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Introduction

Branched-chain fatty acids and related compounds are

important components of the human diet and are also

used as drug molecules. Owing to the presence of

methyl groups on the carbon chain, the majority can-

not be immediately metabolized within mitochondria,

and instead undergo initial metabolism in peroxisomes

[1–4]. A consequence of the presence of methyl groups

on the carbon chain is that many of these fatty acids

contain chiral centres. Methyl groups can be located

on both the two and three carbon positions, and this

has consequences for metabolism. The oxidation of

these fats is stereoselective [1], and this has conse-

quences for the regulation of metabolism.

Branched-chain fatty acids can arise from several dif-

ferent sources. Humans endogenously synthesize bile

acids, which are oxidized cholesterol derivatives. These

acids possess the methyl group on carbon 2 (relative to

the carboxyl group), and have exclusively (R)-stereo-

chemistry. In terms of quantity, non-steroidal fatty

acids are the most important. Pristanic acid is a minor

component of the diet, and it possesses four methyl

groups [1–4]. The methyl group at C-2 can have either

the (R)-configuration or (S)-configuration, whereas the

other methyl groups have exclusively the (R)-configuration.
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Branched-chain lipids are important components of the human diet and

are used as drug molecules, e.g. ibuprofen. Owing to the presence of methyl

groups on their carbon chains, they cannot be metabolized in mitochon-

dria, and instead are processed and degraded in peroxisomes. Several dif-

ferent oxidative degradation pathways for these lipids are known, including

a-oxidation, b-oxidation, and x-oxidation. Dietary branched-chain lipids

(especially phytanic acid) have attracted much attention in recent years,

due to their link with prostate, breast, colon and other cancers as well as

their role in neurological disease. A central role in all the metabolic path-

ways is played by a-methylacyl-CoA racemase (AMACR), which regulates

metabolism of these lipids and drugs. AMACR catalyses the chiral inver-

sion of a diverse number of 2-methyl acids (as their CoA esters), and regu-

lates the entry of branched-chain lipids into the peroxisomal and

mitochondrial b-oxidation pathways. This review brings together advances

in the different disciplines, and considers new research in both the meta-

bolism of branched-chain lipids and their role in cancer, with particular

emphasis on the crucial role played by AMACR. These recent advances

enable new preventative and treatment strategies for cancer.
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Phytanic acid is its 3-methyl dietary precursor, with

stereochemistry identical to that of pristanic acid.

Phytanic acid is originally derived from the isoprenoid

side-chain of chlorophyll A, phytol, although it is gen-

erally believed that phytol cannot be cleaved from

chlorophyll in plant-derived foods and that phytanic

acid comes directly from animal products. Foods that

are particularly rich in phytanic acid include beef,

other meats and dairy products. A typical daily intake

of phytanic acid in a Western diet has been estimated

to be 50–100 mg [2]. Finally, anti-inflammatory drugs

such as ibuprofen are 2-methyl acids [1]. These drugs

differ in that they have short, branched carbon chains

attached to an aromatic moiety.

Much of the metabolism of branched-chain lipids

takes place in peroxisomes [1–6], and has been studied

since the 1960s. Peroxisomes are ubiquitous organelles

found in virtually all eukaryotic cell types [7], and are

responsible for the synthesis of essential fatty acids

(such as ether phospholipids) and detoxification of

‘unusual’ fatty acids and related lipids (ultra- and

very-long-chain fatty acids, branched-chain fatty acids,

etc.) [1]. Deficiency of peroxisomes or their key meta-

bolic pathways gives rise to the peroxisomal biogenesis

disorders [8], such as Zellwegers’ syndrome and infan-

tile Refsum’s disease. Milder syndromes can result

from single-enzyme [9] deficiencies in preliminary path-

ways (especially a-oxidation [10]; see below), and give

rise to neurological diseases such as adult Refsum’s

disease and racemase deficiency [2]. These conditions

were considered to be biochemical oddities, due to the

low number of patients affected.

Since 2001, it has become apparent that there is a

link between dietary branched-chain fatty acids (phy-

tanic acid), activity of the metabolic pathways, and

disease, with a particularly strong correlation with

prostate cancer [11,12]. This review will look at recent

progress in understanding branched-chain fatty acid

metabolism and its link with cancer. One particular

enzyme, a-methylacyl-CoA racemase (EC 5.1.99.4)

(AMACR, racemase, P504S), has emerged as a cancer

marker, and the central biochemical role of this

enzyme is discussed.

Branched-chain fatty acid metabolism

The a-oxidation pathway for phytanic acid (and pre-

sumably other 3-methyl acids) was finally elucidated

about 10 years ago [1–4]. Significant further progress

has been made, including considerable advances in

understanding the conversion of free phytol to phyte-

noyl-CoA, which can be converted to pristanic acid.

Further progress has also been made in understanding

x-oxidation, a secondary degradation pathway for

phytanic acid (Scheme 1). The presence of 3-methyl

groups in phytanic acid prevents b-oxidation, as a qua-

ternary alcohol is produced from this substrate. Hence,

phytanic acid undergoes preliminary a-oxidation, in

which chain shortening from the carboxyl group

occurs. This pathway produces pristanic acid, which

has a 2-methyl group, and hence b-oxidation is not

blocked.

The a-oxidation pathway consists of four steps [1],

the first being conversion of phytanic acid to its

CoA ester and peroxisomal import (Scheme 2). This

is followed by hydroxylation by a nonhaem iron(II)

and a 2-oxoglutarate-dependent oxygenase, phyta-

noyl-CoA 2-hydroxylase (PhyH). Adult Refsum’s dis-

ease is a result of inactivating mutations in this

enzyme [13,14] or of defects in the system responsi-

ble for importing this protein into peroxisomes [15].

The X-ray crystal structure of PhyH has recently

been solved [13], and this demonstrates that the

majority of clinical mutations cluster around the

iron(II) cofactor- or 2-oxoglutarate cosubstrate-binding

sites. Site-directed mutagenesis studies have demon-

strated the functional importance of the iron(II)- and

2-oxoglutarate-binding ligands [14,16,17]. In common

with many other nonhaem iron(II)-dependent oxygen-

ases [18], PhyH is able to accept unnatural substrates

[19] with 3-methyl or other alkyl groups, but is not

able to accept substrates with alkyl groups at either

C-2 or C-4. The product of the PhyH-catalysed reac-

tion, 2-hydroxyphytanoyl-CoA, is cleaved to pristanal

and formyl-CoA, and the latter is subsequently con-

verted to formate and then to CO2 [1–3]. This un-

usual thiamine diphosphate-dependent lyase has also

been implicated in the degradation of unbranched

straight-chain 2-hydroxy acids [20]. Finally, pristanal

is oxidized to pristanic acid, which is converted to

pristanoyl-CoA [1–3]. There is also evidence for the

involvement of the fatty acid-binding protein, sterol

carrier protein-2, in at least some steps of both

a-oxidation [1,21] and b-oxidation (as sterol carrier

protein-x) [1].

Recently, it has been demonstrated that the phytol

side-chain of chlorophyll A can be converted into phy-

tanic acid by humans [22–27]. The pathway consists of

oxidation of the allylic alcohol to the highly reactive

aldehyde, phytenal, followed by further oxidation to

phytenic acid (Scheme 1). The enzyme performing the

phytenal-to-phytenic acid conversion was identified as

fatty aldehyde dehydrogenase (FALDH) [25], the

enzyme that is deficient in Sjögren–Larsson syndrome

[1,28]. Studies on recombinant FALDH showed that it

was also able to oxidize alcohols to aldehydes [29].
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Although conversion of phytol was not demonstrated,

the use of a bifunctional oxidoreductase would prevent

the release of the highly reactive allylic aldehyde, phyt-

enal. Phytenic acid is converted to its CoA ester and

reduced to phytanic acid by an NADPH-dependent

oxidoreductase [26,30]. It is not clear how much plant-

derived phytol is converted into phytanic acid in

humans, as humans are not supposed to be able to

cleave this side-chain from chlorophyll, although some

contribution from gut bacteria cannot be excluded

Scheme 1. Metabolism of branched-chain fatty acids and related compounds. *Peroxisomes contain more than one fatty acyl-CoA synthe-

tase, and it is not clear which specific enzyme is responsible for the phytenic acid-to-phytenoyl-CoA conversion. Enzymes, cosubstrates and

cofactors [1,2]: 1, phytanoyl-CoA 2-hydroxylase, iron(II), 2-oxoglutarate, O2; 2, 2-hydroxyphytanoyl-CoA lyase (also known as 2-hydroxyacyl-

CoA lyase), Mg2+-thiamine diphosphate; 3, FALDH-V, CYPs; 4, very-long-chain fatty acyl-CoA synthetase, Mg2+-ATP, CoA-SH; 5, 6, unidenti-

fied oxidoreductases or CYP enzyme – Reactions will go via aldehydes and acid intermediates; 7, branched-chain acyl-CoA oxidase, FAD;

8, 9, D-bifunctional protein, NAD+; 10, sterol carrier protein-x (SCP-x), CoA-SH; THCA, trihydroxycholestanic acid.
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[11,31]. A recent epidemiological study showed that

plasma phytanic acid levels were strongly correlated

with dairy fat intake [32] but not vegetable intake, sug-

gesting that the amounts directly derived from chloro-

phyll are relatively small.

The a-oxidation pathway was defined about

10 years ago [1–3,10], and consists of formation of

the phytanoyl-CoA ester followed by 2-hydroxyl-

ation, an unusual lyase reaction giving pristanal, and

finally oxidation of pristanal to pristanic acid

(Scheme 2). All of the enzymes catalysing these steps

were defined at this time, except for the enzyme per-

forming the pristanal-to-pristanic acid conversion. It

was proposed that oxidation of the aldehyde func-

tion of pristanal was performed by FALDH [33],

but later experiments cast doubt on this, on the

grounds that significant residual ‘pristanal dehydro-

genase’ activity was observed in FALDH-deficient

cells [34]. Moreover, the major form of FALDH

(FALDH-N) is localized in the endoplasmic reticu-

lum [35,36], and a-oxidation is known to be exclu-

sively peroxisomal [34]. A second splice variant of

Scheme 2. a-Oxidation of (3R,S)-phytanoyl-CoA. Both epimers of phytanoyl-CoA can undergo a-oxidation; the (2R)-epimer of pristanoyl-CoA

is converted to (2S)-pristanoyl-CoA by AMACR for b-oxidation. 2-HPCL, 2-hydroxyphytanoyl-CoA lyase (also known as 2-hydroxyacyl-CoA

lyase); 2-OG, 2-oxoglutarate; THDP, thiamine diphosphate; VCLA-CoA synthetase, very-long-chain fatty acyl-CoA synthetase.
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FALDH [37] has been identified (FALDH-V), and

very recently it has been shown to localize in peroxi-

somal membranes [38]. Two further splice variants

(FALDH-V2 and FALDH-V3) were also identified

[38], although these appear not to be localized in

peroxisomes. The authors propose that FALDH-V

catalyses the conversion of pristanal to pristanic

acid, and this is supported by the observation that

overexpression of FALDH-V but not FALDH-N

protects cells against phytanic acid-induced damage.

Production of all four protein splice variants of

FALDH are induced by peroxisome proliferation-

activated receptor (PPAR)a agonists, and increased

expression of FALDH-N and FALDH-V protects

against lipid peroxidation. The low level of residual

pristanal dehydrogenase activity in Sjogren–Larsson

syndrome fibroblasts was attributed to incomplete

loss of activity in FALDH mutants [34,38]. How-

ever, PPARa agonists were also shown to induce

several other genes in addition to aldh3a2 (the

gene encoding for the FALDH splice variants),

including several cytochome P450 (CYP) enzymes

[39]. It could be that one or more CYP enzymes

play a secondary role in the pristanal-to-pristanic

acid conversion.

Although a-oxidation is the primary metabolic

pathway for phytanic acid, some metabolism can also

occur by x-oxidation [40–44]. Clinically, x-oxidation
is important in patients deficient in a-oxidation, such
as those suffering from adult Refsum’s disease [40],

as it provides a route by which phytanic acid can be

detoxified. The process requires hydroxylation by a

CYP hydroxylase followed by conversion of the alco-

hol into the acid, and is probably localized in micro-

somes (Scheme 1). In the case of phytanic acid, the

specific hydroxylases have been identified as

CYP4F3A and CYP4F3B, with lower activity for

CYP4F2 and CYP4A11 [43]. The x-oxidation path-

way generates a new chiral centre in the molecule as

a 2-methyl acid (relative to the new carboxyl group),

for which the stereochemistry has not been deter-

mined [40]. The resulting di-acids can be exported to

peroxisomes for subsequent b-oxidation as the CoA

ester [40]. This process could potentially allow a

large number of substrates to enter into peroxisomal

b-oxidation, and this pathway is known to be active

in the production and metabolism of bile acids from

cholesterol [45].

Peroxisomes contain two b-oxidation pathways,

and it is the pathway whose genes are constitutively

expressed that metabolizes branched-chain fatty acids

[1]. This pathway only metabolizes fatty acids with

(2S)-stereochemistry [46], as their CoA esters. Bile

acids are exclusively produced with (2R)-stereochemis-

try [47,48], and as (2R)-methyl groups are encoun-

tered during the degradation of pristanic acid and its

precursors, chiral inversion is required. This process

is achieved by AMACR [1], a reversible enzyme that

interconverts the two epimers, and therefore controls

entry into the b-oxidation pathway. The b-oxidation
pathway chain shortens the fatty acids by two car-

bons during each cycle. In the case of pristanic acid,

b-oxidized fragments, such as acetyl-CoA and pro-

pionoyl-CoA, and chain-shortened intermediates are

exported into mitochondria for final metabolism via

the acyl-carnitine shuttle [1]. As these chain-shortened

intermediates also contain chiral methyl groups with

the (R)-configuration, AMACR is also required

within mitochondria (see below) for b-oxidation to

occur. It is not known whether chain-shortened bile

acids are similarly exported to the mitochondria.

Patients deficient in AMACR exhibit neurological

symptoms [49] with some similarities to adult Ref-

sum’s disease [2] but with later onset and a more

peripheral than central neurological phenotype. They

exhibit the expected biochemical profile, with accumu-

lation of bile acids and dietary (2R)-branched acids

[47,50]. A ‘knockout’ mouse model is also available,

and this shows a similar metabolic profile, with

upregulation of expression for several genes, including

those encoding CYP enzymes that may be involved in

x-oxidation [51].

Ibuprofen is a 2-methyl acid, and is generally given

as a racemic mixture of (2R)- and (2S)-enantiomers.

Activation as the CoA ester and chiral inversion [52–

56] have been implicated in both pharmacological

activity and toxic side-effects. The enzyme responsible

for this is ‘ibuprofenoyl-CoA epimerase’ [52], which,

upon cloning, proved to be identical to AMACR

[57,58]. AMACR is able to utilize both (2R)- and (2S)-

ibuprofenoyl-CoA as substrates [52]. Formation of the

CoA ester has been reported to be stereoselective for

the (2R)-isomer, whereas hydrolysis of both isomers

can occur [52,59], implying that the physiological pro-

cess is the (2R) to (2S) conversion, i.e. the same as that

for fatty acid metabolism. Ibuprofen is an aromatic

structure substituted with a 2-methyl acid, and cannot

undergo b-oxidation.

Branched-chain fatty acids and cancer

In 2001, several reports appeared in the literature

showing that AMACR protein was overproduced in

various cancers [60]. Since then, more than 280 reports

have appeared in the literature documenting overpro-

duction of AMACR in cancer [61]. The majority of

M. D. Lloyd et al. a-Methylacyl-CoA racemase and cancer
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reports have focused on prostate cancer [11,12,62–64],

as the levels of overproduction are high (up to nine-

fold higher than in noncancerous cells [65]) and consis-

tently observed [11]. This level of overproduction has

led to the use of antibody-based methods to diagnose

prostate cancer from biopsy samples, with the marker

known as P504S [60]. Zha et al. [66] demonstrated that

AMACR is an androgen-independent growth modifier

in prostate cancer cells. AMACR is also overproduced

in some noncancerous prostatic abnormal states [67]

and neoplasia [68]. Although most of the reports on

the overproduction of AMACR concern prostate can-

cer, other studies have shown that overproduction can

also occur in breast [69], colon [63], renal [70,71] and

other cancers [61,72], although there is considerable

heterogeneity in the degree of overproduction (for

example, Jiang et al. [61] reported that only 27% of

gastric adenocarcinomas overproduce AMACR).

Since then, a large body of evidence has linked die-

tary branched-chain lipid intake (especially phytanic

acid), AMACR overproduction [11,12], and cancer.

Xu et al. [73] reported that dietary phytanic acid

intake and levels in the blood directly correlate with

prostate cancer risk, whereas Mobley et al. [74] showed

that dietary branched-chain fatty acids increased pro-

duction of AMACR in prostate cancer cells, with cata-

lytic activity also being increased [66,75]. AMACR

overproduction appears to be mediated by a nonclassic

C ⁄EBP-binding motif in the promoter region [76].

Other enzymes involved in the peroxisomal b-oxidation
of branched-chain fatty acids are also overproduced

[e.g. acyl-CoA oxidase (ACOX)2, also known as

D-bifunctional protein] [77], and that the relative levels

of production of enzyme subtypes can also change (for

example, ACOX3 expression is increased [77]), presum-

ably due to increased levels of the substrates. Certain

AMACR polymorphisms leading to single amino acid

substitutions are also associated with increased pros-

tate [78,79] and colon [80] cancer risk. In the case of

prostate cancer, the strongest correlation is for the

M9V polymorphism [79], with the minor allele over-

represented in unaffected men. Inactivating mutations

in AMACR give rise to an adult-onset neurological

syndrome [47,49,50], which is similar to adult Refsum’s

disease. As patients with these prostate cancer-related

polymorphisms do not exhibit neurological symptoms,

it implies that they do not abolish activity. Coupled

with the overproduction of subsequent b-oxidation
pathway enzymes, it implies that these cancer-related

polymorphisms could misregulate the entry of metabo-

lites into the pathway. Finally, there are several litera-

ture reports of overproduction of minor splice variants

of AMACR in prostate cancer [81–83] (see below).

These splice variants possess a common N-terminus

but have different C-termini, and in some cases inter-

nal modifications towards the C-terminus. With the

use of small interfering RNA techniques, reduction of

AMACR production has been shown to prevent pros-

tate cancer proliferation [66], suggesting that distur-

bances in branched-chain fatty acid metabolism are

involved in the development or maintenance of the

cancer. Although this study was performed before

the existence of the minor splice variants was known,

the small interfering RNAs were targeted to the C-ter-

minal region, and would specifically reduce expression

of AMACR 1A (the predominant form in ‘normal’

cells) and AMACR 1ADEL [83], as the other variants

do not contain the target sequence. The significance of

the other splice variants in prostate cancer is therefore

uncertain.

Biochemistry of AMACR

AMACR is colocalized in both peroxisomes and mito-

chondria in both humans [84,85] and rats [86]. The

enzyme localized in both organelles is derived from a

single transcript [84,86]. The enzyme possesses an

N-terminal mitochondrial targeting signal and a C-ter-

minal peroxisomal targeting sequence-1 variant, the

final four amino acids, KASL [49]. These studies were

performed before the existence of the minor splice vari-

ants [81–83] was known, and therefore refer to AMA-

CR 1A, the major form of the enzyme in ‘normal’ cells.

Examination of the minor splice variant sequences

[81–83] reveals a common N-terminus containing the

mitochondrial targeting signal. The C-terminal peroxi-

somal targeting sequence-1 signal is missing in all splice

variants, implying that they will be exclusively mito-

chondrial, although this has yet to be verified.

The racemase-catalysed reaction requires no cofac-

tors or cosubstrates [1,52,87,88], and involves stereo-

specific removal and addition of a proton. The

formation of the CoA ester facilitates this process by

increasing the basicity of the 2-proton (a-proton) by

reducing the pKa from � 34 to 21 [89]. Although this

simple reaction could be theoretically performed with-

out an enzyme, in practice the rates would be prohibi-

tively slow and the alkali pH values would bring about

hydrolysis of the CoA ester in preference to racemiza-

tion. The reaction is reversible, and for the substrate

containing a single chiral centre, the in vitro equilib-

rium constant has been measured as � 1.5 (ibuprofe-

noyl-CoA with the rat enzyme) [52] in favour of the

(2R)-isomer. As the fatty acyl components of the

substrates ⁄products are enantiomers, the chemical

equilibrium constant might be expected to be close

a-Methylacyl-CoA racemase and cancer M. D. Lloyd et al.
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to 1. This implies that a remote chiral centre in the

CoA moiety favours formation of the R-isomer. Race-

mization is proposed to proceed via an enolate

intermediate, and this is supported by studies using

2-2H1-labelled or 2-3H1-labelled substrates showing

that label is lost during the reaction catalysed by the

rat [53,87], human [88] and Mycobacterium tuberculosis

[90,91] enzymes.

Although no X-ray crystal structure of a human or

mammalian AMACR has been reported, amino acid

sequence homologies show that AMACR is a member

of the formyl-CoA:CoA transferase family (type III

CoA transferases [92]), which includes Escherichia coli

YfdW [93] and the CoA transferase from Oxalo-

bacter formigenes [94]. These enzymes are dimers

whose structures consist of two interlinked rings. Most

recently, X-ray crystal structures of M. tuberculosis ho-

mologues of AMACR, MCR [90] and FAR [95], have

been reported, which possessed the same overall fold.

The structure of MCR was reported in conjunction

with a site-directed mutagenesis study that identified

some of the catalytic residues [90]. The study also

looked at the effects of the equivalent mutations (I56P

and M111P [90]) to those giving rise to AMACR defi-

ciency in humans (S52P and L107P [49]). As expected,

the M111P mutation led to a significant reduction in

catalytic activity (to � 1.6% of wild-type activity).

Unexpectedly, the I56P mutant had 76% activity as

compared to the wild-type enzyme, when almost com-

plete abolition of activity was expected. This anoma-

lous result could reflect differences in the structures

between the human and mycobacterial enzymes, or it

may be that the S52P human mutant is significantly

active and that racemase deficiency results from some

other mechanism, e.g. reduced transcription or transla-

tion, or mRNA or protein instability.

The structural and mutagenic data enable some

mechanistic details about the human AMACR-cataly-

sed reaction to be predicted. However, the primary

sequence identity of human AMACR 1A with these

other enzymes is quite low, e.g. � 30% with MCR

[90] and � 25% with YfdW [93], so any predictions

should be treated with caution. It is noteworthy that

the four important residues identified in MCR [90]

are in regions of relatively high conservation. The

equivalent residue to MCR Arg91 in AMACR 1A is

Lys87; the MCR mutant displays an increased Km

value, suggesting that this residue is involved in CoA

binding [90]. His126 in MCR is equivalent to His122

in AMACR 1A, and is highly conserved not just in

racemases but also in other CoA-utilizing enzymes.

His126 is the second base required for racemization,

and probably stabilizes formation of the carbanionic

intermediate. The residue is hydrogen-bonded to

Glu241 from the second subunit, indicating that the

active site is at the dimer interface [91]. It is note-

worthy that the equivalent residue to MCR Glu241 is

only found in racemase enzymes [90] (Glu237 in

AMACR 1A). The second paper from the same

group [91] reports the structures of MCR complexes

with several acyl-CoA substrates. These structures

support the previous proposals [90], and suggest a

mechanism whereby Asp156 and the His126 ⁄Glu237

are involved in racemization (Fig. 1). The direction of

catalysis appears to be controlled by the protonation

states of the side-chains of these Asp and His resi-

dues [91]. There appears to be little structural change

in the protein upon racemization, with the differences

between the (2R)-substrate and (2S)-substrate arising

due to swapping of the positions of the proton on

the Ca atom and the Cb atom.

Exploitation of AMACR as an anticancer target is

now possible, but surprisingly, only one paper has thus

far appeared in this area [96]. The paper reported com-

petitive inhibitors with Ki values of 0.9–20 lm when

tested against enzyme purified from rat liver, with the

Fig. 1. Active site residues of human

AMACR 1A identified from the Mycobacte-

rium tuberculosis enzyme, MCR [90,91].

The catalytic residue is in green; the oxyan-

ionic intermediate stabilization and proton

acceptor residues are in red; the CoA-bind-

ing residue is in blue. The protonation state

is for the (2S)-substrate to (2R)-substrate

conversion.
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most active compounds inhibiting growth of cancer

cell lines. The potency of inhibition in cells is directly

correlated with levels of AMACR protein in the cells.

These results are encouraging, but a greater under-

standing of the roles of all the human splice variants is

required in order for this approach to be fully

exploited.

Unanswered questions and future work

Dietary branched-chain fatty acids represent a signifi-

cant risk factor for prostate cancer, and the metabolic

pathways responsible for degradation of these fatty

acids are upregulated in cancers. AMACR acts as a

‘gate-keeper’ for b-oxidation. The identification of

multiple splice variants implies a complex pathophysio-

logical role for AMACR, and considering its recently

discovered importance, relatively little biochemical

work has been done. Major outstanding questions in

this regard are whether these splice variants have cata-

lytic activity and what their in vivo roles are in normal

and ⁄or cancer cells. The pathological link between die-

tary branched-chain fatty acids and cancer has not

been determined, so it is not clear why branched-chain

fatty acids appear to be more carcinogenic than

straight-chain fatty acids. Peroxisomal b-oxidation is

not linked to production of ATP in the same way that

it is in mitochondria. The peroxisomal b-oxidation
therefore results in the generation of reactive oxygen

species, such as peroxide, and this probably explains

the requirement for peroxidases, catalases, etc. in per-

oxisomes, from which the organelle gets its name. One

theory on why branched-chain fatty acids are linked to

cancer is that production of reactive oxygen species

results in oxidative stress [97] leading to DNA damage.

Support for this theory comes from a study showing

that ibuprofen (a non-b-oxidizable substrate for

AMACR) is protective against cataracts [98], which

result from oxidative damage of lens proteins. Alterna-

tively, it could be that branched-chain fatty acids or

their metabolites are ligands for receptors involved in

cancer. Phytol, phytanic acid and other branched-chain

lipids are known to be high-affinity ligands for various

receptors [99–104], including the PPARs [105–114] and

retinoid X receptors [115–117], and are known to regu-

late expression of fat-metabolizing enzymes and brown

fat tissue [118]. PPAR-a and PPAR-c receptor agonists

protect against cancer, whereas PPAR-d agonists pro-

mote cancer in some animal models [119]. Phytanic

acid [109] and pristanic acid [113] are agonists of

PPAR-a, but their effects on PPAR-d are unknown.

Support for this model was recently provided by the

observation that increased expression of FALDH-V

protects cells against phytanic acid-induced damage in

rodents [38]. This splice variant of FALDH performs

the pristanal-to-pristanic acid conversion in the a-oxi-
dation pathway, thus facilitating detoxification of phy-

tanic acid and its phytol precursor. However, this area

is complicated by the considerable differences between

rodent and human PPAR pathways as well as between

tissues. For example, phytol [111,114] may be a

PPAR-a ligand in human cell lines, whereas phytanic

acid is a PPAR-a ligand in mice [103] but its effects in

humans are controversial. It could be that branched-

chain fatty acids or their metabolites are agonists for

PPAR-d or antagonists for PPAR-c, and this is the

molecular basis for cancer formation, at least in some

model systems. These theories merit further investiga-

tion and are attractive in the sense that they explain

why particular cancers appear to be promoted, as

prostate and breast tissues are particularly active in fat

metabolism.

Selective inhibition of specific splice variants could

lead to new anticancer therapies. The use of AMACR

inhibitors is particularly attractive, as protein expres-

sion levels can be measured and appear to correlate

with disease progression. The fact that the target of

these inhibitors is used as a marker raises the possi-

bility of molecular targeted therapies, especially in

those cancers where AMACR is overproduced in a

subpopulation of patients (e.g. gastric adenocarcino-

mas [61]). AMACR-knockout mice appear to healthy

in the absence of branched-chain fatty acids in the

diet, but develop symptoms in their presence (phytol)

[51]. Some adult Refsum’s disease symptoms can be

reduced in human patients on a low-phytanic acid

diet [2], suggesting that the undesirable side-effects of

AMACR inhibition could be minimized by dietary

therapy. However, in order for AMACR to be devel-

oped as a successful anticancer drug target, the cata-

lytic activities of the various splice variants need to

be determined. If AMACR inhibitor therapy is to be

used more generally in anticancer therapy, the expres-

sion of the various splice variants in other cancers

will need to be determined. In the shorter term, the

identification of AMACR polymorphisms increasing

prostate cancer risk [78,79] could provide screening

opportunities.

Prostate cancer is an important and complex disease

of Western society, with 218 890 men in the USA

being diagnosed in 2007, with 27 050 deaths (9% of all

male cancer deaths) [120], and 31 900 men in the UK

being diagnosed (23% of all male cancers) in 2003

(Cancer Research UK: http://www.cancerhelp.org.uk/

help/default.asp?page=2656). Preliminary epidemio-

logical studies have shown that lower phytanic acid
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intakes are associated with lower rates of prostate can-

cer [73,121]. Diets with low phytanic acid have been

available for many years for the treatment of adult

Refsum’s disease [122–124]. A recent study was per-

formed as part of an EU project on adult Refsum’s

disease, and the website contains a phytanic acid calcu-

lator for various foodstuffs in resources for both

patients and clinicians (http://www.refsumdisease.org).

A reduced phytanic acid diet could be of benefit to

men at risk of developing prostate cancer and be of

use for prevention of other major cancers, such as

those of breast and colon. Plasma phytanic acid levels

are strongly associated with dairy fat intake [32], with

the levels found in meat eaters, lacto-ovo-vegetarians

and vegans being 5.77, 3.93 and 0.87 lm, respectively.

Restriction of intake of dairy fats, animal fats and fish

oils is a simple and effective method of reducing phy-

tanic acid intake.

In the wider context, branched-chain fatty acid

metabolism could have wide-reaching implications.

The number of structures that could be theoretically

metabolized by this route is large (in some cases, preli-

minary metabolism by x-oxidation is required). These

include fat-soluble vitamins such as vitamin E and

many plant sterols and fats. This implies that a large

number of dietary fats could be either protective or

procarcinogenic.
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