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Abstract
Important research efforts are being conducted in the area 

of search, lookup, and routing, and are even increasing in the 
quest for P2P middleware that is both scalable and decen-
tralized. To structure and classify current as well as to facili-
tate and give direction to future research, this methodology 
proposes a top-down two-dimensional design space. This 
design space has been developed for exhaustiveness so as to 
cover all possible design options, existing or yet to be con-
ceived. A comprehensive survey of P2P search systems serves 
as a reference for the reader while at the same time validating 
the framework. An identification of areas in the design space 
not being covered by current systems leads to the design of a 
novel peer-to-peer-based keyword routing scheme. Finally, 
an evaluation of possible design options along the most 
important requirements will help guide system designers.

Keywords: Distributed Systems, Middleware, Peer-to-
Peer, Overlay Topology, Design Space, Keyword Search, 
Lookup, Semantic Routing

1 Introduction

The difficulty of finding and retrieving or using networked 
resources, i.e., content, services, or hardware, is increasing 
with the network size and degree of decentralization. While it 
was rather easy in times of mainframe computing with only 
few connected terminals, the move towards decentralized 
peer-to-peer (P2P) systems with millions of active nodes 
imposes huge challenges on distributed search and routing.

A P2P system is typically built upon existing network 
infrastructure providing end-to-end connectivity (Figure 1). 
P2P applications like filesharing, grid computing, or instant 
messaging require search middleware building on overlay 
networks to overcome the hurdles of decentralization and to 
search the network: e.g., for files, computing resources, or 
users. Other P2P middleware functionality might be neces-
sary, for instance for peer and content reputation information 
handling, and can build on the same or on separate overlay 
networks; the scope of this work, however, is restricted to 
search middleware.

Innumerable efforts have been started to build such mid-
dleware, to construct suitable overlay networks, and hence to 
design P2P search, lookup, and routing systems. However, a 
structure and delineation of these designs is yet missing as 
well as a comparative evaluation; attempts so far have been 

limited to a few randomly selected example systems [1], [2]. 
Furthermore, there is no statement as to what designs are via-
ble at all and may not even have been looked into.

Consider peer-to-peer file-sharing services as an example. 
Napster provided a central directory server to enable users to 
find content - it failed, mostly due to legal issues with its cen-
tralized architecture. Gnutella, in contrast, chose a decentral-
ized approach based on flooding - but it can obviously not 
scale to the millions of nodes expected to join future P2P sys-
tems. Chord [3], CAN [4], Tapestry [5], Pastry [6], or AGILE 
[7] designed highly scalable combined lookup and routing 
systems - however, their highly structured approach makes 
them vulnerable to malicious users and makes keyword 
search a non-trivial task.

So several questions arise: What are the parallels or differ-
ences between these and further approaches that make them 
better or less well suited for one or the other application, and 
what are the trade-offs? Which systems have already been 
developed? And are there any fundamentally new approaches 
yet to be discovered and developed that may achieve signifi-
cant performance leaps? These and further issues will be 
addressed in this paper.

While structured distributed hash tables like Chord are 
usually applied to combined lookup and routing, and unstruc-
tured Gnutella-like networks to search for keywords, it turned 
out to be important to separate the functionality certain P2P 
search middleware provides from the structural approach 
chosen. Section 2 identifies the functional options like name 
routing or semantic routing.

It is then shown that the number of different structural 
approaches is limited and the same for each functional 
option. A design space is defined with the goal to be complete 
for current and future systems (Section 3), based upon a clas-
sification into mutually exclusive and collectively exhaustive 
categories.

The framework is tested in Section 4 by mapping more 
than 30 existing approaches onto the two-dimensional design 
space and classification. At the same time, this section serves 
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as a survey of P2P and distributed search systems. Finally, it 
allows the identification of blind spots in the current research 
landscape that can be filled by a novel approach for P2P 
search that is yet to be developed.

An evaluation of the design options and their trade-offs is 
given in Section 5, before Section 6 concludes.

2 Functionality of P2P Search Middleware

For a complete picture of functional options, search has 
been disaggregated into several steps. Figure 2 (top) shows 
the process from keywords over names and addresses to the 
path to target node hosting the desired resources.

Usually, a user wants to specify what he is looking for in 
terms of keywords. In the simplest case, keywords are just 
one or more terms appearing in the desired content or 
describing the desired resource. More sophisticated 
approaches apply content/resource meta information based 
on attribute-value pairs, e.g., the resource description frame-
work (RDF). Keyword search describes the functionality of 
mapping the resource meta information onto one, or, in the 
case of multiple matching resources, several unique names or 
identifiers in the network. Examples of such names are the 
Uniform Resource Locator, URL, or file names in a Unix file 
system. Lookup maps unique names onto addresses in the 
network. Addresses specify the network location of the node 
hosting the resource with a given name, e.g., the IP address 
of the host. Finally, routing is the process of finding a path
and moving queries to the target node. 

Three short-cut mechanisms can help optimize search. 
Name routing combines the (distributed) lookup of the target 
node address with path identification and query forwarding
to that node. Keyword lookup returns one or more addresses 
of nodes hosting resources with given keyword descriptions. 
Napster is the most prominent example. Finally, keyword 
routing directly routes towards a node hosting specified 
resources. Keyword routing is sometimes also called seman-
tic routing or content routing. 

For P2P, the process can be simplified as shown in Figure 
2 (bottom). Since P2P systems apply application-level over-
lay networks, routing becomes a trivial task: knowing the tar-
get node address, the requestor simply creates a new virtual 
link to that address. Only few circumstances (like the ano-

nymity requirement in Freenet) lead to a more difficult over-
lay routing approach, which is, however, an issue separate 
from search.

3 Structural Design Space and Classification

With the search process defined and disaggregated, it 
becomes obvious that searching requires a series of map-
pings, from the keyword space to the name space to the 
address space to the space of paths to nodes. The structural 
options in a distributed environment are the same for each 
mapping, and a classification is given in Figure 3. 

A mapping can only be defined through a computation or 
a table. A (pre-defined) computation is difficult to achieve 
but some attempts have been made, usually involving hash-
ing. More widely adopted are tables with entries for the 
desired search items, e.g., a node address for each valid 
name. Mapping then comes down to finding the desired table 
entry and looking up the associated value. In a distributed 
environment, a table can either reside on a central entity like 
a search engine server, or be completely replicated on each 
node, or be distributed among the nodes. 

Distributed tables are probably most challenging in that 
they require for each mapping to collaboratively find and 
contact the node that has the desired information or table 
entry. Two important aspects distinguish distributed table 
approaches: the structure of the table, i.e. the distribution of 
table entries to nodes, and the physical or overlay topology of 
the network. The distribution of table entries can either hap-
pen at random or according to a target table structure; the 
same applies for the distribution of links and, hence, the 
topology. Whether the table structure and topology are 
designed and aligned, or both random, or at least one of them 
designed but not aligned with the other, has substantial impli-
cations on search.

In a random table structure and random topology, it is nat-
ural that each node at least carries information about itself, 
i.e. its address, the names of its resources and content, and 
corresponding keyword descriptions. In addition to informa-
tion on their own tables, nodes may have knowledge on the 
table entries of their neighbors, i.e. the nodes they directly 
know about and may contact for search, in an aggregated or 
non-aggregated form. The knowledge on neighboring table 
entries will in some cases be restricted to the direct neigh-
bors, but can also involve recursion: An arbitrary node A not 
only learns about the table entries of its neighbors Bi, but 
also through Bi about Bi’s neighbors Cij, Cij’s neighbors Dijk, 
and so on. This way, nodes eventually know about most or 
even all keywords, names, or addresses in the direction of 
each neighbor in a usually aggregated way.

Rather than keeping explicit knowledge on neighboring 
table entries, nodes can exploit implicit knowledge when the 
table distribution and topology follow an aligned structure
that every node knows. The most common approach is cer-
tainly the classical hierarchy. A root node informs about 
table areas represented by a number of second-level nodes. 
The second-level nodes, in turn, delegate to third-level nodes 
for sub-areas within their own area, and so on, until a request 
finally reaches the leaf node responsible for the desired entry. 
Particularly in the quest for scalable peer-to-peer search 
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algorithms, “symmetric hierarchies” have been created by 
adding redundancy. In symmetric redundant hierarchies, 
every node can act as the root or be on any other level of the 
hierarchy. This can be achieved by replicating the root infor-
mation on table areas on each node as well as the second-
level information on sub-areas etc. Contemplate Figure 4 for 
more explanation. Let each position in the hierarchy be 

denoted by , where n is the number of levels and 

i1,...,im is the path of descendents below the root that leads to 
this position. The dark grey node of concern in the figure is 
then on position P1,3. All nodes are associated with a unique 
position at the lowest level of the hierarchy and with all cor-
responding positions on the path up to the root. Hence, a 
node on position  maintains links to a complete set of 

nodes on positions , ,..., , , 

, where b is the number of positions on each 
level (here assumed fix for simplification). In the figure, the 
dark grey node keeps replicas of the table information of the 
light grey positions and maintains links to a complete set of 
descendents. Note that nodes acting as a root will usually 
point to different neighbors for the second level table areas 
(and so on for all remaining levels) as there are multiple dif-
ferent options due to the replication.

Non-hierarchical structures are also possible and avail-
able. In an ordered space, the table is split into consecutive 
areas. Each of the areas is represented on one node. The 
nodes, in turn, are ordered in the same way, i.e. neighboring 

table areas reside on neighboring nodes. Examples of such 
spaces are rings or Euclidean spaces, but other forms are pos-
sible.

Unaligned table structures and topologies occur when 
either the table is distributed according to a clear structure 
but the topology is random, or the topology is designed but 
the table structure random, or both table and topology are 
structured but in different ways. While the first case may be 
helpful to allow aggregation of table area information, the 
second case can be advantageous for performance improve-
ments compared to a completely random approach. It 
appears difficult to gain from the third case. 

Designs based on any kind of structured table regardless of 
the topology are sometimes referred to as distributed hash 
tables. 

4 Two-Dimensional Design Space and 
Survey of P2P Search

This section presents a framework for design options in 
distributed or P2P search middleware and gives an overview 
of existing systems (cf. Table 1). By briefly discussing key 
requirements, advantages, and drawbacks, it explains the 
rationale for choosing a specific design. Furthermore, blind 
spots in the design space will be identified where further 
research may lead to entirely new systems with significantly 
improved performance. An extended discussion including 
non-P2P systems can be found in [8].

4.1 Computational Approaches

Computational mapping is very efficient in that it involves 
neither large tables to reside in memory nor bandwidth-con-
suming query messages to be sent. However, it is difficult to 
achieve as it requires that all possible outcomes of the com-
putation be allowed in the target range, i.e. name space, 
address space, or space of routes. Constantly changing target 
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spaces or value ranges, due to the addition or removal of 
nodes and node addresses, or resources with their corre-
sponding names, limit the applicability of computational 
approaches. Some have been made, however, usually involv-
ing hashing, and circumventing the problem by simply defin-
ing name or address spaces such as to cover all possible com-
putation outcomes. This is impossible, however, for routing 
in dynamic environments, as the paths to nodes have to exist 
and cannot simply be defined.

INS/Twine [9] builds attribute-value trees from complex 
resource descriptions and disaggregates them into strands of 
variable length. Hashing is applied to map the strands onto 
128-bit names. Chord’s name routing algorithm completes 
the search.

4.2 Centralized Tables

Central tables are very bandwidth-efficient and incur little 
overhead. However, they require that a central entity have 
trust, reliability, and authoritative information access neces-
sary to own the central table. Furthermore, a possible outage 
of a central server represents a considerable risk for the 
entire network.

Web search engines like Google apply inverse indices to 
provide URL names based on keywords. Many load balanc-
ing hubs route towards a specific server in a server farm 
based on the URL (name) of the request. Napster operates 

central servers to identify addresses of peers where content 
files with a file name containing given keywords are stored. 

4.3 Completely Replicated Tables

Key advantages of complete replication of tables on each 
node are the increased autonomy and fault tolerance in the 
system when compared to central tables while keeping the 
simplicity and bandwidth-efficiency for requests. However, 
replication and synchronization issues as well as high mem-
ory needs restrict the approach to small tables and networks.

Collaboration tools like Groove synchronize keyword, 
name, and address information as well as actual objects or 
object updates on all nodes. Subsequently, all information 
necessary for, e.g., keyword search, is available on all nodes, 
even though the system is based less on a reactive search but 
more on proactive synchronization. As a predecessor to the 
Domain Name System (DNS), the Network Information 
Center (NIC) distributed a file, hosts.txt, to all internet hosts 
for translation of domain names into IP addresses. For email 
encryption, PGP (pretty good privacy) connects a few thou-
sand servers in a P2P fashion that store the public keys of 
PGP users. The servers synchronize via email so that every 
one of them has full knowledge of all keys.

Table 1: Survey of Distributed and P2P Search in the Design Space

Design Keyword Search Lookup/Name Routing Keyword Lookup/Routing
Computational INS/Twinea n/a n/a

Ta
bl

e

Central (Search engines, 
web directories)b

(Load balancing hub)b Napster

Complete on Each Node Groovea PGP key lookup, (NIC’s Hosts.txt)b n/a

D
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d 

Ta
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To
po

lo
gy

H
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al

Classical n/a (DNS)b TerraDir, Mutant Query Plans

Symmetric 
Redundant

n/a Pastry, Tapestry, AGILE, 
Kademlia/Overnet

SHARK

Non-Hierarchical 
Ordered Space

n/a CAN, Chord Squid

U
na
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ne

d 
Ta

bl
e

St
ru

ct
ur

e
an

d 
To

po
lo

gy

Table 
Structured 

n/a (TRIAD/NBRP)b n/a

Table 
Unstruct., 
Topology 
Structured

n/a HyperCuPa; Supernode networks 
like FastTrack (Morpheus, KaZaA, 
Grokster), Gnutella (Bear-Share 
Defender, Clip2 Reflector, 
LimeWirec), eDonkey

LimeWirec, SIL

Ra
nd

om
 T

ab
le

St
ru

ct
ur

e 
an

d
Ra

nd
om

 T
op

ol
og

y No Neighborhood
Information

n/a Gnutella, Expanding Ring, Random 
Walk, Associative Overlays

Random Walk, Expanding Ring, 
LimeWirec, Interest-based shortcuts

N
ei

gh
bo

rh
oo

d

In
fo

rm
at

io
n Without 

Recursion
(Manual http- 
Browsing)b

Freenet Neurogrid

With 
Recursion

n/a Variants of Bloom filters Bloom filters, e.g. LimeWirec, PlanetP

Hybrid Systems n/a Yappers, Brocade n/a

a. Only partial fit into category, see text for details
b. Not deployed for P2P
c. LimeWire proposes multiple add-ons to Gnutella and is subsequently listed multiple times in the table.
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4.4 Distributed Structured Tables with 
Aligned Topologies

Classical hierarchies are very efficient for searching and, 
in contrast to central tables, allow for delegation of responsi-
bility. However, they require an equally hierarchical topol-
ogy and source domain, i.e. keyword space, name space, or 
address space, in order to work efficiently.

DNS applies hierarchically organized domain names and 
an equivalent hierarchy of domain name servers to yield an 
IP address when asked about a domain name. TerraDir [10]
organizes all content in a hierarchical keyword structure. For 
each content item or keyword, a virtual node is created, 
enabling keyword routing towards that node along the hierar-
chy. In [11], a multi-dimensional categorization hierarchy is 
managed by category servers and queries are processed by a 
hierarchy of meta index servers, index servers, and base 
servers. The multi-dimensionality enables searches along 
different criteria, like region, price, type of resource. Com-
plex requests are parsed into ‘mutant query plans’ to allow 
for successive resolution of conjunct or adjunct queries or 
criteria within a request.

Symmetric redundant hierarchies combine the advantages 
of a classical hierarchy with the symmetry and fault toler-
ance requirements of a peer-to-peer system, at the cost of 
additional redundancy in the system and complex node and 
resource insertion and removal.

In Pastry [6] and Tapestry [5], content names and IP 
addresses of nodes are hashed onto the same numerical iden-
tifier (ID) space; this allows name routing when making that 
node responsible for holding a resource or a link to it that is 
closest to the resource in the ID space. The hierarchy is cre-
ated through a digit representation of the ID to a base value 
and an association of each digit with one hierarchy level, 
starting from the last (Tapestry) or the first digit (Pastry), 
respectively. Kademlia [12], commercially deployed in 
Overnet, follows the same basic approach but uses a bit- 
(rather than digit-) representation of IDs to enable prefix 
matching via XORing bit strings. AGILE (Adaptive, Group-
of-Interest-based Lookup Engine, [7]) follows a similar 
approach as Tapestry but introduces an additional three-level 
hierarchy for the resource description. Even though moti-
vated through performance improvements (pruning), this is 
already a step towards symmetric redundant hierarchy-based 
keyword routing. This novel approach called SHARK has 
been found by identifying a blind spot in the design space 
and is currently being developed by the authors [13]. Here, 
the symmetric hierarchy concept is not applied to hash keys 
but to multidimensional keyword ontologies such as to 
accommodate scalable keyword routing along multiple 
adjunct or conjunct criteria, and it will be combined with a 
random structure further down the hierarchy to alleviate 
table and topology maintenance.

Also popular for name routing in peer-to-peer systems is 
the non-hierarchical ordered space approach. The prerequi-
site here is that source domain, i.e. keywords, names, or 
addresses, and nodes can be arranged in the same totally 
ordered, non-hierarchical space.

Chord [3] hashes resource names and node IP addresses to 
a 128-bit ID. The IDs are arranged in a circle with the prede-

cessor node of a resource ID being responsible for providing 
the resource or a link to it. Fingers are used as short-cuts to 
prevent the name routing mechanism from moving around 
the circle in unit steps. In CAN (Content Addressable Net-
work, [4]), hashing is similarly applied to map resource 
names onto an ID in a d-dimensional torus. Nodes distribute 
responsibility for the ID space among themselves and main-
tain virtual links to all direct neighbors in the torus. Queries 
for a name, i.e. ID, can then at each node easily be routed 
into the best direction. Squid [14] assumes a d-dimensional 
space of all allowed keywords, lexicographically ordered in 
each dimension. A Hilbert space-filling-curve is used to 
reduce the dimensionality to one while preserving locality of 
ranges. A variant of Chord is constructed for keyword rout-
ing in the remaining dimension.

4.5 Unaligned Distributed Table Structures 
and Topologies

Search based on unaligned table structures and topologies
is most common where a structuring of the table appears pro-
hibitive yet a structured topology improves system perfor-
mance. This particularly applies to widely-spread peer-to-
peer systems, where free-riding and non-trustworthiness of 
some peers inhibit distributing responsibility for some table 
entries beyond the corresponding resources’ owner.

HyperCuP builds a hypercube topology of nodes to sup-
port efficient flooding [15]. An extension arranging 
resources in the same hypercube space as the nodes which is 
also proposed by the authors would move it to ordered-space 
keyword routing. Hierarchies with “supernodes” or “ultran-
odes” [16] are introduced into many peer-to-peer name rout-
ing systems to improve scalability, like in FastTrack (Mor-
pheus, Kazaa, Grokster) or Gnutella applications (LimeWire, 
BearShare Defender, Clip2 Reflector) [17]. In these systems, 
the supernodes replicate address and name information for 
all subordinate nodes and act as gateways or proxies for 
name requests between the subordinate nodes and the 
remaining network. However, as only a hierarchical overlay 
topology is applied, but not an equivalently hierarchical 
address or name space, supernodes still have to flood queries 
among them. eDonkey also applies supernode-like servers 
which are, however, not connected to one another. It is the 
clients’ task to successively post requests to all servers they 
know. Limewire also proposes rich XML-based keyword 
routing on a supernode organization. A general framework 
for designing topologies for keyword routing without struc-
turing the distributed table, SIL (search/index links) is pre-
sented in [18] and leads to the proposition of parallel clusters 
rather than supernodes.

TRIAD/NBRP (Translating Relaying Internet Architec-
ture integrating Active Directories/Name-Based Routing 
Protocol, [19]), in contrast, builds on a hierarchical name 
space like DNS in order to aggregate content or name infor-
mation, and a natural hierarchy of servers responsible for 
certain names. However, the topology between routers can be 
random. Routers simply advertise reachability of certain 
name suffixes to allow for efficient name routing.
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4.6 Random Distributed Tables and 
Random Topologies

Even though random table structures for mapping rela-
tionships in search appear less sophisticated than aligned 
structures and do not allow to exploit implicit structural 
knowledge, there are a couple of advantages to this 
approach. The maintenance burden for creating and keeping 
an explicit table structure can be too high, particularly in 
fast-changing environments like some P2P or, even more so, 
mobile ad-hoc networks. This also leads to issues regarding 
fault-tolerance: if the structure is not correct in algorithms 
that rely on it, queries may not be successful. Finally, struc-
tured approaches require a high degree of collaboration and 
trust. Unless ownership for certain resources referred to in 
table entries coincides with the assigned responsibility for 
these table entries, resource owners and search requestors 
have to rely on third parties to provide correct information. 
Even though this coincidence applies for DNS, in many 
cases, like Pastry or Tapestry, this is not the case. 

The most simple form of a randomly distributed table lets 
each node only maintain a table of keywords, names, and 
addresses (if several on a node) of its own resources without 
neighborhood information. This approach is extremely sim-
ple and helpful in environments changing so fast that knowl-
edge about neighbors becomes stale before it is used. How-
ever, for all mappings, it requires to either more or less 
arbitrarily choose neighbors to send requests to, or, more 
commonly, flood the entire network.

The approach is used in Gnutella name routing and its 
extension to keyword routing proposed within LimeWire. In 
expanding ring searches, the requestor is contacted before 
each additional request forwarding to check whether the 
desired object has already been found such as to allow early 
termination of the query flooding. Multiple random walks
with termination checking can drastically reduce the number 
of messages due to the finer granularity of node visits and 
reduced duplication of messages, and, hence, improve band-
width scalability [20]. The improvements, however, require 
sufficient replication of objects and come at the cost of 
increased latency. Interest-based shortcuts [21] can be cre-
ated in arbitrary topologies based on past successful 
responses to exploit interest locality and support semantic 
clustering. Similarly, guide rules are proposed in [22] to cre-
ate associative overlays and limit flooding to peers who have 
at least one item in common with the requestor.

Direct neighborhood information on each node can 
improve query forwarding decisions within a distributed 
table. However, unless flooding is used, the approach 
remains indeterministic as to whether a result can be found in 
the direction of a neighbor.

Hyperlinks in http provide users with names, i.e. URLs, of 
resources on neighboring nodes; they can be used for manual 
keyword search or browsing. In Freenet [23], name routing is 
based on hashes of file names or content information. Each 
node forwards a query to the neighbor storing content with a 
hash ID numerically closest to the request. The approach 
converges due to Freenet’s aggressive caching strategy. Sim-
ilarly, in Neurogrid [24], the same approach is used for key-
word meta-data rather than hash IDs.

Recursive neighborhood information, usually in a very 
aggregated form, makes a random table structure search 
more deterministic while avoiding flooding. However, the 
synchronization overhead incurred can be substantial. Spe-
cific attention is due in networks containing loops in order to 
avoid a count-to-infinity problem.

For name and keyword routing in peer-to-peer networks, 
various variants of Bloom filters have been proposed to 
aggregate and compress information on resources in the 
direction of each neighbor. Put simple, one bit is set in a 
word for each name occurring in a certain direction. Rhea 
and Kubiatowitcz suggest attenuated Bloom filters storing 
name information up to d-levels of depth with weights 
decreasing with distance [25]. For keyword routing, Prinkey 
proposes standard Bloom filters in tree topologies with 
aggregated signatures of a branch, i.e. the Bloom filter bits 
represent the hashed keywords present in a tree branch. 
LimeWire modifies the proposal to cope with arbitrary topol-
ogies by adding the number of hops to a resource when prop-
agating the keyword routing information. Crespo and Garcia-
Molina [26] suggest to store and propagate the number of 
matching documents for each keyword, either together with 
the number of hops to a document, or weighting the number 
of documents with a cost function depending on the distance. 
In PlanetP [27], nodes build inverted indices of keywords for 
the objects they hold locally and summarize them through 
Bloom filters. Gossiping is used to propagate this informa-
tion and develop knowledge of the surrounding network. 
PlanetP resolves queries by ranking the relevance of neigh-
bors according to the angle between a weighted vector space 
representation of the query and the Bloom filter profiles. The 
system can scale to a vast number of documents but only a 
few thousand participating nodes.

4.7 Hybrid Approaches

Apart from the approaches presented above, it is, of 
course, possible to combine different approaches within one 
hybrid system to try and reap the benefits from multiple sys-
tems.

In Brocade [28], all (potentially unstable or high-latency) 
peers within a neighborhood connect to one central stable 
high-bandwidth landmark, to which they transfer their indi-
ces and post requests. The landmarks in turn are then well 
suited to form a Tapestry-based distributed hash table for 
requests beyond a neighborhood.

Yappers [29] forms a rough symmetric redundant hierar-
chy with only one level of b buckets, while it applies a ran-
dom topology and table structure beyond the first level, i.e., 
within a bucket. The symmetric redundant hierarchy itself is 
not explicitly managed as usual but obtained by choosing a 
large enough immediate random neighborhood for publish-
ing and query initiation so that nodes within all first-level 
buckets are present with high probability, and by assigning 
secondary buckets to nodes if necessary. An extended neigh-
borhood is maintained so that flooding within a bucket can 
extend beyond the immediate random neighborhood.
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5 Evaluation of the Design Options

The best design alternative to choose for specific middle-
ware depends on the target application and its requirements. 
This section gives a generic evaluation of the design options 
along a set of requirements.

5.1 Functional Design Space

The functional design space can be condensed into two 
major choices: (a) build a disaggregated search involving the 
separate steps keyword search and lookup/name routing or 
(b) take an integrated keyword routing approach. This is 
slightly more complex in the non-P2P world, please refer to 
[8] for a discussion.

Integrated Approaches
Integrated approaches avoid a duplication of highly simi-

lar mapping functionalities and are thus more efficient. Par-
ticularly in widely distributed tables (rather than computa-
tional, centralized, or strictly hierarchical approaches), each 
mapping requires the collaboration of many nodes and incurs 
high bandwidth demands and latency.

Integrated keyword routing also allows keyword-based re-
routing and, hence, makes the system transparent to name 
changes, e.g., due to addition or removal of content for a 
given keyword. This can also alleviate real-time search.

Disaggregated Approaches
A decoupling of keyword search and lookup/name routing 

shows the set of following advantages: 
• Reusability: Each mapping can be used separately to sup-

port a wider range of services; e.g., name routing can not 
only be used for keyword search but also for data 
retrieval in a distributed backup service.

• Innovation: Innovation in one area does not affect 
another area; e.g., improvements to search or string 
matching algorithms are independent of any changes to 
the name routing software.

• Horizontal and Vertical Variety: Different choices for 
keyword search and lookup/name routing smoothly inter-
operate, both horizontally at each step, e.g., centralized 
Google-type keyword search in parallel to decentralized 
P2P search like Infrasearch, as well as vertically across 
the two steps, e.g., central search and hierarchical lookup/ 
name routing. 

Overall, integrated keyword routing should usually be the 
method of choice for P2P systems, particularly as the follow-
ing advantages of disaggregated approaches in non-P2P sce-
narios do not apply:
• Ownership Separation: Each mapping can be offered by 

a separate entity, allowing more competition leading to 
higher efficiency and innovation, potentially also ham-
pering censorship. In true P2P, however, every peer par-
ticipates in all mappings anyway.

• Delegation: Almost a consequence of ownership separa-
tion and vertical variety, but extremely important, is the 
possibility to logically separate keyword space, name 
space, and address space, e.g., independent allocation of 

and even delegation of responsibility for IP address space 
and domain names. P2P systems, however, do not (or not 
yet) apply any (hierarchical) structures like domains.

• Simplicity: Devices for each step can be simpler and more 
specialized than for integrated systems, e.g., ultra-fast 
hardware-based IP routers. Similarly, software engineer-
ing is alleviated, also increasing the maintainability of 
the system. The devices in P2P systems are, however, 
usually general purpose computers and not specialized.

5.2 Structural Design Space

Table 2 presents an overview of system design require-
ments and the degree to which they are met by various struc-
tural middleware design options. Note that many system 
developers have added more details to their design-specific 
features that address shortcomings or fortify strengths of the 
basic approach; furthermore, unaligned structures and topol-
ogies and hybrid approaches are not considered as they can 
be too diverse. Table 2 can thus only be regarded as a rough 
guideline. Major advantages and prerequisites of each sys-
tem have already been highlighted in Section 4. An explana-
tion and definition of these requirements is given below.
• Manageability and Control: How hard is it to control and 

manage the system, i.e. how complex is it, how much 
maintenance does it require, and what level of control can 
be exercised?

• Coherence: Does the system deterministically find 
authoritative information, does it behave in an indeter-
ministic way, or is it prone to retrieve stale replicas?

• Extensibility: How easy or difficult is it to add resources 
or nodes to the system?

• Fault Tolerance and Adaptability: How severely is the 
system affected by a fault and how easily and quickly can 
it cope with system changes like node joins or leaves?

• Scalability: To what limits can the system grow at reason-
able performance, particularly with regards to bandwidth 
and latency, but also memory and processing load on 
average nodes as well as hot spots?

• Publish Autonomy and Security: Is information mostly 
kept at the resource owner, can even responsibility for the 
corresponding name or address space be delegated?

• Search Autonomy and Security: Does searching require 
the collaboration of many, particularly untrusted parties?

• Infrastructure Independence: How independent is the 
system from shared infrastructure like central servers? 
P2P networks usually try to avoid central infrastructure.

• Special Prerequisites: As already discussed in Section 3, 
some designs have special requirements. A computa-
tional approach requires that all computation results lead 
to valid values in the target range of the mapping, i.e.
name space, address space (or space of paths in non-
P2P). Hierarchical approaches require the source 
domains of the mapping, i.e. keyword space, name space 
(or address space in non-P2P), to be hierarchical. Finally, 
a non-hierarchical ordered-space approach requires an 
arbitrary order other than a hierarchy to be imposed on 
the source domain, usually a linear order.
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6 Summary, Conclusions, and Future Work

A design space that is believed to be exhaustive has been 
developed to classify current and facilitate future research in 
P2P search middleware. It outlines the application-relevant 
differences between the possible approaches based on a 
break-down of options along two basic dimensions of dis-
tributed search design: the functional and the structural 
dimension. A classification and description of example sys-
tems validated the framework and serves as a survey of P2P 
search systems.

The trade-offs made and effects of choosing one design 
over another should be evaluated with respect to the most 
relevant requirements and criteria of an application in both 
dimensions, functional and structural. A set of requirements 
and a high-level assessment of design options along these 
requirements has been presented and forms the basis for this 
evaluation.

Based on the design space, a novel search design for peer-
to-peer systems, keyword routing based on symmetric hierar-
chies, has been identified. The corresponding system, 
SHARK, has been outlined in this document and may lead to 
significant performance improvements for some applica-
tions.

Going forward, further discussions will clarify additional 
implications of the design space and enable an assessment of 
general trends in P2P search middleware research from a 
broad perspective.
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Figure 3: Design Space for Mapping Relations in Distributed Systems

Mapping
Relation

Computation

Table Complete On
Each Node

Central

Distributed

Random Table
Structure and

Random Topology

Aligned Table
Structure and

Topology

No
Neighborhood

Information

Neighborhood
Information

Without
Recursion

With
Recursion

Hierarchical

Non-Hierarchical
Ordered Space

Non-Symmetric
Classical
Hierarchy

Symmetric
Redundant
Hierarchy

Unaligned
Table Structure
and Topology

Table
Structured

Topology
Structured



- 13 -
Figure 4: Symmetric Redundant Hierarchy
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Table 3: Survey of Distributed and P2P Search in the Design Space
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Table 4: Evaluation of Structural Design Options
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