
A Methodology for the Design of
Distributed Search in P2P Middleware

Jan Mischke1 and Burkhard Stiller2,1

1 Computer Engineering and Networks Laboratory TIK, Swiss Federal Institute of Technology (ETH Zurich)
Gloriastrasse 35, CH – 8092 Zürich, Switzerland

2 Information Systems Laboratory IIS, University of Federal Armed Forces Munich
Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany

E-Mail: [mischke|stiller]@tik.ee.ethz.ch
Abstract
Important research efforts are being conducted in the area

of search, lookup, and routing, and are even increasing in the
quest for P2P middleware that is both scalable and decen-
tralized. To structure and classify current as well as to facili-
tate and give direction to future research, this methodology
proposes a top-down two-dimensional design space. This
design space has been developed for exhaustiveness so as to
cover all possible design options, existing or yet to be con-
ceived. A comprehensive survey of P2P search systems serves
as a reference for the reader while at the same time validating
the framework. An identification of areas in the design space
not being covered by current systems leads to the design of a
novel peer-to-peer-based keyword routing scheme. Finally,
an evaluation of possible design options along the most
important requirements will help guide system designers.

Keywords: Distributed Systems, Middleware, Peer-to-
Peer, Overlay Topology, Design Space, Keyword Search,
Lookup, Semantic Routing

1 Introduction

The difficulty of finding and retrieving or using networked
resources, i.e., content, services, or hardware, is increasing
with the network size and degree of decentralization. While it
was rather easy in times of mainframe computing with only
few connected terminals, the move towards decentralized
peer-to-peer (P2P) systems with millions of active nodes
imposes huge challenges on distributed search and routing.

A P2P system is typically built upon existing network
infrastructure providing end-to-end connectivity (Figure 1).
P2P applications like filesharing, grid computing, or instant
messaging require search middleware building on overlay
networks to overcome the hurdles of decentralization and to
search the network: e.g., for files, computing resources, or
users. Other P2P middleware functionality might be neces-
sary, for instance for peer and content reputation information
handling, and can build on the same or on separate overlay
networks; the scope of this work, however, is restricted to
search middleware.

Innumerable efforts have been started to build such mid-
dleware, to construct suitable overlay networks, and hence to
design P2P search, lookup, and routing systems. However, a
structure and delineation of these designs is yet missing as
well as a comparative evaluation; attempts so far have been

limited to a few randomly selected example systems [1], [2].
Furthermore, there is no statement as to what designs are via-
ble at all and may not even have been looked into.

Consider peer-to-peer file-sharing services as an example.
Napster provided a central directory server to enable users to
find content - it failed, mostly due to legal issues with its cen-
tralized architecture. Gnutella, in contrast, chose a decentral-
ized approach based on flooding - but it can obviously not
scale to the millions of nodes expected to join future P2P sys-
tems. Chord [3], CAN [4], Tapestry [5], Pastry [6], or AGILE
[7] designed highly scalable combined lookup and routing
systems - however, their highly structured approach makes
them vulnerable to malicious users and makes keyword
search a non-trivial task.

So several questions arise: What are the parallels or differ-
ences between these and further approaches that make them
better or less well suited for one or the other application, and
what are the trade-offs? Which systems have already been
developed? And are there any fundamentally new approaches
yet to be discovered and developed that may achieve signifi-
cant performance leaps? These and further issues will be
addressed in this paper.

While structured distributed hash tables like Chord are
usually applied to combined lookup and routing, and unstruc-
tured Gnutella-like networks to search for keywords, it turned
out to be important to separate the functionality certain P2P
search middleware provides from the structural approach
chosen. Section 2 identifies the functional options like name
routing or semantic routing.

It is then shown that the number of different structural
approaches is limited and the same for each functional
option. A design space is defined with the goal to be complete
for current and future systems (Section 3), based upon a clas-
sification into mutually exclusive and collectively exhaustive
categories.

The framework is tested in Section 4 by mapping more
than 30 existing approaches onto the two-dimensional design
space and classification. At the same time, this section serves

Network Layer / End-to-End Connectivity

Peer-to-Peer Application

...

P2P Search Middleware (MW)

Overlay Network

Other MW Other MW

Overlay

Figure 1: P2P Networks: Systems View and Layering
- 1 -

- 2 -
as a survey of P2P and distributed search systems. Finally, it
allows the identification of blind spots in the current research
landscape that can be filled by a novel approach for P2P
search that is yet to be developed.

An evaluation of the design options and their trade-offs is
given in Section 5, before Section 6 concludes.

2 Functionality of P2P Search Middleware

For a complete picture of functional options, search has
been disaggregated into several steps. Figure 2 (top) shows
the process from keywords over names and addresses to the
path to target node hosting the desired resources.

Usually, a user wants to specify what he is looking for in
terms of keywords. In the simplest case, keywords are just
one or more terms appearing in the desired content or
describing the desired resource. More sophisticated
approaches apply content/resource meta information based
on attribute-value pairs, e.g., the resource description frame-
work (RDF). Keyword search describes the functionality of
mapping the resource meta information onto one, or, in the
case of multiple matching resources, several unique names or
identifiers in the network. Examples of such names are the
Uniform Resource Locator, URL, or file names in a Unix file
system. Lookup maps unique names onto addresses in the
network. Addresses specify the network location of the node
hosting the resource with a given name, e.g., the IP address
of the host. Finally, routing is the process of finding a path
and moving queries to the target node.

Three short-cut mechanisms can help optimize search.
Name routing combines the (distributed) lookup of the target
node address with path identification and query forwarding
to that node. Keyword lookup returns one or more addresses
of nodes hosting resources with given keyword descriptions.
Napster is the most prominent example. Finally, keyword
routing directly routes towards a node hosting specified
resources. Keyword routing is sometimes also called seman-
tic routing or content routing.

For P2P, the process can be simplified as shown in Figure
2 (bottom). Since P2P systems apply application-level over-
lay networks, routing becomes a trivial task: knowing the tar-
get node address, the requestor simply creates a new virtual
link to that address. Only few circumstances (like the ano-

nymity requirement in Freenet) lead to a more difficult over-
lay routing approach, which is, however, an issue separate
from search.

3 Structural Design Space and Classification

With the search process defined and disaggregated, it
becomes obvious that searching requires a series of map-
pings, from the keyword space to the name space to the
address space to the space of paths to nodes. The structural
options in a distributed environment are the same for each
mapping, and a classification is given in Figure 3.

A mapping can only be defined through a computation or
a table. A (pre-defined) computation is difficult to achieve
but some attempts have been made, usually involving hash-
ing. More widely adopted are tables with entries for the
desired search items, e.g., a node address for each valid
name. Mapping then comes down to finding the desired table
entry and looking up the associated value. In a distributed
environment, a table can either reside on a central entity like
a search engine server, or be completely replicated on each
node, or be distributed among the nodes.

Distributed tables are probably most challenging in that
they require for each mapping to collaboratively find and
contact the node that has the desired information or table
entry. Two important aspects distinguish distributed table
approaches: the structure of the table, i.e. the distribution of
table entries to nodes, and the physical or overlay topology of
the network. The distribution of table entries can either hap-
pen at random or according to a target table structure; the
same applies for the distribution of links and, hence, the
topology. Whether the table structure and topology are
designed and aligned, or both random, or at least one of them
designed but not aligned with the other, has substantial impli-
cations on search.

In a random table structure and random topology, it is nat-
ural that each node at least carries information about itself,
i.e. its address, the names of its resources and content, and
corresponding keyword descriptions. In addition to informa-
tion on their own tables, nodes may have knowledge on the
table entries of their neighbors, i.e. the nodes they directly
know about and may contact for search, in an aggregated or
non-aggregated form. The knowledge on neighboring table
entries will in some cases be restricted to the direct neigh-
bors, but can also involve recursion: An arbitrary node A not
only learns about the table entries of its neighbors Bi, but
also through Bi about Bi’s neighbors Cij, Cij’s neighbors Dijk,
and so on. This way, nodes eventually know about most or
even all keywords, names, or addresses in the direction of
each neighbor in a usually aggregated way.

Rather than keeping explicit knowledge on neighboring
table entries, nodes can exploit implicit knowledge when the
table distribution and topology follow an aligned structure
that every node knows. The most common approach is cer-
tainly the classical hierarchy. A root node informs about
table areas represented by a number of second-level nodes.
The second-level nodes, in turn, delegate to third-level nodes
for sub-areas within their own area, and so on, until a request
finally reaches the leaf node responsible for the desired entry.
Particularly in the quest for scalable peer-to-peer search

Keywords Name Node
Address

Path To
Target
Node

Keyword
Search Lookup Routing

Name RoutingKeyword Lookup

Keyword Routing

Figure 2: Search in Distributed (top) and P2P (bottom)
Systems

Keywords Name
Node Address/

Path to
Target Node

Keyword
Search

Lookup/
Name Routing

Keyword Lookup/Routing

- 3 -
algorithms, “symmetric hierarchies” have been created by
adding redundancy. In symmetric redundant hierarchies,
every node can act as the root or be on any other level of the
hierarchy. This can be achieved by replicating the root infor-
mation on table areas on each node as well as the second-
level information on sub-areas etc. Contemplate Figure 4 for
more explanation. Let each position in the hierarchy be

denoted by , where n is the number of levels and

i1,...,im is the path of descendents below the root that leads to
this position. The dark grey node of concern in the figure is
then on position P1,3. All nodes are associated with a unique
position at the lowest level of the hierarchy and with all cor-
responding positions on the path up to the root. Hence, a
node on position maintains links to a complete set of

nodes on positions , ,..., , ,

, where b is the number of positions on each
level (here assumed fix for simplification). In the figure, the
dark grey node keeps replicas of the table information of the
light grey positions and maintains links to a complete set of
descendents. Note that nodes acting as a root will usually
point to different neighbors for the second level table areas
(and so on for all remaining levels) as there are multiple dif-
ferent options due to the replication.

Non-hierarchical structures are also possible and avail-
able. In an ordered space, the table is split into consecutive
areas. Each of the areas is represented on one node. The
nodes, in turn, are ordered in the same way, i.e. neighboring

table areas reside on neighboring nodes. Examples of such
spaces are rings or Euclidean spaces, but other forms are pos-
sible.

Unaligned table structures and topologies occur when
either the table is distributed according to a clear structure
but the topology is random, or the topology is designed but
the table structure random, or both table and topology are
structured but in different ways. While the first case may be
helpful to allow aggregation of table area information, the
second case can be advantageous for performance improve-
ments compared to a completely random approach. It
appears difficult to gain from the third case.

Designs based on any kind of structured table regardless of
the topology are sometimes referred to as distributed hash
tables.

4 Two-Dimensional Design Space and
Survey of P2P Search

This section presents a framework for design options in
distributed or P2P search middleware and gives an overview
of existing systems (cf. Table 1). By briefly discussing key
requirements, advantages, and drawbacks, it explains the
rationale for choosing a specific design. Furthermore, blind
spots in the design space will be identified where further
research may lead to entirely new systems with significantly
improved performance. An extended discussion including
non-P2P systems can be found in [8].

4.1 Computational Approaches

Computational mapping is very efficient in that it involves
neither large tables to reside in memory nor bandwidth-con-
suming query messages to be sent. However, it is difficult to
achieve as it requires that all possible outcomes of the com-
putation be allowed in the target range, i.e. name space,
address space, or space of routes. Constantly changing target

Figure 3: Design Space for Mapping Relations in Distributed Systems

Mapping
Relation

Computation

Table Complete On
Each Node

Central

Distributed

Random Table
Structure and

Random Topology

Aligned Table
Structure and

Topology

No
Neighborhood

Information

Neighborhood
Information

Without
Recursion

With
Recursion

Hierarchical

Non-Hierarchical
Ordered Space

Non-Symmetric
Classical
Hierarchy

Symmetric
Redundant
Hierarchy

Unaligned
Table Structure
and Topology

Table
Structured

Topology
Structured

Figure 4: Symmetric Redundant Hierarchy

2 b-10 ...1

root

2 b-10 ...1 3
Node Position P1,3

Level 2

Level 1

Pi1 ...,im n<,

Pi1 ...,in,

Pi1 ... in 1– j, , , Pi1 ... in 2– j, , , Pi1 j, Pj

j 0 ...,b-1,=

- 4 -
spaces or value ranges, due to the addition or removal of
nodes and node addresses, or resources with their corre-
sponding names, limit the applicability of computational
approaches. Some have been made, however, usually involv-
ing hashing, and circumventing the problem by simply defin-
ing name or address spaces such as to cover all possible com-
putation outcomes. This is impossible, however, for routing
in dynamic environments, as the paths to nodes have to exist
and cannot simply be defined.

INS/Twine [9] builds attribute-value trees from complex
resource descriptions and disaggregates them into strands of
variable length. Hashing is applied to map the strands onto
128-bit names. Chord’s name routing algorithm completes
the search.

4.2 Centralized Tables

Central tables are very bandwidth-efficient and incur little
overhead. However, they require that a central entity have
trust, reliability, and authoritative information access neces-
sary to own the central table. Furthermore, a possible outage
of a central server represents a considerable risk for the
entire network.

Web search engines like Google apply inverse indices to
provide URL names based on keywords. Many load balanc-
ing hubs route towards a specific server in a server farm
based on the URL (name) of the request. Napster operates

central servers to identify addresses of peers where content
files with a file name containing given keywords are stored.

4.3 Completely Replicated Tables

Key advantages of complete replication of tables on each
node are the increased autonomy and fault tolerance in the
system when compared to central tables while keeping the
simplicity and bandwidth-efficiency for requests. However,
replication and synchronization issues as well as high mem-
ory needs restrict the approach to small tables and networks.

Collaboration tools like Groove synchronize keyword,
name, and address information as well as actual objects or
object updates on all nodes. Subsequently, all information
necessary for, e.g., keyword search, is available on all nodes,
even though the system is based less on a reactive search but
more on proactive synchronization. As a predecessor to the
Domain Name System (DNS), the Network Information
Center (NIC) distributed a file, hosts.txt, to all internet hosts
for translation of domain names into IP addresses. For email
encryption, PGP (pretty good privacy) connects a few thou-
sand servers in a P2P fashion that store the public keys of
PGP users. The servers synchronize via email so that every
one of them has full knowledge of all keys.

Table 1: Survey of Distributed and P2P Search in the Design Space

Design Keyword Search Lookup/Name Routing Keyword Lookup/Routing
Computational INS/Twinea n/a n/a

Ta
bl

e

Central (Search engines,
web directories)b

(Load balancing hub)b Napster

Complete on Each Node Groovea PGP key lookup, (NIC’s Hosts.txt)b n/a

D
is

tr
ib

ut
ed

 T
ab

le

Al
ig

ne
d

Ta
bl

e
St

ru
ct

ur
e

an
d

To
po

lo
gy

H
ie

ra
r-

ch
ic

al

Classical n/a (DNS)b TerraDir, Mutant Query Plans

Symmetric
Redundant

n/a Pastry, Tapestry, AGILE,
Kademlia/Overnet

SHARK

Non-Hierarchical
Ordered Space

n/a CAN, Chord Squid

U
na

lig
ne

d
Ta

bl
e

St
ru

ct
ur

e
an

d
To

po
lo

gy

Table
Structured

n/a (TRIAD/NBRP)b n/a

Table
Unstruct.,
Topology
Structured

n/a HyperCuPa; Supernode networks
like FastTrack (Morpheus, KaZaA,
Grokster), Gnutella (Bear-Share
Defender, Clip2 Reflector,
LimeWirec), eDonkey

LimeWirec, SIL

Ra
nd

om
 T

ab
le

St
ru

ct
ur

e
an

d
Ra

nd
om

 T
op

ol
og

y No Neighborhood
Information

n/a Gnutella, Expanding Ring, Random
Walk, Associative Overlays

Random Walk, Expanding Ring,
LimeWirec, Interest-based shortcuts

N
ei

gh
bo

rh
oo

d

In
fo

rm
at

io
n Without

Recursion
(Manual http-
Browsing)b

Freenet Neurogrid

With
Recursion

n/a Variants of Bloom filters Bloom filters, e.g. LimeWirec, PlanetP

Hybrid Systems n/a Yappers, Brocade n/a

a. Only partial fit into category, see text for details
b. Not deployed for P2P
c. LimeWire proposes multiple add-ons to Gnutella and is subsequently listed multiple times in the table.

- 5 -
4.4 Distributed Structured Tables with
Aligned Topologies

Classical hierarchies are very efficient for searching and,
in contrast to central tables, allow for delegation of responsi-
bility. However, they require an equally hierarchical topol-
ogy and source domain, i.e. keyword space, name space, or
address space, in order to work efficiently.

DNS applies hierarchically organized domain names and
an equivalent hierarchy of domain name servers to yield an
IP address when asked about a domain name. TerraDir [10]
organizes all content in a hierarchical keyword structure. For
each content item or keyword, a virtual node is created,
enabling keyword routing towards that node along the hierar-
chy. In [11], a multi-dimensional categorization hierarchy is
managed by category servers and queries are processed by a
hierarchy of meta index servers, index servers, and base
servers. The multi-dimensionality enables searches along
different criteria, like region, price, type of resource. Com-
plex requests are parsed into ‘mutant query plans’ to allow
for successive resolution of conjunct or adjunct queries or
criteria within a request.

Symmetric redundant hierarchies combine the advantages
of a classical hierarchy with the symmetry and fault toler-
ance requirements of a peer-to-peer system, at the cost of
additional redundancy in the system and complex node and
resource insertion and removal.

In Pastry [6] and Tapestry [5], content names and IP
addresses of nodes are hashed onto the same numerical iden-
tifier (ID) space; this allows name routing when making that
node responsible for holding a resource or a link to it that is
closest to the resource in the ID space. The hierarchy is cre-
ated through a digit representation of the ID to a base value
and an association of each digit with one hierarchy level,
starting from the last (Tapestry) or the first digit (Pastry),
respectively. Kademlia [12], commercially deployed in
Overnet, follows the same basic approach but uses a bit-
(rather than digit-) representation of IDs to enable prefix
matching via XORing bit strings. AGILE (Adaptive, Group-
of-Interest-based Lookup Engine, [7]) follows a similar
approach as Tapestry but introduces an additional three-level
hierarchy for the resource description. Even though moti-
vated through performance improvements (pruning), this is
already a step towards symmetric redundant hierarchy-based
keyword routing. This novel approach called SHARK has
been found by identifying a blind spot in the design space
and is currently being developed by the authors [13]. Here,
the symmetric hierarchy concept is not applied to hash keys
but to multidimensional keyword ontologies such as to
accommodate scalable keyword routing along multiple
adjunct or conjunct criteria, and it will be combined with a
random structure further down the hierarchy to alleviate
table and topology maintenance.

Also popular for name routing in peer-to-peer systems is
the non-hierarchical ordered space approach. The prerequi-
site here is that source domain, i.e. keywords, names, or
addresses, and nodes can be arranged in the same totally
ordered, non-hierarchical space.

Chord [3] hashes resource names and node IP addresses to
a 128-bit ID. The IDs are arranged in a circle with the prede-

cessor node of a resource ID being responsible for providing
the resource or a link to it. Fingers are used as short-cuts to
prevent the name routing mechanism from moving around
the circle in unit steps. In CAN (Content Addressable Net-
work, [4]), hashing is similarly applied to map resource
names onto an ID in a d-dimensional torus. Nodes distribute
responsibility for the ID space among themselves and main-
tain virtual links to all direct neighbors in the torus. Queries
for a name, i.e. ID, can then at each node easily be routed
into the best direction. Squid [14] assumes a d-dimensional
space of all allowed keywords, lexicographically ordered in
each dimension. A Hilbert space-filling-curve is used to
reduce the dimensionality to one while preserving locality of
ranges. A variant of Chord is constructed for keyword rout-
ing in the remaining dimension.

4.5 Unaligned Distributed Table Structures
and Topologies

Search based on unaligned table structures and topologies
is most common where a structuring of the table appears pro-
hibitive yet a structured topology improves system perfor-
mance. This particularly applies to widely-spread peer-to-
peer systems, where free-riding and non-trustworthiness of
some peers inhibit distributing responsibility for some table
entries beyond the corresponding resources’ owner.

HyperCuP builds a hypercube topology of nodes to sup-
port efficient flooding [15]. An extension arranging
resources in the same hypercube space as the nodes which is
also proposed by the authors would move it to ordered-space
keyword routing. Hierarchies with “supernodes” or “ultran-
odes” [16] are introduced into many peer-to-peer name rout-
ing systems to improve scalability, like in FastTrack (Mor-
pheus, Kazaa, Grokster) or Gnutella applications (LimeWire,
BearShare Defender, Clip2 Reflector) [17]. In these systems,
the supernodes replicate address and name information for
all subordinate nodes and act as gateways or proxies for
name requests between the subordinate nodes and the
remaining network. However, as only a hierarchical overlay
topology is applied, but not an equivalently hierarchical
address or name space, supernodes still have to flood queries
among them. eDonkey also applies supernode-like servers
which are, however, not connected to one another. It is the
clients’ task to successively post requests to all servers they
know. Limewire also proposes rich XML-based keyword
routing on a supernode organization. A general framework
for designing topologies for keyword routing without struc-
turing the distributed table, SIL (search/index links) is pre-
sented in [18] and leads to the proposition of parallel clusters
rather than supernodes.

TRIAD/NBRP (Translating Relaying Internet Architec-
ture integrating Active Directories/Name-Based Routing
Protocol, [19]), in contrast, builds on a hierarchical name
space like DNS in order to aggregate content or name infor-
mation, and a natural hierarchy of servers responsible for
certain names. However, the topology between routers can be
random. Routers simply advertise reachability of certain
name suffixes to allow for efficient name routing.

- 6 -
4.6 Random Distributed Tables and
Random Topologies

Even though random table structures for mapping rela-
tionships in search appear less sophisticated than aligned
structures and do not allow to exploit implicit structural
knowledge, there are a couple of advantages to this
approach. The maintenance burden for creating and keeping
an explicit table structure can be too high, particularly in
fast-changing environments like some P2P or, even more so,
mobile ad-hoc networks. This also leads to issues regarding
fault-tolerance: if the structure is not correct in algorithms
that rely on it, queries may not be successful. Finally, struc-
tured approaches require a high degree of collaboration and
trust. Unless ownership for certain resources referred to in
table entries coincides with the assigned responsibility for
these table entries, resource owners and search requestors
have to rely on third parties to provide correct information.
Even though this coincidence applies for DNS, in many
cases, like Pastry or Tapestry, this is not the case.

The most simple form of a randomly distributed table lets
each node only maintain a table of keywords, names, and
addresses (if several on a node) of its own resources without
neighborhood information. This approach is extremely sim-
ple and helpful in environments changing so fast that knowl-
edge about neighbors becomes stale before it is used. How-
ever, for all mappings, it requires to either more or less
arbitrarily choose neighbors to send requests to, or, more
commonly, flood the entire network.

The approach is used in Gnutella name routing and its
extension to keyword routing proposed within LimeWire. In
expanding ring searches, the requestor is contacted before
each additional request forwarding to check whether the
desired object has already been found such as to allow early
termination of the query flooding. Multiple random walks
with termination checking can drastically reduce the number
of messages due to the finer granularity of node visits and
reduced duplication of messages, and, hence, improve band-
width scalability [20]. The improvements, however, require
sufficient replication of objects and come at the cost of
increased latency. Interest-based shortcuts [21] can be cre-
ated in arbitrary topologies based on past successful
responses to exploit interest locality and support semantic
clustering. Similarly, guide rules are proposed in [22] to cre-
ate associative overlays and limit flooding to peers who have
at least one item in common with the requestor.

Direct neighborhood information on each node can
improve query forwarding decisions within a distributed
table. However, unless flooding is used, the approach
remains indeterministic as to whether a result can be found in
the direction of a neighbor.

Hyperlinks in http provide users with names, i.e. URLs, of
resources on neighboring nodes; they can be used for manual
keyword search or browsing. In Freenet [23], name routing is
based on hashes of file names or content information. Each
node forwards a query to the neighbor storing content with a
hash ID numerically closest to the request. The approach
converges due to Freenet’s aggressive caching strategy. Sim-
ilarly, in Neurogrid [24], the same approach is used for key-
word meta-data rather than hash IDs.

Recursive neighborhood information, usually in a very
aggregated form, makes a random table structure search
more deterministic while avoiding flooding. However, the
synchronization overhead incurred can be substantial. Spe-
cific attention is due in networks containing loops in order to
avoid a count-to-infinity problem.

For name and keyword routing in peer-to-peer networks,
various variants of Bloom filters have been proposed to
aggregate and compress information on resources in the
direction of each neighbor. Put simple, one bit is set in a
word for each name occurring in a certain direction. Rhea
and Kubiatowitcz suggest attenuated Bloom filters storing
name information up to d-levels of depth with weights
decreasing with distance [25]. For keyword routing, Prinkey
proposes standard Bloom filters in tree topologies with
aggregated signatures of a branch, i.e. the Bloom filter bits
represent the hashed keywords present in a tree branch.
LimeWire modifies the proposal to cope with arbitrary topol-
ogies by adding the number of hops to a resource when prop-
agating the keyword routing information. Crespo and Garcia-
Molina [26] suggest to store and propagate the number of
matching documents for each keyword, either together with
the number of hops to a document, or weighting the number
of documents with a cost function depending on the distance.
In PlanetP [27], nodes build inverted indices of keywords for
the objects they hold locally and summarize them through
Bloom filters. Gossiping is used to propagate this informa-
tion and develop knowledge of the surrounding network.
PlanetP resolves queries by ranking the relevance of neigh-
bors according to the angle between a weighted vector space
representation of the query and the Bloom filter profiles. The
system can scale to a vast number of documents but only a
few thousand participating nodes.

4.7 Hybrid Approaches

Apart from the approaches presented above, it is, of
course, possible to combine different approaches within one
hybrid system to try and reap the benefits from multiple sys-
tems.

In Brocade [28], all (potentially unstable or high-latency)
peers within a neighborhood connect to one central stable
high-bandwidth landmark, to which they transfer their indi-
ces and post requests. The landmarks in turn are then well
suited to form a Tapestry-based distributed hash table for
requests beyond a neighborhood.

Yappers [29] forms a rough symmetric redundant hierar-
chy with only one level of b buckets, while it applies a ran-
dom topology and table structure beyond the first level, i.e.,
within a bucket. The symmetric redundant hierarchy itself is
not explicitly managed as usual but obtained by choosing a
large enough immediate random neighborhood for publish-
ing and query initiation so that nodes within all first-level
buckets are present with high probability, and by assigning
secondary buckets to nodes if necessary. An extended neigh-
borhood is maintained so that flooding within a bucket can
extend beyond the immediate random neighborhood.

- 7 -
5 Evaluation of the Design Options

The best design alternative to choose for specific middle-
ware depends on the target application and its requirements.
This section gives a generic evaluation of the design options
along a set of requirements.

5.1 Functional Design Space

The functional design space can be condensed into two
major choices: (a) build a disaggregated search involving the
separate steps keyword search and lookup/name routing or
(b) take an integrated keyword routing approach. This is
slightly more complex in the non-P2P world, please refer to
[8] for a discussion.

Integrated Approaches
Integrated approaches avoid a duplication of highly simi-

lar mapping functionalities and are thus more efficient. Par-
ticularly in widely distributed tables (rather than computa-
tional, centralized, or strictly hierarchical approaches), each
mapping requires the collaboration of many nodes and incurs
high bandwidth demands and latency.

Integrated keyword routing also allows keyword-based re-
routing and, hence, makes the system transparent to name
changes, e.g., due to addition or removal of content for a
given keyword. This can also alleviate real-time search.

Disaggregated Approaches
A decoupling of keyword search and lookup/name routing

shows the set of following advantages:
• Reusability: Each mapping can be used separately to sup-

port a wider range of services; e.g., name routing can not
only be used for keyword search but also for data
retrieval in a distributed backup service.

• Innovation: Innovation in one area does not affect
another area; e.g., improvements to search or string
matching algorithms are independent of any changes to
the name routing software.

• Horizontal and Vertical Variety: Different choices for
keyword search and lookup/name routing smoothly inter-
operate, both horizontally at each step, e.g., centralized
Google-type keyword search in parallel to decentralized
P2P search like Infrasearch, as well as vertically across
the two steps, e.g., central search and hierarchical lookup/
name routing.

Overall, integrated keyword routing should usually be the
method of choice for P2P systems, particularly as the follow-
ing advantages of disaggregated approaches in non-P2P sce-
narios do not apply:
• Ownership Separation: Each mapping can be offered by

a separate entity, allowing more competition leading to
higher efficiency and innovation, potentially also ham-
pering censorship. In true P2P, however, every peer par-
ticipates in all mappings anyway.

• Delegation: Almost a consequence of ownership separa-
tion and vertical variety, but extremely important, is the
possibility to logically separate keyword space, name
space, and address space, e.g., independent allocation of

and even delegation of responsibility for IP address space
and domain names. P2P systems, however, do not (or not
yet) apply any (hierarchical) structures like domains.

• Simplicity: Devices for each step can be simpler and more
specialized than for integrated systems, e.g., ultra-fast
hardware-based IP routers. Similarly, software engineer-
ing is alleviated, also increasing the maintainability of
the system. The devices in P2P systems are, however,
usually general purpose computers and not specialized.

5.2 Structural Design Space

Table 2 presents an overview of system design require-
ments and the degree to which they are met by various struc-
tural middleware design options. Note that many system
developers have added more details to their design-specific
features that address shortcomings or fortify strengths of the
basic approach; furthermore, unaligned structures and topol-
ogies and hybrid approaches are not considered as they can
be too diverse. Table 2 can thus only be regarded as a rough
guideline. Major advantages and prerequisites of each sys-
tem have already been highlighted in Section 4. An explana-
tion and definition of these requirements is given below.
• Manageability and Control: How hard is it to control and

manage the system, i.e. how complex is it, how much
maintenance does it require, and what level of control can
be exercised?

• Coherence: Does the system deterministically find
authoritative information, does it behave in an indeter-
ministic way, or is it prone to retrieve stale replicas?

• Extensibility: How easy or difficult is it to add resources
or nodes to the system?

• Fault Tolerance and Adaptability: How severely is the
system affected by a fault and how easily and quickly can
it cope with system changes like node joins or leaves?

• Scalability: To what limits can the system grow at reason-
able performance, particularly with regards to bandwidth
and latency, but also memory and processing load on
average nodes as well as hot spots?

• Publish Autonomy and Security: Is information mostly
kept at the resource owner, can even responsibility for the
corresponding name or address space be delegated?

• Search Autonomy and Security: Does searching require
the collaboration of many, particularly untrusted parties?

• Infrastructure Independence: How independent is the
system from shared infrastructure like central servers?
P2P networks usually try to avoid central infrastructure.

• Special Prerequisites: As already discussed in Section 3,
some designs have special requirements. A computa-
tional approach requires that all computation results lead
to valid values in the target range of the mapping, i.e.
name space, address space (or space of paths in non-
P2P). Hierarchical approaches require the source
domains of the mapping, i.e. keyword space, name space
(or address space in non-P2P), to be hierarchical. Finally,
a non-hierarchical ordered-space approach requires an
arbitrary order other than a hierarchy to be imposed on
the source domain, usually a linear order.

- 8 -
6 Summary, Conclusions, and Future Work

A design space that is believed to be exhaustive has been
developed to classify current and facilitate future research in
P2P search middleware. It outlines the application-relevant
differences between the possible approaches based on a
break-down of options along two basic dimensions of dis-
tributed search design: the functional and the structural
dimension. A classification and description of example sys-
tems validated the framework and serves as a survey of P2P
search systems.

The trade-offs made and effects of choosing one design
over another should be evaluated with respect to the most
relevant requirements and criteria of an application in both
dimensions, functional and structural. A set of requirements
and a high-level assessment of design options along these
requirements has been presented and forms the basis for this
evaluation.

Based on the design space, a novel search design for peer-
to-peer systems, keyword routing based on symmetric hierar-
chies, has been identified. The corresponding system,
SHARK, has been outlined in this document and may lead to
significant performance improvements for some applica-
tions.

Going forward, further discussions will clarify additional
implications of the design space and enable an assessment of
general trends in P2P search middleware research from a
broad perspective.

Acknowledgements
This work has been performed partially in the framework of the EU IST

project MMAPPS “Market Management of Peer-to-Peer Services” (IST-
2001-34201), where the ETH Zürich has been funded by the Swiss
Bundesministerium für Bildung und Wissenschaft BBW, Bern under Grant
No. 00.0275.

References
[1] S. Saroiu, P. Gummadi, S. Gribble, “Exploring the Design

Space of Distributed and Peer-to-Peer Systems: Comparing
the Web, TRIAD, and Chord/CFS,” 1st Int’l Workshop on
Peer-to-Peer Systems (IPTPS), Cambridge, MA, U.S.A., Mar.
2002.

[2] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, I. Stoica,
“Looking up data in P2P systems,” Comm. of the ACM, vol.
46, no. 2, Feb. 2003.

[3] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, I. Stoica,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications,” ACM SIGCOMM, San Diego, CA, U.S.A.,
Aug. 2001.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A
Scalable Content-Addressable Network,” ACM SIGCOMM,
San Diego, CA, U.S.A., Aug. 2001.

[5] B. Zhao, J. Kubiatowicz, A. Joseph, “Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing,” Techni-
cal Report UCB/CSB-01-1141, Computer Science Division,
U.C. Berkeley, CA, U.S.A., Apr. 2001.

[6] Druschel, Rowstron, “Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems,”
IFIP/ACM Int’l Conf. on Distributed Systems Platforms (Mid-
dleware), Heidelberg, Germany, Nov. 2001.

[7] J. Mischke, B. Stiller, “Peer-to-Peer Overlay Network Man-
agement Through AGILE,” IFIP/IEEE Int’l Symposium on

Table 2: Evaluation of Structural Design Options

Design M
an

ag
ea

bi
lit

y
an

d
C

on
tr

ol

C
oh

er
en

ce

E
xt

en
si

bi
lit

y

Fa
ul

t T
ol

er
an

ce
&

 A
da

pt
ab

ili
ty

Sc
al

ab
ili

ty

Pu
bl

is
h

A
ut

on
om

y
an

d
Se

cu
ri

ty

Se
ar

ch
A

ut
on

om
y

an
d

Se
cu

ri
ty

In
fr

as
tr

uc
tu

re
ne

ed
s

Sp
ec

ia
l

Pr
er

eq
ui

si
te

sa

Computational high easy none none high full full none yes

Ta
bl

e

Central high easy low low highb low/highc low/highc server no

Complete on Each Node low diff. mod. high v. low full full none no

D
is

tr
ib

ut
ed

 T
ab

le
Al

ig
ne

d
T.

S
&

To
po

lo
gy

.

H
ie

ra
r-

ch
ic

al

Classical mod./
highd

mod./
easyd

mod./
highd

low highb low/highcd low/highc server
hierarch.

yes

Symmetric low/
mod.d

diff./
mod.d

mod./
highd

mode-
rate

high low/highd low none yes

Non-Hierarchical
Ordered Space

low/
mod.d

diff./
mod.d

mod./
highd

mode-
rate

high low/highd low none yes

Ra
nd

om
 T

.S
. &

Ra
nd

om
 T

op
ol

og
y

No Neighborhood
Information

low easy very
high

very
high

very
low

full low none no

N
ei

gh
bo

r.
In

fo
.

Without
Recursion

low mode-
rate

high high low high low none no

With
Recursion

low mode-
rate

high mode-
rate

mode-
ratee

moderate moderate none no

a. See text for explanation
b. If additional servers added
c. If central entities regarded as trusted and collaborative
d. Usually table structure and topology are different from ownership structure. Second (better) value applies if they are aligned (like in DNS)
e. Depending on level of information aggregation and rate of information updates

- 9 -
Integrated Network Management (IM), Colorado Springs, CO,
U.S.A., Mar. 2003.

[8] J. Mischke, B. Stiller, “Design Space for Distributed Search
(DS)2 - A System Designers' Guide,” ETH-Zurich, Switzer-
land, TIK Report Nr. 151, Sep. 2002.

[9] M. Balazinska, H. Balakrishnan, D. Karger, “INS/Twine: A
Scalable Peer-to-Peer Architecture for Intentional Resource
Discovery,” Pervasive 2002 - Int’l Conf. on Pervasive Com-
puting, Zurich, Switzerland, Aug. 2002.

[10] B. Silaghi, S. Bhattacharjee, P. Keleher, “Routing in the Terra-
Dir Directory Service,” SPIE ITCOM'02, Boston, MA, U.S.A.,
Jul. 2002.

[11] V. Papadimos, D. Maier , K. Tufte, “Distributed Query Pro-
cessing and Catalogs for Peer-to-Peer Systems,” Conf. on
Innovative Data Systems Research (CIDR), Asilomar, CA,
U.S.A., Jan. 2003.

[12] P. Maymounkov, D. Mazieres, “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric,” 1st Int’l
Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA,
U.S.A., Mar. 2002.

[13] J. Mischke, B. Stiller, “An Efficient Protocol Specification,
Implementation, and Evaluation for a Highly Scalable Peer-to-
Peer Search Infrastructure,” To appear, 9th IEEE/IFIP Net-
work Operations and Management Symposium (NOMS),
Seoul, Korea, Apr. 2004.

[14] C. Schmidt, M. Parashar, “Flexible Information Discovery in
Decentralized Distributed Systems,” 12th Int’l Symposium on
High-Performance Distributed Computing (HPDC), Seattle,
WA, U.S.A., Jun. 2003.

[15] M. Schlosser, M. Sintek, S. Decker, W. Nejdl, “HyperCuP -
Hypercubes, Ontologies and Efficient Search on P2P Net-
works,” Int’l Workshop on Agents and Peer-to-Peer Comput-
ing (AP2PC), Bologna, Italy, Jun. 2002.

[16] B. Yang, H. Garcia-Molina, “Designing a Super-peer Net-
work,”19th Int’l Conf. on Data Engineering (ICDE), Banga-
lore, India, Mar. 2003.

[17] K. Truelove, A. Chasin, “Morpheus Out of the Underworld,”
Jul. 2002, http://www.openp2p.com/pub/a/p2p/2001/07/02/
morpheus.html (Aug. 29, 2002).

[18] B. Cooper, H. Garcia-Molina, “Studying search networks with
SIL,” 2nd Int’l Workshop on Peer-to-Peer Systems (IPTPS),
Berkeley, CA, U.S.A., Feb. 2003.

[19] M. Gritter, D. Cheriton, “An Architecture for Content Routing
Support in the Internet,” 3rd Usenix Symposium on Internet
Technologies and Systems (USITS), San Francisco, CA,
U.S.A., Mar. 2001.

[20] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, “Search and repli-
cation in Unstructured Peer-to-Peer Networks,” 16th ACM
Int’l Conf. on Supercomputing (ICS'02), New York, U.S.A.,
Jun. 2002.

[21] K. Sripanidkulchai, B. Maggs, H. Zhang: “Efficient Content
Location Using Interest-Based Locality in Peer-to-Peer Sys-
tems,” INFOCOM’03, San Francisco, U.S.A., Apr. 2003.

[22] E. Cohen, A. Fiat, H. Kaplan, “A case for associative Peer to
Peer Overlays,” HotNets-I, Princeton University, Princeton,
NJ, U.S.A., Oct. 2002.

[23] I. Clarke, S. Miller, T. Hong, O. Sandberg, B. Wiley, “Protect-
ing Free Expression Online with Freenet,” IEEE Internet Com-
puting, vol. 6, no. 1, Jan./Feb. 2002.

[24] S. Joseph, “NeuroGrid: Semantically Routing Queries in Peer-
to-Peer Networks,” Int’l Workshop on Peer-to-Peer Comput-
ing, Pisa, Italy, May 2002.

[25] S. Rhea, J. Kubiatowicz, “Probabilistic Location and Rout-
ing,” INFOCOM’02, New York, U.S.A., Jun. 2002.

[26] A. Crespo, H. Garcia-Molina, “Routing Indices For Peer-to-
Peer Systems,” Int’l Conf. on Distributed Computing Systems
(ICDCS), Vienna, Austria, Jul. 2002.

[27] F. Cuenca-Acuna, C. Peery, R. Martin, T. Nguyen, “PlanetP:
Using Gossiping to Build Content Addressable Peer-to-Peer
Information Sharing Communities,” 12th Int’l Symposium on
High-Performance Distributed Computing (HPDC), Seattle,
WA, U.S.A., Jun. 2003.

[28] B. Zhao, Y. Duan, L. Huang, A. Joseph, J. Kubiatowicz, “Bro-
cade: Landmark Routing on Overlay Networks,” 1st Int’l
Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA,
U.S.A., Mar. 2002.

[29] P. Ganesan, Q. Sun, H. Garcia-Molina, ”YAPPERS: A Peer-to-
Peer Lookup Service Over Arbitrary Topology,” INFO-
COM’03, San Francisco, U.S.A., Apr. 2003.

Jan Mischke [mischke@tik.ee.ethz.ch] is a PhD student
at ETH Zurich and a strategic consultant with McKin-
sey&Company. He studied Electrical and Electronic Engi-
neering in Aachen, RWTH, and London, Imperial College,
and received the "Diplom Ingenieur" (M.Sc.) from RWTH in
2000. He received numerous awards, including the Friedrich-
Wilhelm prize, the Philips prize, and the Springorum medal.
His main research interest are P2P and overlay networks.

Prof. Dr. Burkhard Stiller [stiller@tik.ee.ethz.ch,
stiller@informatik.unibw-muenchen.de] received his Ger-
man diploma degree in computer science and his doctoral
degree from the University of Karlsruhe, Germany in 1990
and 1994, respectively, where he has been a Research Assis-
tant at the Institute of Telematics, University of Karlsruhe.
He was on leave at the University of California, Irvine, and
the University of Cambridge, Computer Laboratory,
England. Currently, he is an Assistant Professor for Commu-
nication Systems at the ETH Zurich, Switzerland and a Full
Professor for computer science at the University of Federal
Armed Forces Munich, Germany in the Department of Com-
puter Science. His areas of interest include Internet commu-
nications, charging and accounting for packet-based services,
pricing schemes, QoS, mobility and AAA architectures, and
peer-to-peer systems. Burkhard Stiller is member of the edi-
torial board of the Kluwer's Netnomics Journal on economic
research and electronic networking, the ACM, and the Ger-
man Society for Computer Science GI. Besides being the PC
Co-chair of the IEEE/IFIP DSOM Workshop 1999, the
ICQT'01 Workshop, he was General Chair of the
QofIS/ICQT'02 and NGC/ICQT'03 Workshops. He will be
the General Chair for the LCN'04 conference in Tampa, Flor-
ida, and PC Co-chair of ICQT'04.

- 10 -
Network Layer / End-to-End Connectivity

Peer-to-Peer Application

...

P2P Search Middleware (MW)

Overlay Network

Other MW Other MW

Overlay

Figure 1: P2P Networks: Systems View and Layering

- 11 -
Keywords Name Node
Address

Path To
Target
Node

Keyword
Search Lookup Routing

Name RoutingKeyword Lookup

Keyword Routing

Figure 2: Search in Distributed (top) and P2P (bottom)
Systems

Keywords Name
Node Address/

Path to
Target Node

Keyword
Search

Lookup/
Name Routing

Keyword Lookup/Routing

- 12 -
Figure 3: Design Space for Mapping Relations in Distributed Systems

Mapping
Relation

Computation

Table Complete On
Each Node

Central

Distributed

Random Table
Structure and

Random Topology

Aligned Table
Structure and

Topology

No
Neighborhood

Information

Neighborhood
Information

Without
Recursion

With
Recursion

Hierarchical

Non-Hierarchical
Ordered Space

Non-Symmetric
Classical
Hierarchy

Symmetric
Redundant
Hierarchy

Unaligned
Table Structure
and Topology

Table
Structured

Topology
Structured

- 13 -
Figure 4: Symmetric Redundant Hierarchy

2 b-10 ...1

root

2 b-10 ...1 3
Node Position P1,3

Level 2

Level 1

- 14 -
Table 3: Survey of Distributed and P2P Search in the Design Space

Design Keyword Search Lookup/Name Routing Keyword Lookup/Routing
Computational INS/Twinea n/a n/a

Ta
bl

e

Central (Search engines,
web directories)b

(Load balancing hub)b Napster

Complete on Each Node Groovea PGP key lookup, (NIC’s Hosts.txt)b n/a

D
is

tr
ib

ut
ed

 T
ab

le

Al
ig

ne
d

Ta
bl

e
St

ru
ct

ur
e

an
d

To
po

lo
gy

H
ie

ra
r-

ch
ic

al

Classical n/a (DNS)b TerraDir, Mutant Query Plans

Symmetric
Redundant

n/a Pastry, Tapestry, AGILE,
Kademlia/Overnet

SHARK

Non-Hierarchical
Ordered Space

n/a CAN, Chord Squid

U
na

lig
ne

d
Ta

bl
e

St
ru

ct
ur

e
an

d
To

po
lo

gy

Table
Structured

n/a (TRIAD/NBRP)b n/a

Table
Unstruct.,
Topology
Structured

n/a HyperCuPa; Supernode networks
like FastTrack (Morpheus, KaZaA,
Grokster), Gnutella (Bear-Share
Defender, Clip2 Reflector,
LimeWirec), eDonkey

LimeWirec, SIL

Ra
nd

om
 T

ab
le

St
ru

ct
ur

e
an

d
Ra

nd
om

 T
op

ol
og

y No Neighborhood
Information

n/a Gnutella, Expanding Ring, Random
Walk, Associative Overlays

Random Walk, Expanding Ring,
LimeWirec, Interest-based shortcuts

N
ei

gh
bo

rh
oo

d

In
fo

rm
at

io
n Without

Recursion
(Manual http-
Browsing)b

Freenet Neurogrid

With
Recursion

n/a Variants of Bloom filters Bloom filters, e.g. LimeWirec, PlanetP

Hybrid Systems n/a Yappers, Brocade n/a

a. Only partial fit into category, see text for details
b. Not deployed for P2P
c. LimeWire proposes multiple add-ons to Gnutella and is subsequently listed multiple times in the table.

- 15 -
Table 4: Evaluation of Structural Design Options

Design M
an

ag
ea

bi
lit

y
an

d
C

on
tr

ol

C
oh

er
en

ce

E
xt

en
si

bi
lit

y

Fa
ul

t T
ol

er
an

ce
&

 A
da

pt
ab

ili
ty

Sc
al

ab
ili

ty

Pu
bl

is
h

A
ut

on
om

y
an

d
Se

cu
ri

ty

Se
ar

ch
A

ut
on

om
y

an
d

Se
cu

ri
ty

In
fr

as
tr

uc
tu

re
ne

ed
s

Sp
ec

ia
l

Pr
er

eq
ui

si
te

sa

Computational high easy none none high full full none yes

Ta
bl

e

Central high easy low low highb low/highc low/highc server no

Complete on Each Node low diff. mod. high v. low full full none no

D
is

tr
ib

ut
ed

 T
ab

le
Al

ig
ne

d
T.

S
&

To
po

lo
gy

.

H
ie

ra
r-

ch
ic

al

Classical mod./
highd

mod./
easyd

mod./
highd

low highb low/highcd low/highc server
hierarch.

yes

Symmetric low/
mod.d

diff./
mod.d

mod./
highd

mode-
rate

high low/highd low none yes

Non-Hierarchical
Ordered Space

low/
mod.d

diff./
mod.d

mod./
highd

mode-
rate

high low/highd low none yes

Ra
nd

om
 T

.S
. &

Ra
nd

om
 T

op
ol

og
y

No Neighborhood
Information

low easy very
high

very
high

very
low

full low none no

N
ei

gh
bo

r.
In

fo
.

Without
Recursion

low mode-
rate

high high low high low none no

With
Recursion

low mode-
rate

high mode-
rate

mode-
ratee

moderate moderate none no

a. See text for explanation
b. If additional servers added
c. If central entities regarded as trusted and collaborative
d. Usually table structure and topology are different from ownership structure. Second (better) value applies if they are aligned (like in DNS)
e. Depending on level of information aggregation and rate of information updates

	Jan Mischke1 and Burkhard Stiller2,1
	1 Computer Engineering and Networks Laboratory TIK, Swiss Federal Institute of Technology (ETH Zurich) Gloriastrasse 35, CH - 8092 Zürich, Switzerland 2 Information Systems Laboratory IIS, University of Federal Armed Forces Munich Werner-Heis...
	E-Mail: [mischke|stiller]@tik.ee.ethz.ch
	Abstract
	1 Introduction
	Figure 1: P2P Networks: Systems View and Layering
	Figure 2:

	2 Functionality of P2P Search Middleware
	Figure 2: Search in Distributed (top) and P2P (bottom) Systems
	Figure 3:

	3 Structural Design Space and Classification
	Figure 3: Design Space for Mapping Relations in Distributed Systems
	Figure 4:
	Figure 4: Symmetric Redundant Hierarchy
	Figure 5:
	Table 1: Survey of Distributed and P2P Search in the Design Space

	4 Two-Dimensional Design Space and Survey of P2P Search
	4.1 Computational Approaches
	4.2 Centralized Tables
	4.3 Completely Replicated Tables
	4.4 Distributed Structured Tables with Aligned Topologies
	4.5 Unaligned Distributed Table Structures and Topologies
	4.6 Random Distributed Tables and Random Topologies
	4.7 Hybrid Approaches

	5 Evaluation of the Design Options
	5.1 Functional Design Space
	5.2 Structural Design Space
	Table 2: Evaluation of Structural Design Options

	6 Summary, Conclusions, and Future Work
	[1] S. Saroiu, P. Gummadi, S. Gribble, “Exploring the Design Space of Distributed and Peer-to-Peer Systems: Comparing the Web, TRIAD, and Chord/CFS,” 1st Int’l Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, U.S.A., Mar. 2002.
	[2] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, I. Stoica, “ Looking up data in P2P systems,” Comm. of the ACM, vol. 46, no. 2, Feb. 2003.
	[3] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, I. Stoica, “Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications,” ACM SIGCOMM, San Diego, CA, U.S.A., Aug. 2001.
	[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A Scalable Content-Addressable Network,” ACM SIGCOMM, San Diego, CA, U.S.A., Aug. 2001.
	[5] B. Zhao, J. Kubiatowicz, A. Joseph, “Tapestry: An infrastruc ture for fault-tolerant wide-area location and routing,” Techni cal Report UCB/CSB-01-1141, Computer Science Division, U.C. Berkeley, CA, U.S.A., Apr. 2001.
	[6] Druschel, Rowstron, “Pastry: Scalable, distributed object loca tion and routing for large-scale peer-to-peer systems,” IFIP/ACM Int’l Conf. on Distributed Systems Platforms (Mid dleware), Heidelberg, Germany, Nov. 2001.
	[7] J. Mischke, B. Stiller, “Peer-to-Peer Overlay Network Man agement Through AGILE,” IFIP/IEEE Int’l Symposium on Integrated Network Management (IM), Colorado Springs, CO, U.S.A., Mar. 2003.
	[8] J. Mischke, B. Stiller, “Design Space for Distributed Search (DS)2 - A System Designers' Guide,” ETH-Zurich, Switzer land, TIK Report Nr. 151, Sep. 2002.
	[9] M. Balazinska, H. Balakrishnan, D. Karger, “INS/Twine: A Scalable Peer-to-Peer Architecture for Intentional Resource Discovery,” Pervasive 2002 - Int’l Conf. on Pervasive Com puting, Zurich, Switzerland, Aug. 2002.
	[10] B. Silaghi, S. Bhattacharjee, P. Keleher, “Routing in the Terra Dir Directory Service,” SPIE ITCOM'02, Boston, MA, U.S.A., Jul. 2002.
	[11] V. Papadimos, D. Maier , K. Tufte, “Distributed Query Pro cessing and Catalogs for Peer-to-Peer Systems,” Conf. on Innovative Data Systems Research (CIDR), Asilomar, CA, U.S.A., Jan. 2003.
	[12] P. Maymounkov, D. Mazieres, “Kademlia: A Peer-to-peer Information System Based on the XOR Metric,” 1st Int’l Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, U.S.A., Mar. 2002.
	[13] J. Mischke, B. Stiller, “An Efficient Protocol Specification, Implementation, and Evaluation for a Highly Scalable Peer-to- Peer Search Infrastructure,” To appear, 9th IEEE/IFIP Net work Operations and Management Symposium (NOMS), Seoul,...
	[14] C. Schmidt, M. Parashar, “Flexible Information Discovery in Decentralized Distributed Systems,” 12th Int’l Symposium on High-Performance Distributed Computing (HPDC), Seattle, WA, U.S.A., Jun. 2003.
	[15] M. Schlosser, M. Sintek, S. Decker, W. Nejdl, “HyperCuP - Hypercubes, Ontologies and Efficient Search on P2P Net works,” Int’l Workshop on Agents and Peer-to-Peer Comput ing (AP2PC), Bologna, Italy, Jun. 2002.
	[16] B. Yang, H. Garcia-Molina, “Designing a Super-peer Net work,” 19th Int’l Conf. on Data Engineering (ICDE), Banga lore, India, Mar. 2003.
	[17] K. Truelove, A. Chasin, “Morpheus Out of the Underworld,” Jul. 2002, http://www.openp2p.com/pub/a/p2p/2001/07/02/ morpheus.html (Aug. 29, 2002).
	[18] B. Cooper, H. Garcia-Molina, “Studying search networks with SIL,” 2nd Int’l Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, U.S.A., Feb. 2003.
	[19] M. Gritter, D. Cheriton, “An Architecture for Content Routing Support in the Internet,” 3rd Usenix Symposium on Internet Technologies and Systems (USITS), San Francisco, CA, U.S.A., Mar. 2001.
	[20] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, “Search and repli cation in Unstructured Peer-to-Peer Networks,” 16th ACM Int’l Conf. on Supercomputing (ICS'02), New York, U.S.A., Jun. 2002.
	[21] K. Sripanidkulchai, B. Maggs, H. Zhang: “Efficient Content Location Using Interest-Based Locality in Peer-to-Peer Sys tems,” INFOCOM’03, San Francisco, U.S.A., Apr. 2003.
	[22] E. Cohen, A. Fiat, H. Kaplan, “A case for associative Peer to Peer Overlays,” HotNets-I, Princeton University, Princeton, NJ, U.S.A., Oct. 2002.
	[23] I. Clarke, S. Miller, T. Hong, O. Sandberg, B. Wiley, “Protect ing Free Expression Online with Freenet,” IEEE Internet Com puting, vol. 6, no. 1, Jan./Feb. 2002.
	[24] S. Joseph, “NeuroGrid: Semantically Routing Queries in Peer- to-Peer Networks,” Int’l Workshop on Peer-to-Peer Comput ing, Pisa, Italy, May 2002.
	[25] S. Rhea, J. Kubiatowicz, “Probabilistic Location and Rout ing,” INFOCOM’02, New York, U.S.A., Jun. 2002.
	[26] A. Crespo, H. Garcia-Molina, “Routing Indices For Peer-to- Peer Systems,” Int’l Conf. on Distributed Computing Systems (ICDCS), Vienna, Austria, Jul. 2002.
	[27] F. Cuenca-Acuna, C. Peery, R. Martin, T. Nguyen, “PlanetP: Using Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Communities,” 12th Int’l Symposium on High-Performance Distributed Computing (HPDC), Seattle, WA, U....
	[28] B. Zhao, Y. Duan, L. Huang, A. Joseph, J. Kubiatowicz, “Bro cade: Landmark Routing on Overlay Networks,” 1st Int’l Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, U.S.A., Mar. 2002.
	[29] P. Ganesan, Q. Sun, H. Garcia-Molina, ”YAPPERS: A Peer-to- Peer Lookup Service Over Arbitrary Topology,” INFO COM’03, San Francisco, U.S.A., Apr. 2003.
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Table 3: Survey of Distributed and P2P Search in the Design Space
	Table 4: Evaluation of Structural Design Options

