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Abstract—Artifact removal from physiological signals is an
essential component of the biosignal processing pipeline. The need
for powerful and robust methods for this process has become
particularly acute as healthcare technology deployment under-
goes transition from the current hospital-centric setting toward
a wearable and ubiquitous monitoring environment. Currently,
determining the relative efficacy and performance of the multiple
artifact removal techniques available on real world data can be
problematic, due to incomplete information on the uncorrupted
desired signal. The majority of techniques are presently evaluated
using simulated data, and therefore, the quality of the conclusions
is contingent on the fidelity of the model used. Consequently, in the
biomedical signal processing community, there is considerable fo-
cus on the generation and validation of appropriate signal models
for use in artifact suppression. Most approaches rely on mathemat-
ical models which capture suitable approximations to the signal
dynamics or underlying physiology and, therefore, introduce some
uncertainty to subsequent predictions of algorithm performance.
This paper describes a more empirical approach to the model-
ing of the desired signal that we demonstrate for functional brain
monitoring tasks which allows for the procurement of a “ground
truth” signal which is highly correlated to a true desired signal
that has been contaminated with artifacts. The availability of this
“ground truth,” together with the corrupted signal, can then aid
in determining the efficacy of selected artifact removal techniques.
A number of commonly implemented artifact removal techniques
were evaluated using the described methodology to validate the
proposed novel test platform.

Index Terms—Artifact removal, electroencephalography
(EEG), functional Near-Infrared Spectroscopy (fNIRS), recording
methodology.

I. INTRODUCTION

M
EASUREMENT of the numerous physiological signals

of the human brain has, for a long time, been a criti-

cal step in determining a subject’s well-being. Functional brain
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monitoring is an increasingly important aspect of patient mon-

itoring especially outside the clinical environment. These mea-

sures have utility in tracking the deterioration of mental function

in conditions such as Alzheimer’s disease and dementia as well

as for more acute event capture, for instance, with epilepsy. Elec-

troencephalography (EEG) and functional near-infrared spec-

troscopy (fNIRS) are two noninvasive and relatively portable

techniques commonly employed to record physiological signals

associated with brain function. These recordings can, however,

be highly susceptible to artifacts originating from the subject’s

motion, as well as other external noise sources.

EEG uses electrodes to record the voltage fluctuations at the

scalp due to changing electrical neuronal activity within the

brain. Although the amplitude of the electrical potential pro-

duced by a single neuron within the cortex is too small to be

detected noninvasively, EEG can detect the combination of an

ensemble of a large number of neurons. Hence, although EEG

has very good temporal resolution (in the order of milliseconds),

the spatial resolution is poor with respect to other recording

modalities.

fNIRS is an increasingly popular technique used to monitor

cerebral hemodynamic changes during brain activity. The

regional brain activation causes a change in both oxygenated-

haemoglobin (oxy-Hb) and deoxygenated-haemoglobin

(deoxy-Hb) concentration levels local to the active area. As

haemoglobin is the main chromophore in the near-infrared light

range (between 690 and 900 nm), fNIRS uses light at multiple

wavelengths in this range to penetrate the skull and assesses

the change in oxy-Hb and deoxy-Hb concentrations through

the change in light absorption [1]. As fNIRS uses optical

techniques to record the changes in cortical activation, it is

considerably less susceptible to artifacts from electrical sources,

both physiological (e.g., eye blinks, muscle movements) and

external (e.g., instrumentation noise).

One class of artifacts that can have a large detrimental ef-

fect on both modalities are motion artifacts. These artifacts can

be due to either the movement of the subject or the resulting

movement of the recording electrodes/optodes with respect to

the skin. These artifacts are of particular concern in ambula-

tory recording systems [2] or when recording during epileptic

activity. EEG is less sensitive than fNIRS to movement of the

subjects head; however, this movement can cause an increase

in the number of artifacts due to the activation of skeletal mus-

cles. Movements of the EEG electrodes with respect to the scalp

can also cause large errors in the recorded signal. These arti-

facts can be reduced in number and affected by securing both

the electrodes and the wiring correctly and by restricting the

1089-7771/$31.00 © 2012 IEEE
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movement of the subject; however, they are difficult to remove

completely.

In fNIRS measurements, subject motion can cause blood

pooling in the cortical area of interest. This increase/decrease in

oxy-Hb/deoxy-Hb levels may mask changes in the true activa-

tion level and is thus deemed an artifact. Furthermore, subject

motion can indirectly cause movement of the fNIRS optodes and

can cause a sudden change in recorded light intensity. When this

movement occurs, the coupling between the optode and the skin

is often compromised. The resulting artifact is due to the record-

ing of unwanted external light, the reflection of the incident light

from the outer skin layer or changing path length.

A number of signal processing algorithms have been previ-

ously employed to remove motion artifacts from physiological

signals [3]. One dilemma faced by all researchers, when trying

to remove motion artifact from the desired signal, is the lack of

knowledge of the true form of the original (noise-free) signal.

Without knowledge of this signal, it is not possible to accurately

determine the efficacy of a given artifact removal technique. It

also proves to be difficult to perform a valid comparison of dif-

ferent methods. Currently, comparisons among techniques are

achieved using simulated data.

We propose a novel recording methodology for physiological

signals which permits the recording of two separate but highly

correlated channels. This methodology allows for the recording

of a noise-contaminated and a noise-free signal concurrently.

By doing so, a “ground truth” signal becomes available to re-

searchers to test the efficacy of their motion artifact removal

techniques. The described methodology also incorporates ac-

celerometers to determine the time and magnitude of the in-

duced motion. This information is used for illustration purposes

as well as for a reference signal as required in certain artifact re-

moval techniques such as the adaptive filter technique, described

in Section III-A.

This paper builds on the preliminary work proposed in [4]

by expanding the methodology to include the more widely used

EEG modality as well as the previously described fNIRS data.

Motion corrupts EEG data in a considerably different manner to

fNIRS and, therefore, warrants additional investigation. In addi-

tion, to provide a more comprehensive assessment of the efficacy

of the approach, results are presented for an experimental study

involving a larger cohort of subjects and an expanded set of

artifact removal techniques. The measurements collected with

the methodology described in this paper, for both fNIRS and

EEG, suggest that the configuration effectively provides both a

motion corrupted signal and a strongly correlated artifact free

equivalent. Consequently, the methodology allows for the ac-

quisition of signal sets ideally suited for the design, test, and

validation of motion artifact removal methods.

The utility of the methodology in artifact removal applications

is demonstrated on an example set of motion artifact removal

techniques selected from the wide range of algorithms that have

previously been proposed in the EEG and fNIRS literature [3].

The selected motion artifact removal techniques, namely, adap-

tive filtering, Kalman filtering, and ensemble empirical mode

decomposition with independent component analysis (EEMD-

ICA) are applied to the EEG and fNIRS data collected using

Fig. 1. Position of the fNIRS optodes and accelerometers on the left prefrontal
cortex during experiment. Channel 1: positions are fixed. Channel 2: channel
path perturbed due to movement of the detector connected to Accelerometer 2.

the proposed system. The methods are representative of the

field and range in sophistication from the relatively simple and

well known (adaptive filtering) to the more complex and re-

cently proposed (EEMD-ICA). The results from all techniques

suggest that the noise within the recordings can be adequately

removed, as demonstrated by an increase in signal-to-noise ra-

tio (SNR) and cross-correlation coefficient obtained through the

use of the “ground truth” recording provided by the proposed

data collection procedure.

The remainder of this paper is structured as follows. Sec-

tion II describes the novel recording methodology including the

recording systems employed and the experimental setup and

procedure used. This section also presents example recordings

of noise-free and noisy fNIRS and EEG recordings. Section III

demonstrates the utility of the methodology using various arti-

fact removal techniques. Finally, Section IV discusses the find-

ings of this paper and future work.

II. EXPERIMENTAL SETUP

To facilitate repeatability, this section outlines the systems uti-

lized to record the fNIRS, EEG, and motion data. Furthermore,

it describes the setup and positioning of the optodes, electrodes,

and accelerometers as well as the general protocol adhered to

during experimentation.

A. Data Acquisition System

The fNIRS data are collected using a TechEn CW6 system

(TechEn Inc., MA) at a sampling rate of 25 Hz. This system

employs light sources, at wavelengths of 690 and 830 nm, to

determine the change in both oxygenated and deoxygenated

haemoglobin in the blood as described in Section I. The EEG

is recorded using a BioSemi Active-Two system (BioSemi Inc.,

The Netherlands). DC coupled data are recorded at 2048 Hz. The

experiment also utilizes two triaxial accelerometers (ADXL327,

Analog Devices) to measure the time, magnitude, and direction

of the induced motion. These accelerometers have a full scale

range of ±2 g and are sampled at a frequency of 200 Hz.

1) fNIRS Experimental Setup: The fNIRS light source is

connected to a plastic housing which is secured to the fore-

head of the user using the lower velcro head strap as shown in

Fig. 1. The plastic housing is comprised of low-density poly-

thene backed by polyurethane foam. This housing allows for

a rigid and secure connection between the fNIRS optode and

the head. The lower head strap, which encompasses the source
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optode, also accommodates one of the two detector optodes uti-

lized in the experiment. The spacing between the two optodes

is set to 30 mm conforming with common practice. The second

detector is housed on a separate strapping which is not coupled

to the first, saving the coupling through the head itself. This

detector is strategically positioned above the first as shown in

Fig. 1 so as to preserve the 30-mm interoptode spacing between

it and the source optode. Moreover, the spacing between the

detectors is kept very small (approximately 20 mm) so that the

overall monitored volume within the head highly overlaps be-

tween these two channels. The distance between the centroid

points of each source-detector pair is approximately 10 mm.

The two accelerometers utilized during the experiment are

employed to determine a measure of differential movement of

the detector optodes. To accomplish this, one accelerometer is

placed securely onto each individual detector as shown in Fig. 1.

Care is taken to ensure that the orientation of each individual

accelerometer is kept consistent with respect to the other. It

should be again noted that the two detectors and accelerometers

are not directly coupled, and therefore, the movement of one

will have little or no effect on the position of the second.

2) EEG Experimental Setup: The setup of the EEG exper-

iment is similar to that of the fNIRS experiment. The EEG

(Ag-AgCl) active electrodes, used to record the two separate

channels, are secured to the scalp of the subject using a 256

array electrode cap (Electro-cap International, Inc., OH). Elec-

trode gel is placed below each electrode to aid in the coupling

with the scalp. The cap is manufactured using a fabric material

allowing for the movement of a single electrode without alter-

ing the position of the adjacent electrode. The spacing of the

recording electrodes is fixed by the cap at 20 mm allowing for

the two channels to be recorded in close proximity. Similar to

the fNIRS experiment, the two accelerometers are attached to

the individual electrodes, again ensuring that the orientation of

each individual accelerometer is kept consistent with respect to

the other. In both EEG and fNIRS experiments, all post pro-

cessing was performed offline using MATLAB (2008b, The

MathWorks, Natwick, MA).

B. Experimental Procedure

Recording of the two modalities was performed indepen-

dently.

1) fNIRS Experimental Protocol: fNIRS measurements

were obtained from ten healthy subjects in order to demonstrate

the validity of the proposed methodology. The cohort comprised

of four males and six females (mean age: 29 years, standard de-

viation: 5.62 years). Each recording resulted in two useable

trials for each channel due to recording at the two wavelengths

(690 and 830 nm).

The fNIRS optodes were positioned on the left prefrontal

cortex of each subject, as illustrated by Fig. 1. This particular

optode positioning was chosen to reduce the possibility of con-

tamination of the signal due to the subjects hair interfering with

the coupling between the optode and the skin. Furthermore, as

the methodology proposed in this paper is designed to allow

for the recording of two highly correlated signals, one with and

Fig. 2. Example output from an fNIRS recording. The shaded sections high-
light the regions containing motion artifact as determined using the accelerom-
eter data. Average correlation over clean epochs: 0.87. Average correlation over
movement epochs: 0.31.

the second without motion artifact contamination, the under-

lying cortical activity was not of significance. Therefore, the

subjects were not required to perform any specific activity for

the duration of the experiment.

Due to the setup of the new methodology, the two channels

were recorded in close proximity. As the fNIRS optode measures

from the volumetric region in between the light source and detec-

tor [5], by using the same light source and two separate detectors

in close proximity, the optode measurement volumes overlap

and the measured cortical activities are expected to be highly

correlated for the two optodes. Each individual trial of the exper-

imental session lasted a total of 9 min. At regular 2-min intervals,

the experimenter induced a positional disturbance to the detector

attached to Accelerometer 2 for a random duration of between

10 and 25 s. This source detector pairing was labeled Channel

2 (see Fig. 1). This slight disturbance, which was performed

manually by pulling on the optode cable, induced motion arti-

fact on Channel 2. However, as the detector optode, connected

to Accelerometer 1, and the source optode were not disturbed,

Channel 1 remained free of contamination throughout the dura-

tion of the experiment. This result can be observed in Fig. 2.

The sections of the signal which are not shaded are epochs

of motion free data where Channel 2 can be observed to follow

the output of Channel 1 closely. These epochs of corrupted data

were determined using a simple tagging algorithm [6] using the

available data from the accelerometers.

Before each individual recorded trial was selected for use

in the analysis performed in this paper, the artifact contami-

nated signal was analyzed against its corresponding “ground

truth” signal. Signals whose clean epochs had an average cor-

relation lower than 0.65 (calculated using the Pearson product–

moment correlation coefficient) with the corresponding epoch

of the “ground truth” signal were discarded. This ensured that

only the most correlated signal pairs were used. Low correlation

values during the clean epochs could be due to many factors in-

cluding poor connection between the optode and the skin. This

resulted in 16 fNIRS trials for analysis. These 16 trials were
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Fig. 3. Example output from an EEG recording. The shaded sections highlight
the regions containing motion artifact as determined using the accelerometer
data. Average correlation over clean epochs: 0.83. Average correlation over
movement epochs: 0.09.

calculated to have an average correlation r of 0.77 (std = 0.2)

during motion free epochs over all trials. However, the average

correlation over the full signal for all trials is significantly lower

(r = 0.58 std = 0.16) due to the intermittent presence of motion

artifacts. Over all trials, motion artifacts are present in 19.75%

of the data.

2) EEG Experimental Protocol: EEG recordings were ob-

tained, over four sessions, from six healthy subjects (mean age:

27 years, standard deviation: 4.29 years) resulting in 24 tri-

als. The cohort consisted of three males and three females. Two

channels of EEG were recorded from the frontal cortex from po-

sitions FPz and FP1h (using the 10–5 system as described in [7]),

labeled Channel 1 and Channel 2 respectively. The Driven Right

Leg and Common Mode Source electrodes were placed at posi-

tions P2 and P1, respectively, using the 10–20 system.

Subjects were not required to perform any activity during

recording. Each subject was instructed to keep their eyes closed

and to maintain a stationary head position throughout the ex-

periment; therefore, limiting the number of artifacts originating

from sources such as eye blinks, saccades, and head motion.

Again, each trial lasted a total of 9 min with motion induced

to Channel 2’s electrode at regular 2-min intervals. This motion

artifact was induced by mechanically disturbing the electrode

by pulling on the connecting lead. An example output from the

two channels can be observed in Fig. 3.

During epochs of no motion, the two recording channels were

calculated to have an average correlation coefficient r of 0.83

(std = 0.2) but this value again drops (r = 0.40, std = 0.19)

when analyzing the full signal due to the presence of artifacts.

The artifact components are present in 15.74% of the data.

III. VALIDATION OF TECHNIQUES

In this section, we have illustrated the use of a number of

currently available artifact removal techniques to demonstrate

the validity of the proposed recording methodology.

The experimental setup for the fNIRS and the EEG, described

in Section II, allows for the recording of two separate fNIRS

and EEG channels, one clean and the other intermittently con-

taminated with motion artifact. When motion artifact is induced

in one channel, as described in Section II-B1 and II-B2, the two

signals can differ greatly depending on the magnitude of the ar-

tifact (see Figs. 2 and 3). A comparison of the recordings from

Channel 1 and 2, for both recording modalities, was produced

based on correlation analysis and SNR. The SNR [measured in

decibel (dB)] in this study was calculated using the following

formula:

SNR = 10 log10

(

σ2
x

σ2
e

)

(1)

where σ2
x is the variance of the clean noise-free signal (Channel

1) and σ2
e is the variance of the error signal. Before the applica-

tion of the artifact removal technique, the error signal is equal to

the motion artifact found by subtracting the noise-free (Chan-

nel 1) recording from the noisy (Channel 2) measurement. The

error signal after the application of a motion artifact removal

technique is the signal found by subtracting the estimated de-

sired signal, found as the outcome of the algorithm used, from

the true noise-free signal (Channel 1). During the clean epochs,

the signals show a high average SNR (1.93 dB for fNIRS and

5.92 dB for EEG). This SNR drops considerably when calcu-

lated over the full signal (−3.65 dB for fNIRS and −6.13 dB

for EEG). The purpose of the numerous available artifact re-

moval techniques is to increase the SNR of the contaminated

signal, while also increasing the correlation of the estimated

signal with the (previously unknown) known true signal. Using

this new proposed recording methodology, it is now possible

to incorporate the previously unavailable “ground truth” signal

to aid in the validation of these artifact removal techniques. As

the clean signal is used for comparison only, the artifact re-

moval techniques employed must be capable of operating on

single-channel measurements. Such a constraint is increasingly

common where attempts to improve patient compliance when

using telehealth systems have necessitated the use of a minimal

instrumentation paradigm [8].

A. Adaptive Filter

The adaptive filter has been used widely for artifact removal

in signal processing for the past number of decades. Applica-

tions include the removal of EMG artifacts and ocular artifacts

from EEG and motion artifact and physiological signals from

fNIRS [3].

The adaptive filter technique operates under the assumption

that the desired true signal s(n) and the contaminating artifact

v(n) are uncorrelated, i.e.

E[s(n)v(n)] = 0 (2)

where E[.] is the expectation operation. A second assumption

made when utilizing the adaptive filter technique is that the true

desired signal and the artifact signal are linearly mixed, as shown

in Fig. 4. Using a tapped delay line, the filter generates a signal

v̂(n), which is correlated with the actual artifact signal v(n), by

use of a reference signal u(n). This estimate of the artifact is

then subtracted from the recorded signal x(n), and the residual
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Fig. 4. Adaptive filter framework for artifact removal.

Fig. 5. Example of the output of the adaptive filter using the fNIRS data.

ŝ(n) is an estimate of the original signal s(n) [9], i.e.

ŝ(n) = x(n) − v̂(n). (3)

The filter coefficients are adjusted so as to minimize the mean-

squared amplitude of the estimated signal ŝ(n) as this has the

effect of suppressing the artifact component but not the desired

signal.

The adaptive filter can be easily adopted for usage with the

two applications detailed in this paper. The two accelerometers,

attached to the optodes or the electrodes, are used to determine

when differential movement has occurred in the experiment.

When this differential movement does occur, due to the actions

of the experimenter, artifacts are observed on one of the inde-

pendent channels. This differential acceleration, as well as the

calculated differential velocity and position, are then used to

generate a nonlinear model of the artifact signal. This model

is then employed as the reference u(n) for the adaptive filter.

The sampling frequencies of all datasets (EEG, fNIRS, and ac-

celerometers) are adjusted to ensure that they are operating on

the same sampling frequency prior to implementing the adaptive

filter. When using an adaptive filter, the choice of algorithm is

of importance, as it dictates the computational cost and accu-

racy of the filter. For this paper, a normalized least mean square

algorithm was implemented [10].

For example, output of the adaptive filter technique plotted

against the original noisy signal and the “ground truth” signal

can be observed in Figs. 5 and 6 for fNIRS and EEG, respec-

tively. From these figures, it is possible to visually acknowledge

Fig. 6. Example of the output of the adaptive filter using the EEG data.

that the cleaned signal does indeed tend toward the “ground

truth” signal generated using the described modality. For the

purpose of this paper, only the motion artifact contaminated

sections of the signal were replaced with the cleaned section of

the signal, and the epochs of clean data were left untouched.

The adaptive filter was run for all trials, on both modalities,

to ascertain the change in SNR and correlation values post pro-

cessing. After running the technique the correlation of Channel

2 with Channel 1 increased by 68.22% to 0.71 for the fNIRS

data and by 37.66% to 0.56 for the EEG data. This percent

correlation increase is calculated as

Rafter − Rbefore

Rclean − Rbefore
∗ 100%. (4)

Rbefore is the correlation calculated over the epochs of noisy

data as shown by the shaded areas of Figs. 2 and 3. Rafter is

the correlation over the same epochs after the artifact removal

techniques have been employed and Rclean is the correlation

over the epochs of known clean data (the nonshaded areas of

Figs. 2 and 3).

The SNR also rose for both modalities, by 5 dB for the fNIRS

data and by 5.1 dB for the EEG data. As both the correlation

and the SNR of the signal increased after employing the adap-

tive filter, it can be confirmed that the filter does indeed aid

in the removal of artifacts from the signal. Without the new

methodology, it would not be feasible to estimate these values

for correlation and SNR.

B. Kalman Filter

The Kalman filter has been used by a number of researchers

for the removal of artifacts; for example, in 2010, Izzetoglu

et al. [11] used the Kalman filter to remove motion artifacts

from fNIRS recordings while Sameni et al. [12] used the filter

to remove environmental and muscle artifacts from ECG signals.

The Kalman filter implements an approximation of the Bayes

filter technique. Bayesian filters probabilistically estimate a

given systems state from noisy observations. These filters oper-

ate using a predictor-corrector methodology. The predictor stage

comprises of a time-update model and is used to predict the sys-

tems next state given the current state. The corrector stage uses
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Fig. 7. Example of the output of the Kalman filter using the fNIRS data.

a separate measurement model to correct the predictor estimate

given observations of the data. The Kalman filter also incorpo-

rates a dynamic gain factor, in the time-update equations, which

is automatically updated to specify how much “trust” to put into

the observed data. Therefore, if the observations are deemed to

be very noisy, more “trust” is placed on the predictor stage, and

thus the corrector stage has little impact on the signal. The time

and measurement update equations are detailed by Welch and

Bishop [13].

Unlike the adaptive filter, a Kalman filter does not require

the use of a reference signal to be capable of removing the

contaminating artifact. However, the time update model and the

measurement model are required a priori and can be determined

using a number of different modeling methods such as autore-

gressive (AR) and moving average.

In this paper, the noise-free fNIRS and EEG data were

modeled using an AR model of orders 4 and 5, respectively,

using the “ground truth” data from Channel 1. Model orders

were determined using the “System Identification Toolbox”

from MATLAB. The model parameters were estimated from

the available true clean data using the Yule–Walker method. The

variance of the measurement noise, required when employing

the Kalman filter, was computed using the difference between

the noisy signal and the “ground truth” signal. The process

noise was estimated using the AR model parameters and the

variance of the epoch of clean data, similar to [11]. Example

outputs of the Kalman filter for fNIRS and EEG are shown in

Figs. 7 and 8, respectively.

Once the parameters of the system were determined, the

Kalman filter was applied to all the trials of both the fNIRS

and EEG data. After running the technique, the average corre-

lation of noise removed Channel 2 recordings with Channel 1

measurements increased 66.5% to 0.71 for the fNIRS data and

by 83.1% to 0.76 for the EEG data. The SNR also rose for both

modalities, by 5.46 dB for the fNIRS data and by 9.7 dB for the

EEG data.

C. Ensemble Empirical Mode Decomposition-ICA

ICA is a blind source separation (BSS) technique in which

recorded, multichannel, signals are separated into their indepen-

Fig. 8. Example of the output of the Kalman filter using the EEG data.

dent components or sources [14]. BSS is based on a wide class

of unsupervised learning algorithms with the goal of estimating

sources (which are not necessarily independent) and parameters

of a mixing system [15]. ICA operates under a number of as-

sumptions, described by James and Hesse [16], including linear

mixing, square mixing, and stationary mixing. Using these as-

sumptions, the ICA algorithms determine the unmixing matrix

W which is used to calculate the statistically independent signal

components Ŝ using

Ŝ = WX (5)

where X is a matrix of the recorded multichannel signals. In this

paper, we use the FastICA algorithm to determine the unmixing

matrix, W [14]. Once the estimates of the original sources Ŝ

have been determined, the sources deemed to be artifacts can

be removed by setting them to zero. The remaining sources

are assumed to be the desired signal sources and when passed

through the inverse of the unmixing matrix W
−1 the resulting

outputs are the artifact corrected signals [17].

As previously stated, ICA operates using multichannel

recordings. However, using the proposed methodology, only

single-channel signals are recorded for both fNIRS and EEG. A

technique must, therefore, be implemented to generate a multi-

channel signal from a single-channel recording to allow for the

use of the ICA algorithm. In this paper, the multichannel signal

was generated using a method known as EEMD.

Empirical mode decomposition (EMD) is a technique, first

described in 1998 [18], for nonlinear signal processing and is

well suited for nonstationary signals. The method operates by

decomposing a signal into individual components called intrin-

sic mode functions (IMFs) which have well-defined instanta-

neous frequencies. Once the IMFs have been determined, they

can be employed as the required multichannel input to the ICA

algorithm.

IMFs determined using the EMD algorithm are known to

sometimes have problems due to mode mixing. Mode mixing

can lead to serious aliasing in the time-frequency distribution

and also make physical meaning of individual IMF unclear [19].

Ensemble EMD, as described in [20] is an extension to the
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Fig. 9. Example of the output of the EEMD-ICA algorithm using the fNIRS
data.

Fig. 10. Example of the output of the EEMD-ICA algorithm using the EEG
data.

EMD algorithm which eliminates this problem. EMD-ICA and

EEMD-ICA have been previously employed by researchers to

remove different artifacts including eye blinks [21] and ECG

artifacts from EEG [22].

The EEMD algorithm was applied to the artifact contami-

nated single-channel recordings from all trials for both fNIRS

and EEG. An ensemble number of one hundred was used to

avoid mode mixing in the IMF signals. Following the calcula-

tion of the signal IMFs, the FastICA algorithm was employed.

The resulting independent components (IC’s) were then man-

ually analyzed and the components identified as artifacts were

removed. The artifact components were manually determined

using properties such as shape, frequency, and amplitude. The

IMFs were reconstructed using the ICA unmixing matrix W
−1

and the original single-channel signal minus the determined

artifact components was then regenerated by summing the arti-

fact free IMF. For example, outputs from the EEMD-ICA tech-

nique for both fNIRS and EEG are shown in Figs. 9 and 10,

respectively.

Again, the EEMD-ICA technique was shown to improve both

the correlation and the SNR values of Channel 2 with respect

to Channel 1. The average correlation increased by 32.46% to

TABLE 1
COMPARISON OF THE RESULTS FOR BOTH THE EEG AND fNIRS EXPERIMENTS

OBTAINED WITH THE SELECTED ARTIFACT REMOVAL TECHNIQUES: THE

IMPROVEMENT IN CORRELATION AND THE CHANGE IN SNR ARE PRESENTED

0.64 for the fNIRS data and by 76.5% to 0.73 for the EEG data.

The SNR also rose for both modalities by 2.34 dB for the fNIRS

data and by 8.89 dB for the EEG data.

IV. DISCUSSION

Motion artifacts are a serious problem in biomedical signal

processing, since they can corrupt the integrity, and hence com-

promise the interpretation, of many physiological signal record-

ings obtained by various methodologies, e.g., fNIRS and EEG.

New and improved algorithms are continually being developed

to eliminate the noise and estimate the desired signal of interest.

However, without the knowledge of the true signal, performance

evaluation of the algorithms is limited at best.

In this paper, a novel experimental setup is proposed that

allows the simultaneous collection of the recordings of both

the true artifact-free signal and the motion artifact corrupted

signal of either fNIRS or EEG for the first time. The proposed

technique is a modified sensor setup that employs multiple

sensors (light detectors for fNIRS and electrodes for EEG)

to monitor similar measurement regions which will have

highly correlated underlying biosignals. By applying controlled

artifact to only one of the detectors (measured by independent

accelerometers on both detectors), simultaneous measurement

of corrupted and true/desired signal is possible. The utility of

this unique setup has been shown for recordings of different

neuroimaging modalities (fNIRS and EEG) and a selection of

motion artifact removal algorithms from the literature (adaptive

filtering, Kalman filtering, and EEMD-ICA algorithm). The

results of this study suggest that the proposed setup enables a

simple but effective means of acquiring an excellent estimate of

the noise-free signal together with a motion artifact corrupted

version. This dataset can then be successfully used in valid

comparison of motion artifact removal algorithms in both

fNIRS and EEG applications (see Table I) using metrics such

as the SNR and correlation. Other performance metrics such as

information content and frequency domain analysis could also

be performed using this dataset for a more detailed evaluation of

the techniques; however, this is beyond the scope of this paper.

Such signal pairs are also of great utility for signal processing

engineers seeking performance measures for newly developed

filtering methods especially when seeking to compare relative

effectiveness against other accepted techniques.

While the proposed method is restricted to the assessment

of techniques for removing motion artifact it is precisely this

sort of artifact that is proving such a bottleneck to effective

home monitoring of outpatient health. A simple easily replica-

ble methodology, as proposed here, should speed up the process
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by which new approaches to the artifact management problem

can be investigated. The mentioned removal examples, used in

this paper focused on artifact in a functional brain monitoring

setting; however, the method can be readily applied to other

physiological measurements at other sites on the body. An ob-

vious and important extension is the examination of motion

artifact during cardiac event monitoring. As physical exertion

is often the cause of an arrhythmic event, motion artifacts can

again often occlude the recording of the subtle, desired, cardiac

arrhythmia signals.

A more comprehensive comparison and the evaluation of

common artifact removal techniques for both fNIRS and EEG

signals will be carried out in the future as a continuation of this

study. The EEG and fNIRS datasets used for analysis in this

paper and collected using the proposed methodology have been

made available on PhysioNet [23].
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