
1

A Methodology for Safety Case Development

Peter Bishop
Adelard, London, UK

Robin Bloomfield
Adelard, London, UK

1 Introduction
A safety case is a requirement in many safety standards. Explicit safety cases are required for
military systems, the off shore oil industry, rail transport and the nuclear industry. Furthermore,
equivalent requirements can be found in other industry standards, such as IEC 1508 (which
requires a “functional safety assessment”) the EN 292 Machinery Directive (which requires a
“technical file”) and DO 178B for avionics (which requires an “accomplishment summary”).

It is important that an adequate safety case is produced for a system. In regulated industries such
as the nuclear industry, the need to demonstrate safety to a regulator can be a major commercial
risk. For example the computer-based Darlington Reactor Protection System in Canada required
around 50 man years of software assessment effort which was probably more than the effort
required to develop the software. In addition the assessment delayed reactor start up so that many
millions of dollars of income were lost. So the need to demonstrate safety can involve significant
direct costs and indirect costs if the overall project is delayed.

This paper will outline a safety case methodology that seeks to minimise safety risks and
commercial risks by constructing a demonstrable safety case. The safety case ideas presented
here were initially developed in an EU-sponsored SHIP project [1] and was then further
developed in the UK Nuclear Safety Research Programme (the QUARC Project [2]). Some of
these concepts have subsequently been incorporated in safety standards such as MOD Def Stan
00-55, and have also been used to establish specific safety cases for clients. A generalisation of
the concepts also appears in Def Stan 00-42 Part 2, in the form of the software reliability case.

2 The safety case structure
We define a safety case as:

“A documented body of evidence that provides a convincing and valid argument that a system
is adequately safe for a given application in a given environment”

To implement a safety case we need to:

• make an explicit set of claims about the system

• produce the supporting evidence

• provide a set of safety arguments that link the claims to the evidence

• make clear the assumptions and judgements underlying the arguments

• allow different viewpoints and levels of detail

2

The following sections describe how we think a safety case should be structured to meet these
goals.

2.1 Elements of a safety case

The main elements of the safety case are:

Claim about a property of the system or some subsystem.
Evidence which is used as the basis of the safety argument. This can be either facts, (e.g.

based on established scientific principles and prior research), assumptions, or sub-
claims, derived from a lower-level sub-argument.

Argument linking the evidence to the claim, which can be deterministic, probabilistic or
qualitative.

Inference the mechanism that provides the transformational rules for the argument.

The use of these elements is illustrated in the figure below:

Claim

Argument Structure

Evidence

Evidence

Sub-claim

Inference rule

Inference rule

Note that “evidence” can be a sub-claim produced by a subsidiary safety-case. This means that
there can be a relatively simple top-level argument, supported by a hierarchy of subsidiary safety
cases. This structuring makes it easier to understand the main arguments and to partition the
safety case activities.

It is also possible to have two (or more) independent arguments supporting the same claim, as
illustrated below.

Claim

Evidence

Evidence

Sub-claim

By using independent evidence (and possibly different styles of safety argument), the claim can be
more robust, i.e. it can tolerate flaws in a single argument.

3

2.2 Types of claim

The safety case is broken down into claims about different attributes for the various sub-systems,
e.g.:

reliability and availability usability (by the operator)
security (from external attack) fail-safety
functional correctness accuracy
time response robustness to overload
maintainability modifiability, etc.

Note that the attributes listed are only examples and further attributes may be safety-relevant.
Conversely, for some applications not all attributes need be safety-related, e.g. time response
would not be safety-relevant for off-line stress analysis programs, but it would be necessary to
have accuracy and functional correctness.

2.3 Types of argument

Different types of argument can be used to support claims for the attributes:

Deterministic application of predetermined rules to derive a true/false claim (given some initial
assumptions), e.g. formal proof of compliance to a specification, or
demonstration of a safety requirement (such as execution time analysis or
exhaustive test of the logic)

Probabilistic quantitative statistical reasoning, to establish a numerical level (e.g. MTTF,
MTTR, reliability testing)

Qualitative compliance with rules that have an indirect link to the desired attributes (e.g.
compliance with QMS standards, staff skills and experience)

The choice of argument will depend on the available evidence and the type of claim. For example
claims for reliability would normally be supported by statistical arguments, while other claims
(e.g. for maintainability) might rely on more qualitative arguments such as adherence to codes of
practice.

2.4 Sources of evidence

The arguments themselves can utilise evidence from the following main sources:

• the design

• the development processes

• simulated experience (via reliability testing)

• prior field experience

The choice of argument will depend in part on the availability of such evidence, e.g. claims for
reliability might be based on field experience for an established design, and on development
processes and reliability testing for a new design.

4

2.5 Example Arguments

Some example arguments for different claims, using different types of evidence, are shown in the
following table.

Attribute Design Features Assumption
/Evidence

Subsystem
Requirements

Claim

Functional
Correctness

Partitioning
according to
criticality

Design simplicity

Assumption that
segregated
functions cannot
affect each other

Subsystem
integrity level

Functional
segregation
requirements

Claim that the
composite
behaviour of the
critical functions
implements the
overall safety
function

Fail-safety Use of functional
diversity

Fail-safe
architectures

System Hazard
Analysis

Fault Tree
Analysis

Fail safety
requirements for
subsystems

(response to
failure
conditions)

Claim that safety
is maintained
under stated
failure conditions,
assuming the
subsystems are
correctly
implemented

Reliability
/availability

Architecture,
levels of
redundancy,
segregation

Fault tolerant
architectures

Design simplicity

Reliability of
components,
CMF
assumptions

Failure rate,
diagnostic
coverage,
test intervals,
repair time,
chance of
successful repair

Prior field
reliability
in similar
applications

Hardware
component
reliability

Software
integrity level

Component
segregation
requirements

Fault detection
and diagnostic
requirements

Maintenance
requirements

Reliability claim
based on
reliability
modelling and
CMF
assumptions,
together with fault
detection and
repair
assumptions

Reliability claim
based on
experience with
similar systems

Response
Time

Design ensures
overall response
time is bounded

Assumes sub-
system time
budgets can be
met

Time budgets for
hardware
interfaces, and
software

Claim that overall
system design can
meet target time
response

5

3 Implementing the safety case
So far we have only discussed the structure of the safety case, and now we need to consider the
process for producing the safety case. Many of the problems in producing an acceptable safety
case arise from an attitude that regards the safety case as a “bolt-on” accessory to the system
(often produced after the system has been built). At this stage it is often discovered that “retro-
fitting” the supporting safety case is both expensive and time consuming.

We recommend a different approach where the safety case is considered throughout the project.
In our approach we advocate:

• Integration of the safety case into the design and development process

• “Layered” safety cases, i.e. a top-level safety case with subsidiary safety cases for
subsystems

• Traceability between system and subsystem levels

• “Design for assessment” which takes into account the costs and complexity of the
safety case as well as the design.

3.1 Example of a layered safety case

An example of a layered safety case is shown below. This starts at the top-level with the overall
safety target (a worst case accident rate). This top-level requirement is progressively transformed
into derived requirements for subsystems.

Safety Functions 1 Safety Functions 2

Plant Safety Requirement

Target for top event

(dangerous) failure rate
availability

(dangerous) failure rate
availabilitySystem architecture integrity attributes

Computer System
Functions

(dangerous) failure rate
availability
integrity attributes (inc derived req.)

Hardware
Functions

(inc derived req.)

Software
Functions

(inc derived req.)

(dangerous) failure rate(dangerous) failure rate

residual attributes residual attributes

Computer System
Functions

(inc derived req.)

(accident probability)

3.2 Traceability between levels

As shown in the figure above, the top-level requirements are transformed into derived
requirements. Initially these might be attributes such as “security” or “maintainability”, but at a

6

more detailed level of implementation these requirements will be converted into design
requirements that are implemented in one or more subsystems. It is important that there is
traceability between these levels so that there is a clear link between the design features and the
safety attributes. The subsidiary safety cases for the subsystems should identify the design
features and present arguments to support claims that they implement the safety attributes. The
traceability between levels is illustrated in the figure below:

control or protection
functions

hardware availability

security

application modules

recovery routines

hardware diagnostics

voting algorithms on
redundant channels

data encryption
mechanisms

password authentication
network isolation

modifiability
additional software to
allow parameterisation

3.3 Design for assessment

“Design for assessment” integrates the production of the safety case with the design of the
system. Typically, some candidate design options will be identified and a preliminary safety case
will be constructed. This will normally be an iterative process, which involves the identification
of hazardous subsystem states (e.g. through some form of hazard analysis), and appropriate
countermeasures (elimination, reduction and failure mitigation). The design and safety case are
then assessed to establish whether:

• the design implements the safety functions and attributes

• the design criteria are satisfied

• the design is feasible

• the associated safety arguments are credible

• the approach is cost-effective

In this assessment process, the costs of implementing the safety system and the associated safety
case should be considered during the architectural design phase. This analysis should also include
a consideration of the long-term safety risks and lifecycle support costs (e.g. changing the safety
functions, changing the hardware, maintaining the equipment, maintaining the associated safety
case, etc.).

By integrating the safety case into the design, the feasibility and cost of the safety case
construction and maintenance can be evaluated in the initial design phase. This should help
exclude unsuitable designs and enable more realistic design trade-offs to be made. It is difficult to
be specific about the choice of appropriate design and safety case options that are likely to be

7

both cost effective and convincing, but some general “rules of thumb” for minimising costs and
risk are:

• use a simple design (eases analysis)

• avoid novelty (use established designs or components with known performance)

• ensure supporting evidence is readily available

3.4 The safety case life-cycle

As noted earlier, the safety case life-cycle should be an integral part of the overall system
development, and this should continue throughout the lifetime of the system. Quite often, the
safety case will include assumptions about the behaviour of components (e.g. reliability or fail-
safe bias) which are plausible but unverified at the time the system is accepted. In this case there
may be a conditional acceptance of the system, and certain “areas of concern” may need to be
explicitly monitored during actual operation. The main stages of safety case evolution are listed
below.

• Safety functions and top-level safety attributes identification

• System architecture and outline safety case identification

• Preliminary assessment of design options:

• costs and risks (implementation and safety case)

• long-term support

• Progressive elaboration of the design and safety case in parallel:

• safety case requirements part of subsystem specifications

• reviews of subsystem safety cases

• Integration into final safety case

• Long-term support infrastructure plans

• Approval

• Long-term monitoring and audits

• areas of concern

• support processes

• gathering field evidence to support assumptions

• System updates and corrections

3.5 Safety case contents

The safety case is “living document” which evolves over the safety life-cycle. Since it records the
safety argument, the basic structure should remain broadly similar over time, but the status of the
evidence will change. For example, planned levels of test coverage are replaced by test evidence
on the achieved level of coverage. In practice of course the safety case could be split into several
documents (e.g. covering specific subsystems) and would also refer to supporting documents (e.g.
design documents, analysis reports, test reports etc.).

We consider that the following items should be included in the safety case document:

• Environment description
external equipment, interfaces, failure modes, hazardous/safe states, potential
changes

8

• PES safety requirements
safety functions, reliability and other safety attributes, anticipated changes

• PES system architecture
subsystems, interconnections, subsystem derived functions, integrity levels, design
constraints, evidence

• Planned implementation approach
PES system architecture safety argument
(at least one safety argument for each requirement)
identify all design assumptions used in the argument (e.g. claim limits, failure
modes)
identify supporting evidence and analyses (e.g. SHA, HRA, RAMS)

• Subsystem design and safety arguments
(similar to the main safety case)

• Long term support requirements

• PES maintenance and operation procedures
safety case support infrastructure

• Status information
safety case evidence, design assumptions, outstanding concerns for subsystems,
unresolved hazards

• Evidence of quality and safety management
results of QA audits, safety audits, evidence that identified problems are resolved

• References

Note that evidence of quality and safety management is included because it is important to have
confidence in the validity of the underlying evidence supporting the development of the system
and its safety case.

4 Concluding remarks
We have presented an outline of our safety case methodology. Our safety case approach places
the main emphasis on claims about the behaviour of the system (i.e. functional behaviour and
system attributes) and suitable arguments to support those claims. The structuring ideas (using
claims, argument and evidence) are quite simple, but they should allow quite complex safety
cases to be constructed which are both understandable and traceable. The approach also allows
for multiplicity of argument approaches.

To implement the safety case we have advocated the integration of safety case development into
the design process. By including the safety case and its possible costs in the design trade-offs,
unsuitable designs can be avoided together with their attendant costs in safety case construction,
project delays and long-term support overheads.

The layered structure of the safety case allows the safety case to evolve over time and helps to
establish the safety requirements at each level. For large projects with sub-contractors, this “top-
down” safety case approach helps to identify the subsystem requirements and the subsystem
safety case can be made an explicit contractual requirement to be delivered by the sub-contractor.

We have developed this methodology over several years. Initially the ideas were the product of
research studies, but they have subsequently been adopted in standards and for the development

9

of safety cases for specific systems. The approach has evolved during this period, but the
evolution is largely through extensions to the methodology (including long-term support) rather
than changing earlier ideas.

We have also been working on developing a suitable computer-based support environment for the
supporting documentation using commercially available Web browser technology [3], and further
work is planned for recording and linking the safety case argument to the supporting evidence
within such an environment.

While the methodology is likely to evolve further, we believe that our current safety case
methodology provides a good basis for safety case development.

References
[1] The SHIP project (ref. EV5V 103) was carried out with financial support from the CEC

in the framework of the Environment Programme, sub-theme: Major Industrial Hazards.
[2] The QUARC2 project was funded by the UK (Nuclear) Industrial Management

Committee (IMC) Nuclear Safety Research Programme under Scottish Nuclear contract
PP/74851/HN/MB with contributions from British Nuclear Fuels plc, Nuclear Electric
Ltd, Scottish Nuclear Ltd and Magnox Electric plc.

[3] Adelard Linkbase Tool Demonstration, http://www.adelard.co.uk/

