are ready to be employed for solving data mining tasks. 
For classification and clustering, any kernel or distance-based algorithm can be used 
(e.g., SVM, k-NN, k-Medoids, agglomerative clustering). With some care, the 



algorithms that manipulate feature vectors (e.g., Centroid Classifier and k-Means) can 
also be employed. 

We empirically evaluated some of these algorithms (see Section 5) where we 
applied the methodology for a categorization task. It turned out that Centroid 
Classifier offers a very good performance and is much more efficient than its 
competitors. This outcome has motivated the development of a new centroid-based 
classifier which exploits the flexibility of the proposed feature-vector construction 
process in order to compute centroids extremely efficiently. 

Suppose we have several sets of feature vectors represented as rows in matrices  

V1, …, Vm. Let R be the set of row indices identifying objects that we want to ―group‖ 
into a centroid. Finally, let V[i] denote the i-th row in matrix V. In the proposed 

framework, in order not to invalidate the intuitions provided in Sections 3.2 and 3.3, 

the centroid needs to be computed as follows (kαk = 1, αk ≥ 0): 
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Let us now focus on one of the ―inner‖ centroids representing one of the structural 

contexts, Ck (1 ≤ k ≤ m). The methodology suggests that, in order to compute Ck, we 

should construct | R | P-PR vectors and compute their average. However, it is possible 

to do this computation a lot more efficiently by computing just one P-PR vector. 

Instead of running P-PR from a single source node, we set R to be the set of source 

nodes (when the random walker teleports, it teleports to any of the nodes in R with 

equal probability). It turns out that a centroid computed in this way is exactly the 

same as if it was computed in the ―slow way‖ by strictly following the methodology. 

In case of having r classes and n objects, n  r, this not only speeds up the process 

by factor n / r but also reduces the time complexity from computing O(n) P-PR 

vectors to computing O(1) P-PR vectors. Practical implications are outlined in Section 

5.4. 

5 VideoLectures.net Categorization Case Study 

The task in the VideoLectures.net case study was to develop a method that will assist 
in the categorization of video lectures hosted by one of the largest video lecture 
repositories VideoLectures.net. This functionality was required due to the rapid 
growth of the number of hosted lectures (150–200 lectures are added each month) as 
well as due to the fact that the categorization taxonomy is rather fine-grained (129 
categories in the provided database snapshot). We evaluated the methodology in this 
use case, confronting it with a typical text mining approach and an approach based on 
diffusion kernels. 



5.1 Dataset 

The VideoLectures.net team provided us with a set of 3,520 English lectures, 1,156 of 

which were manually categorized. Each lecture is described with a title, while 2,537 

lectures also have a short description and/or come with slide titles. The lectures are 

categorized into 129 categories. Each lecture can be assigned to more than one 

category (on average, a categorized lecture is categorized into 1.26 categories). There 

are 2,706 authors in the dataset, 219 events at which the lectures were recorded, and 

3,274 portal users‘ click streams. 
From this data, it is possible to represent lectures, authors, events, and portal users 

in a heterogeneous information network. In this network, authors are linked to 

lectures, lectures are linked to events, and portal users are linked to lectures that they 

viewed. Data preprocessing was performed by employing the proposed methodology, 

using as input the following textual and structural information about video lectures.  

 Each lecture is assigned a textual document formed out of the title and, if 

available, extended with the corresponding description and slide titles. 

 The structural information of this heterogeneous network is represented in the 

form of three homogeneous graphs in which nodes represent video lectures: 

 Same-event graph. Two nodes are linked if the two corresponding lectures were 

recorded at the same event. The weight of a link is always 1. 

 Same-author graph. Two nodes are linked if the two corresponding lectures 

were given by the same author or authors. The weight of a link is proportional to 

the number of authors the two lectures have in common. 

 Viewed-together graph. Two nodes are linked if the two corresponding lectures 

were viewed together by a group of portal user. The weight of a link is 

proportional to the number of users that viewed both lectures. 

5.2 Results of Text Mining and Diffusion Kernels 

We first performed a set of experiments on textual data only, by following a typical 

text mining approach. In addition, we employed diffusion kernels (DK) [12] for 

classifying lectures according to their structural contexts.  

In the text mining experiments, each lecture was assigned a text document formed 

out of the title and, if available, extended with the corresponding description and slide 

titles. We represented the documents as normalized TF-IDF bag-of-words vectors. 

We performed 10-fold cross validation on the manually categorized lectures. We 

performed flat classification as suggested in [5]. We employed several classifiers for 

the task: Centroid Classifier, SVM, and k-Nearest Neighbors (k-NN). In the case of 

SVM, we applied SVMmulticlass [9] for which we set  (termination criterion) to 0.1 and 

C (tradeoff between error and margin) to 5,000. In the case of k-NN, we set k (number 

of neighbors) to 20. We used dot product (i.e., cosine similarity) to compute the 

similarity between feature vectors. 

In addition to the text mining experiments, we computed DK for the three graphs 

(we set the diffusion coefficient  to 0.0001). For each kernel separately, we 



employed SVM and k-NN in a 10-fold cross validation setting. The two classifiers 

were configured in the same way as before in the text mining setting.  

We measured classification accuracy on 1, 3, 5, and 10 top categories predicted by 

the classifiers. The results are shown in Fig. 3, where different evaluation metrics are 

stacked on top of each other thus forming one column for each of the performed 

experiments. Standard errors are shown next to the accuracy values given in the chart.  

The results show that text mining approaches perform relatively well. They achieve 

55.10% accuracy on the topmost item (k-NN) and 84.78% on top 10 items (Centroid 

Classifier). The same-author graph contains the least relevant information for the 

categorization task. The most relevant information is contained in the viewed-together 

graph. k-NN applied to the textualized viewed-together graph achieves 72.74% 

accuracy on the topmost item and 93.94% on top 10 items. Noteworthy, the choice of 

the classification algorithm is not as important as the selection of the data from which 

the similarities between objects are inferred. 
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Fig. 3. Results of the selected text categorization algorithms and diffusion kernels. 

5.3 Results of the Proposed Methodology 

In the next set of experiments, we applied the proposed methodology. The results are 
shown in Fig. 4. 

The first nine experiments in Fig. 4 were performed by employing the proposed 
methodology on each graph separately. As before, we performed 10-fold cross 
validation on the manually categorized lectures and employed SVM and k-NN for the 
categorization task (we used the same parameter values as before). In addition, we 
employed the PageRank-based Centroid Classifier (PRCC) discussed in Section 4. 
We set the PageRank damping factor to 0.4 when computing structural-context 
feature vectors. 

In the last three experiments in Fig. 4, we employed the data fusion method 

explained in Section 3.3. In Experiment 10, we weighted all types of data (i.e., bags-

of-words, viewed-together, same-event, and same-author) equally. We only show the 



results for PRCC (SVM and k-NN demonstrated comparable results). In Experiment 

11, we employed Differential Evolution (DE) to directly optimize the target 

evaluation metric. The objective function to be maximized was computed in an inner 

10-fold cross validation loop and was defined as c=1,3,5,10 accc where accc stands for 

accuracy of the categorization algorithm on top c predicted categories. We only 

employed PRCC in this setting as it is fast enough to allow for numerous iterations 

required for the stochastic optimizer to find a good solution. DE computed the 

following weights: 0.9651, 0.0175, 0.0045, and 0.0130 for the bag-of-words, viewed-

together, same-event, and same-author data, respectively. In the last experiment, we 

removed the viewed-together information from the test set. The reason is that in real-

life, new lectures are not connected to other lectures in the viewed-together graph 

because they were not yet viewed by any user. 
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Fig. 4. Results of employing the proposed methodology. 

 
From the results of the first 9 experiments, we can confirm that the most relevant 

information is contained in the viewed-together graph. PRCC applied to the 
textualized viewed-together graph exhibits 74.91% accuracy on the topmost item and 
95.33% on top 10 items. We can also confirm that the choice of the classification 
algorithm is not as important as the selection of the data from which the similarities 
between objects are inferred. Even so, PRCC does outperform SVM and k-NN on top 
10 items and in the case of the viewed-together graph, also on the topmost item. 
PRCC is outperformed by the other two classifiers on the topmost item in the case of 
the same-event graph.  

When comparing approaches based on our methodology to DK-based approaches, 
we can see that PRCC applied to textualized viewed-together graph outperforms SVM 
and k-NN applied to the viewed-together diffusion kernel. On the other hand, with 
respect to the same-event and same-author graphs, PRCC is outperformed by the DK-
based approaches on the topmost predicted category. 



The results of Experiment 10 show that weighting all types of data equally does not 

produce the best results. The accuracy falls in comparison with exploiting the viewed-

together graph alone. The optimized weights indeed yield the best results (Experiment 

11). Since most of the relevant information is contained in the viewed-together graph, 

the accuracy achieved through combining feature vectors is not much higher than that 

demonstrated by exploiting the viewed-together graph alone. However, as clearly 

demonstrated by the last experiment, the combined feature vectors excel when the 

viewed-together information is not present in the test set. The classifier is able to 

exploit the remaining data and exhibit accuracies that are significantly higher than 

those achieved by resorting to text mining alone (88.15% versus 84.78% accuracy on 

top 10 items). A classifier based on combined feature vectors is thus not only more 

accurate but also robust to missing a certain type of data in test examples. 

5.4 Notes on Time and Space Complexity 

Whenever a set of new lectures enters the categorization system—whether we use the 

proposed methodology (termed ―bags-of-features‖ in Fig. 5) or the DK approach—the 

following procedure is applied: (1) kernel or feature vectors are recomputed, (2) a 

model is trained on manually categorized lectures, and (3) new lectures are 

categorized. Each fold in the 10-fold cross validation roughly corresponds to this 

setting. We focused on the viewed-together graph only and measured the times 

required to perform each of these 3 steps in each of the 10 folds, computing average 

values in the end. The results are given in Fig. 5. 
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Fig. 5. The time spent for feature vector or kernel computation, training, and prediction. Note 

that the chart is plotted on a logarithmic scale. 
 

The results show that the DK-based approach (column 1) is more demanding than 

the proposed methodology represented by column 2 (1,193 seconds vs. 371 seconds). 

Roughly speaking, this is mostly due to the fact that in our use case, the diffusion 

kernel is computed over 3,520 objects (resulting in a 3,520 by 3,520 kernel matrix) 

while by using the proposed methodology, ―only‖ 1,156 P-PR vectors of length 3,520 

need to be computed, where 1,156 is the number of manually categorized lectures. 

Note also that computing a series of P-PR vectors is trivially parallelizable as one 

vector is computed entirely independently of the others (the so-called ―embarrassingly 
parallel‖ problem). On a quad-core machine, for example, the time required to 



compute the P-PR vectors in our case would be approximately 80 seconds. Even 

greater efficiency is demonstrated by PRCC (the last column). When PRCC is used, 

the feature vectors are not precomputed. Instead, in the training phase, approximately 

130 P-PR vectors are computed, one for each category in the training set. In addition, 

in the prediction phase, approximately 115 additional P-PR vectors are computed 

(115 objects is roughly the size of the test set). PRCC thus requires only 70 seconds 

for the entire process. Needless to say, the PRCC-based approach is also trivially 

parallelizable which makes it even more suitable for large-scale scenarios. Let us also 

point out that this efficiency is not achieved at the cost of decreased accuracy. In fact, 

of all our experiments involving the viewed-together graph, the one employing PRCC 

demonstrates the best accuracy. 

The thorough analysis of the space complexity is beyond the scope of this paper. 

Let us just point out that PRCC computes and stores only around 130 P-PR vectors of 

length 3,520 (i.e., the PRCC model) which makes it by far the most efficient approach 

in terms of required memory. In comparison, the DK-based approach stores a 3,520 

by 3,520 kernel matrix and k-NN employed by the proposed methodology stores 

around 1,040 P-PR vectors of length 3,520 (roughly 1,040 objects constitute the 

training set in each fold). For simplicity, we assumed that these vectors are not sparse, 

which is actually not the case and would speak even more in favor of the proposed 

methodology. 

6 Conclusions and Future Work 

We presented a new methodology for mining heterogeneous information networks. 
The methodology is based on building a common vector space for textual and 
structural information. We use Personalized PageRank (P-PR) to compute structural-
context features. We also devised and presented an extremely efficient PageRank-
based centroid classifier. We applied the proposed methodology and the devised 
classifier in a video lecture categorization use case and showed that the proposed 
methodology is fast and memory-efficient, and that the devised classifier is accurate 
and robust. 

In future work, we will develop the analogy between text mining and the proposed 

methodology further, considering stop nodes (analogous to stop words). We will also 

look for a more efficient way to compute weights when combining feature vectors. 

We will apply the methodology to larger problem domains to fully utilize the 

efficiency demonstrated by the devised PageRank-based Centroid Classifier. 
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