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A Metric Approach to nD Images Edge Detection
With Clifford Algebras

Thomas Batard · Christophe Saint-Jean · Michel Berthier

Abstract The aim of this paper is to perform edge de-

tection in color-infrared images from the point of view

of Clifford algebras. The main idea is that such an im-
age can be seen as a section of a Clifford bundle associ-

ated to the RGBT -space (Red, Green, Blue, Temper-

ature) of acquisition. Dealing with geometric calculus

and covariant derivatives of appropriate sections with
respect to well-chosen connections allows to get vari-

ous color and temperature information needed for the

segmentation. We show in particular how to recover

the first fundamental form of the image embedded in a

LSHT -space (Luminance, Saturation , Hue, Tempera-
ture) equipped with a metric tensor. We propose appli-

cations to color edge detection with some constraints

on colors and to edge detection in color-infrared images

with constraints on both colors and temperature. Other
applications related to different choices of connections,

sections and embedding spaces for nD images may be

considered from this general theoretical framework.
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1 Introduction

Clifford algebras appear to be a powerful tool in a wide

range of applications to computer sciences, see [28] for
examples. In particular, the approach of Sangwine &

al. of color images segmentation with quaternions [25],

[12] can be considered from this viewpoint since H (the

algebra of quaternions) is the Clifford algebra R0,2 and

H
1 (the group of unit quaternions) is the spinor group

Spin(3). Sangwine’s idea is to associate a pure imag-

inary quaternion to each color of the RGB cube and

then make geometric transformations on colors using

the product of H to compute some kind of gradient.

Working in the framework of Clifford algebras has sev-

eral advantages:

- If we consider a color as a vector of the algebra R3,0

we can use the richness of the structure of this latter.
In fact R3,0 is of dimension 8 over R and contains el-

ements of different degrees (scalars, vectors, bivectors

and a pseudoscalar) that carry different information.

- We can benefit from the efficiency of the calculus
based on the geometric product when dealing with gen-

eral images with values in R
n. As it is well known, ge-

ometric transformations can be encoded without coor-

dinates by algebraic formula using for example spinors.
We will consider in the sequel the example of color-

infrared images where n = 4.

- A Clifford algebra is defined with respect to a cho-

sen metric of a vector space. Conjointly with the two

preceding points, it’s an asset when dealing with met-
ric approach of edge detection. In particular, when the

metric of the ambient space varies with the point, the

Clifford algebras bundle setting arises quite naturally.

The metric approach we adopt in this paper was in-

troduced by Di Zenzo [10], who considered implicitely

a n-channels image as an embedded two-dimensional
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surface in the Euclidean space R
n+2. A measure of the

“edge strength” and the direction wherein it is highest

at each point are defined. This is done by computing

respectively the highest eigenvalue of the first funda-

mental form of the surface and the corresponding eigen-
vector. Using this method, Cumani [9] gives an explicit

definition of an edge point, that is a point where the first

directional derivative of the highest eigenvalue in the di-

rection given by the highest eigenvector has a transver-
sal zero-crossing. However, when n > 1, the smallest

eigenvalue is no more constant; that’s why Sapiro [26]

suggests as a measure of the “edge strength” the square

root of the difference of the two eigenvalues.

The idea of embedding the surface representing an im-

age in a space endowed with a non-Euclidean metric is
proposed in [27], and is applied for color edge detec-

tion in [22]. In this latter, the author describes colors

with hyperbolic coordinates and endows R
5 with a cor-

responding metric.

It is our purpose to start from this general definition of

a nD image and to develop a general approach of edge
detection in color-infrared images based on metric in-

formation. Indeed, we define an image as a section of a

fiber bundle. The fibers are Clifford algebras related to

the acquisition space RGBT of the color-infrared im-

age endowed with a metric that may vary with the base
point. We show that it is possible, staying in the acqui-

sition space, to recover the metric data of the image

ϕ : (x, y) 7−→ (x, y, l, s, h, t)

embedded in a LSHT -space (l, s, h, t, denotes respec-

tively the luminance, the saturation, the hue and the

temperature) equipped with a metric tensor. This is
done in both continuous and discrete cases by consider-

ing two sections of the Clifford bundle and their covari-

ant derivatives with respect to a well chosen connection.

We may insist on the following facts:

- We never compute explicitely the derivatives of lu-

minance, saturation, hue and temperature whereas the
approach based on surfaces does.

- The information contained in the various channels (for

example color and temperature in application 4.3) is

mixed to adjust the coefficients of the metric of the
embedding space. That is why the process we propose

can’t be achieved with marginal approaches.

This paper is organized as follows. Sect. 2 is mainly de-

voted to basic notions and results on Clifford algebras

and spinor groups. We show also how to derive the tran-

sition formulas from RGBT to LSHT with geometric
calculus. In Sect. 3, we first compute the coefficients

of the first fundamental form of a color-infrared im-

age defined as a two-dimensional surface embedded in

a LSHT -space equipped with a metric tensor. Then,

we show how to interpret such an image as a section

of a Clifford algebras bundle. The rest of the section

is devoted to the continuous and discrete computations

of the coefficients of the first fundamental form as ex-
plained above. In Sect. 4, we propose three applications:

a comparison with the Di Zenzo’s method, a detection

of transitions between colors of a given hue interval with

respect to their saturation levels and an edge detection
in a color-infrared image with constraints on color and

temperature of objects. We discuss also other appli-

cations, related to different choices of connections and

sections, to show the genericity of the proposed method.

In particular, segmentations of shadows and highlights
are briefly investigated.

2 Clifford algebras and color-infrared spaces

2.1 Clifford algebras

The aim of this section is to give basic definitions and

results concerning Clifford algebras and spinor groups.

We refer the reader to [8], [21], [19], [20], [3], [24], [23],

[7] for further details on history, definitions, results and

applications.

Let V be a vector space of finite dimension n over R

equipped with a quadratic form Q. We are looking for

an algebra Cl(V,Q) that contains V and in which the

following relation holds for all v in V :

v2 = Q(v).1

This implies in particular that for all u and v in V :

uv + vu = 2B(u, v).1

where B denotes the symmetric bilinear form corre-

sponding to Q. We can decompose the product uv into

uv = B(u, v).1 + u ∧ v
by defining

u ∧ v =
1

2
(uv − vu).

This shows that Cl(V,Q) contains with scalars and vec-

tors other elements called bivectors and generally multi-

vectors which appear to generalize the notion of vector.

It is possible to add and multiply all the elements, the
multiplication being not commutative.

As an example, let us mention that the Clifford algebra

of R
2 with the quadratic form

Q(u1, u2) = −u2
1 − u2

2

is isomorphic to the algebra of quaternions: An isomor-

phism is given by sending respectively 1, e1, e2 and e1e2
to 1, i, j and k).
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Formally speaking, the Clifford algebra Cl(V,Q) is the

solution of the following universal problem. We search

a couple (Cl(V,Q), iQ) where Cl(V,Q) is an R-algebra

and iQ : V −→ Cl(V,Q) is R-linear satisfying:

(iQ(v))2 = Q(v).1

for all v in V (1 denotes the unit of Cl(V,Q)) such that

for each R-algebra A and each R-linear map f : V −→
A with

(f(v))2 = Q(v).1

for all v in V (1 denotes the unit of A), then there exists

a unique morphism

g : Cl(V,Q) −→ A

of R-algebras such that f = g ◦ iQ.

The solution is unique up to isomorphisms and is given

as the (non commutative) quotient

T (V )/(v ⊗ v −Q(v).1)

of the tensor algebra of V by the ideal generated by

v ⊗ v − Q(v).1, where v belongs to V (see [24] for a

proof).

It is well known that there exists a unique anti-automor-

phism t on Cl(V,Q) such that

t(iQ(v)) = iQ(v)

for all v in V . It is called reversion and usually denoted

by x 7−→ x†, x in Cl(V,Q). In the same way there exists
a unique automorphism α on Cl(V,Q) such that

α(iQ(v)) = −iQ(v)

for all v in V . In the rest of this paper we write v

for iQ(v) (according to the fact that iQ embeds V in

Cl(V,Q)).

As a vector space Cl(V,Q) is of dimension 2n on R and

a basis is given by the set

{ei1ei2 · · · eik
, i1 < i2 < . . . < ik, k ∈ {1, . . . , n}}

and the unit 1. An element of degree k
∑

i1<···<ik

αi1...ik
ei1ei2 · · · eik

is called a k-vector. A 0-vector is a scalar and e1e2 · · · en

is called the pseudoscalar. We will denote 〈x〉k the com-

ponent of degree k of an element x of Cl(V,Q).

The inner product of xr of degree r and ys of degree s
is defined by

xr · ys = 〈xrys〉|r−s|

if r and s are positive and by

xr · ys = 0

otherwise.

The outer product of xr of degree r and ys of degree s

is defined by

xr ∧ ys = 〈xrys〉r+s

These products extend by linearity onCl(V,Q). Clearly,

if a and b are vectors of V , then the inner product of a

and b coincides with the scalar product defined by Q.

When it is defined (for example when x is a versor and
Q is positive) we denote

‖x‖ =
√
xx†

and say that x is a unit if xx† = ±1.

In the following, we deal in particular with the Clifford

algebra of the Euclidean R
n denoted by Rn,0. R

k
n,0 is

the subspace of elements of degree k and R
∗
n,0 is the

group of elements that admit an inverse in Rn,0.

Let a be a vector in Rn,0 and B be the k-vector a1 ∧
a2∧· · ·∧ak, then the orthogonal projection of a on the

k-plane generated by the ai’s is the vector

PB(a) = (a · B)B−1

The vector

a− (a ·B)B−1 = (a ∧B)B−1

is called the rejection of a on B.

2.2 The spinor group Spin(n)

It is defined by

Spin(n) =

{
2k∏

i=1

ai, ai ∈ R
1
n,0, ‖ai‖ = 1

}

or equivalently

Spin(n) = {x ∈ Rn,0, α(x) = x, xx† = 1,

xvx−1 ∈ R
1
n,0 ∀v ∈ R

1
n,0}

It is well known that Spin(n) is a connected compact

Lie group that universally covers SO(n) (n ≥ 3). One

can verify that Spin(3) is the group

{a1 + be1e2 + ce2e3 + de3e1, a
2 + b2 + c2 + d2 = 1}

and is isomorphic to the group H
1 of unit quaternions.

It is also a classical result that Spin(4) is isomorphic

to Spin(3)×Spin(3) (see [23] for more information on

spinors in R
3 and R

4).
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The Lie algebra of Spin(n) is R
2
n,0 with Lie bracket

A×B = AB −BA

As the exponential map from its Lie algebra to Spin(n)
is onto (see [18] for a proof), every spinor can be written

as

S =

∞∑

i=0

1

i!
Ai

for some bivector A.

From Hestenes and Sobczyk [21], we know that every
A in R

2
n,0 can be written as

A = A1 +A2 + · · · +Am

where m ≤ n/2 and

Aj = ‖Aj‖ajbj , j ∈ {1, . . . ,m}

with

{a1, . . . , am, b1, . . . , bm}

a set of orthonormal vectors. Thus

AjAk = AkAj = Ak ∧Aj

whenever j 6= k and

A2
k = −‖Ak‖2 < 0

This means that the planes encoded by Ak and Aj are

orthogonal and implies that

eA1+A2+···+Am = eAσ(1)eAσ(2) . . . eAσ(m)

for all σ in the permutation group S(m). Actually, as

A2
k is negative we have

eAi = cos(‖Ai‖) + sin(‖Ai‖)
Ai

‖Ai‖

The corresponding rotation

Ri : x 7−→ e−AixeAi

acts in the oriented plane defined by Ai as a plane ro-

tation of angle 2‖Ai‖. The vectors orthogonal to Ai are

invariant under Ri.

It then appears that any element R of SO(n) is a com-
position of commuting simple rotations, in the sense

that they have only one invariant plane. The vectors

left invariant by R are those of the orthogonal subspace

to A. If m = n/2 this latter is trivial. The previous de-
composition is not unique if ‖Ak‖ = ‖Aj‖ for some j

and k with j 6= k. In this case infinitely many planes

are left invariant by R.

2.3 Color-infrared spaces

As mentioned before, Sangwine’s approach of edge de-

tection in color images relies on the fact that H0 (the

set of pure imaginary quaternions) is isomorphic to R
3

equipped with an action of H
1. In the same way, a color

image can be treated as an application from R
2 to R

3,
this latter being embedded in R3,0 and equipped with

an action of Spin(3). It is natural to extend this ap-

proach to nD images replacing R
3 by R

n and R3,0 by

Rn,0. We focus here on color-infrared images.

Beside RGB color space we consider HSL color space

defined as follows. We set first


Y

C1

C2


 =




1/3 1/3 1/3
1 −1/2 −1/2

0 −
√

3/2
√

3/2





r

g
b




Then the luminance l, the saturation s and the hue h

are respectively given by

l = Y

s =
√
C2

1 + C2
2

h =

{
arccos(C2/s) if C2 > 0

2π − arccos(C2/s) otherwise

As it is well known, color spaces based on luminance
(value), saturation and hue are more suitable to per-

ception [13].

Let us denote CT the Clifford algebra of (R4, Q) with

Q the positive definite quadratic form given by



β/3 0 0 0

0 β/3 0 0

0 0 β/3 0
0 0 0 δ




Thus e21 = e22 = e23 = β/3 and e24 = δ. Given a color-

infrared vector a = r(a)e1 +g(a)e2 +b(a)e3 + t(a)e4, its

color component is given by

c(a) = r(a)e1 + g(a)e2 + b(a)e3

= a · (e1e2e3)(e1e2e3)−1

Let us denote

µ =
e1 + e2 + e3√

β

the unit vector generating the achromatic axis, and v(a)

the rejection of c(a) on µ, called the chrominance vec-

tor of a. Simple computations show that the luminance

l(a), the saturation s(a) and the hue h(a) of a can be
written

l(a) = 1√
β
‖(a · µ)µ−1‖

= 1√
β

√
((a · µ)µ−1)2
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s(a) = 3√
2β
‖(c(a) ∧ µ)µ−1‖

= 3√
2β

√
((c(a) ∧ µ)µ−1)2

h(a) = 2π + sign(g(a) − b(a)) arccos
( v(a)

‖v(a)‖ · ρ
)

with ρ the unit chrominance vector of the red color and

h(a) defined modulo 2π. In other words, h(a) is the ori-

ented angle from ρ to v(a).

Moreover, the dual of the achromatic axis in the vec-

tor space generated by (e1, e2, e3) is a plane, called the

chrominance plane, generated by the bivector

e1e2 − e1e3 + e2e3

and we have

v(a) = a · (e1e2 − e1e3 + e2e3) (e1e2 − e1e3 + e2e3)
−1

The chrominance vector of a is therefore the orthogonal
projection of a on the chrominance plane.

3 Edge detection in color-infrared images

3.1 First fundamental form of a surface and edge
detectors

We recall in this subsection how to define an edge de-

tector using metric information given by the first funda-

mental form (see [10], [9], [26] and [27], [29] for related

works on edge-preserving denoising). For this we con-
sider a color-infrared image as a Ck map, k ≥ 1,

ϕ : (x, y) 7−→ (x, y, l(x, y), s(x, y), h(x, y), t(x, y))

from a rectangle D to R
6. In the following q denotes a

point in D with image p = ϕ(q) under the map ϕ. Note

that we consider the hue h with values in the universal

cover R of R/2πZ. For a coherent definition of ϕ, we
take h = 0 when s = 0. As we will see below, this has

no consequences on the edge detection.

To take into account the fact that the hue is irrelevant

for small values of the saturation, we introduce follow-

ing Carron [5] the function

f(s) =
1

π

(π
2

+ arctan(β(s− S0))
)
.

f measures the relevance of hue with respect to satura-

tion level. The shape of f is controlled by two parame-
ters S0 and β. S0 is the saturation level corresponding

to the medium relevance of hue: f(S0) = 0.5. The pa-

rameter β is the slope of the function around S0. In the

sequel we choose S0 = 50 and β = 0.07. The reader

may find in [6] similar constructions. We consider also

the domain

Ω(p) = {(x, y), ‖(x, y) − ϕ−1(p)‖∞ ≤ 1}

and set

ξ(p) = exp

(
1

4

∫

Ω(p)

ln(f ◦ s(x, y))dxdy
)

if s(u, v) 6= 0 for all (u, v) in Ω(p) and ξ(p) = 0 other-

wise.

Next, we endow R
6 with the following metric

(
1 0

0 1

)
⊕




λ(p) 0 0 0

0 λ(p) 0 0

0 0 κ(p)ξ(p) 0

0 0 0 η(p)




where λ, κ and η are positive functions. Strictly speak-

ing, as ξ can vanish, this metric is not Riemannian.

However the metric induced on the surface ϕ(D) is Rie-

mannian: It is the first fundamental form of ϕ(D), usu-

ally denoted by

I(p) =

(
E(p) F (p)
F (p) G(p)

)

The coefficients E, F and G are given by

E(p) = 1 + λ(p)l2x(p) + λ(p)s2x(p)

+κ(p)ξ(p)h2
x(p) + η(p)t2x(p)

F (p) = λ(p)lx(p)ly(p) + λ(p)sx(p)sy(p)

+κ(p)ξ(p)hx(p)hy(p) + η(p)tx(p)ty(p)

G(p) = 1 + λ(p)l2y(p) + λ(p)s2y(p)

+κ(p)ξ(p)h2
y(p) + η(p)t2y(p)

We denote θ+(p) and θ−(p), θ+(p) ≥ θ−(p), the two

eigenvalues of I(p) and Θ+(p), Θ−(p) the corresponding

eigenvectors. The edge detector is then given by

̟(p) =
√
θ+(p) − θ−(p)

More precisely, we say that q in D is an edge point if

one of the following conditions holds:

1. The function ̟ has a local maximum at ϕ(q) in
the direction given by Θ+(ϕ(q));

2. Θ+(ϕ(q)) > 1 and q is an endpoint of a curve of

points satisfying 1.
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3.2 Clifford bundle and color-infrared image

We explain how to consider a color/infrared image as

a section of a Clifford bundle. First of all, let us recall

some definitions.

A vector bundle of rank n over a surface S (or more

generally over a manifold) consists of a family {Ep}p∈S

of n-dimensional vector spaces parametrized by S to-
gether with a differentiable manifold structure on

E =
⋃

p∈S

Ep

that satisfy the following conditions.
- The projection map π : E −→ S taking Ep to p is

differentiable (Ep is called the fiber above p).

- For every p in S, there exists an open set U in S

containing p and a diffeomorphism

ϕU : π−1(U) −→ U × R
n

taking the vector space Ep isomorphically onto {p} ×
R

n. The diffeomorphism ϕU is called of trivialization of

E over U , and R
n the typical fiber. If moreover there

exists a trivialization over S, we say that E is a triv-

ial vector bundle. Two examples of major importance

are the tangent and cotangent bundles, TS and T ∗S,

corresponding respectively to Ep = TpS (the tangent
space to S at p) and Ep = T ∗

pS (the cotangent space to

S at p). We denote Γ (S,E) the module of sections of

E over S.

Vector bundles are particular cases of fiber bundles,

where we only require the fibers to be topological spaces.
In the sequel, we will sometimes use the term fiber bun-

dle when talking about the Clifford bundle we consider.

A section σ of the vector bundle E over S is a dif-
ferentiable map

σ : S −→ E

such that σ(p) belongs to Ep for all p in S. It is well
known that sections of TS, resp. T ∗S, correspond to

vector fields, resp. 1-forms, on S.

One more ingredient that is used in the sequel is the

notion of connection (see [14]). A connection ∇ on a

fiber bundle E is an operator taking sections σ of E

into E-valued 1-forms ∇σ such that the Leibniz rule
holds; if f is a function, then

∇(fσ) = f∇σ + σ ⊗ df.

A connection is essentially a way of differentiating sec-
tions. To any connection we associate covariant deriva-

tives that generalize to vector bundles the notion of

directional derivatives on vector-valued functions.

Lots of computations we make in the next subsection

necessitate to deal with tensor products, the definition

and properties of which can be found in [1] and [24].

Let ‖ ‖2 be the Euclidean norm on R
n. Keeping the

notations of 3.1, we associate to each point q of D the
Clifford algebra CT (q) of the four-dimensional vector

space containing the RGBT -space endowed with the

metric Q(q)




λ(q)/3 0 0 0

0 λ(q)/3 0 0
0 0 λ(q)/3 0

0 0 0 η(q)




(compare with Sect. 2.3 : β is replaced by λ(q) and δ is

replaced by η(q)). Let CT (D) be the disjoint union of
CT (q) for q in D.

Proposition 1 CT (D) with the projection

π : CT (D) −→ D

that maps ζ ∈ CT (q) to q is a trivial vector bundle

(CT (D), D, π) with typical fiber Cl(R4, ‖ ‖2).

Proof We have to show that there exists a diffeomor-

phism Φ from π−1(D) onto D×Cl(R4, ‖ ‖2) such that

Φ ◦ p1 = π where p1 denotes the projection on the first

factor. As CT (q) is isomorphic to Cl(R4, ‖ ‖2) by some

Φq for all q in D, we can define Φ by

Φ : (v ∈ CT (q)) 7−→ (q, Φq(v))

It is clearly a diffeomorphism. ⊓⊔

In the sequel, we will call such a vector bundle a Clif-

ford algebras bundle or Clifford bundle, since the fibers

(those above D and the typical fiber) are endowed with
a Clifford algebra structure. In the litterature, when

talking about Clifford bundles, we often mean fiber

bundles where the fibers are Clifford algebras and the

isomorphisms respect the Clifford algebra structure. The

situation is different in our case since the isomorphisms
are vector space isomorphisms.

A color-infrared image I is now considered as a section

q ∈ D 7−→ r(q)e1(q) + g(q)e2(q) + b(q)e3(q) + t(q)e4(q)

of CT (D).

From the fact that (CT (D), D, π) is trivial we know

that any connection on it can be written as

∇ = d+ ω
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for some ω in Γ (D,T ∗D ⊗ End(CT (D)), d being the

exterior differential [17]. If

X = (X1, X2)

is a vector field on D and

Y = Y01 + Y1e1 + . . .+ Y15e1e2e3e4

is a section of CT (D) then

(ω(X)Y )j =
15∑

k=0

(Γ j
1,kX1 + Γ j

2,kX2)Yk

so that the connection is entirely determined by the

symbols Γ k
i,j , i = 1, 2 and j, k = 0, . . . 15.

In the next paragraph we deal with the following three

objects:

i. The connection ∇̃ defined by

Γ k
ij =

{
∂iλ
λ

if k = j ∈ {6, 7, 9}
0 otherwise

ii. The section ψ of (CT (D), D, π) given by

ψ = S†IS

with

S = exp

[
−h

2

(
e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)]

iii. The section γ of (CT (D), D, π) given by

γ =
v

‖v‖ρ

where ρ is the unit chrominance vector of the red color,
v is the chrominance vector, h is the hue (see Sect. 2.3)

and ‖ ‖ means that we take the norm of each fiber

π−1(q).

3.3 Computing E, F , G with ∇̃

The main result of this part is that the preceding coef-

ficients E, F and G can be computed using covariant

derivatives with respect to ∇̃.

Proposition 2 Let

i. P1 (resp. P2) be the section of End(CT (D)) such
that P1(q) (resp. P2(q)) is the orthogonal projection

on the plane generated by the luminance and the tem-

perature (resp. on the chrominance plane) in the fiber

π−1(q);
ii. dx (resp. dy) be the canonical CT (D)-valued 1-

form dx⊗1 (resp. dy⊗1) and X (resp. Y ) be the vector

field on D of coordinates (1, 0) (resp. (0, 1));

iii. E, F , G be the coefficients of the first fundamen-

tal form of ϕ(D) (see Sect. 3.1) and χ be the CT (D)-

valued symmetric tensor of rank 2:

χ = dx⊗dx+ dy⊗dy + P1(∇̃ψ)P1(∇̃ψ)+

+
9

2
P2(∇̃ψ)⊗P2(∇̃ψ) − κξ(γ†∇̃γ)⊗(γ†∇̃γ)

then, under the identification of R and its injection into

a Clifford algebra, we have

E = χ(X ⊗X) F = χ(X ⊗ Y ) G = χ(Y ⊗ Y )

(see Sect. 3.1 for the definitions of κ and ξ). In other

words, χ may be viewed as the metric on the surface

ϕ(D).

Remarks on the notations. As it is mentioned at the

end of the Appendix, the symbol ⊗ denotes the tensor

product over the ring of sections of CT (D), whereas the

symbol ⊗ denotes the tensor product over the ring of

R-valued functions on D. P1(∇̃ψ)P1(∇̃ψ) is the sym-
metric product we define in the Appendix of P1(∇̃ψ) by

itself.

Proof From Sect. 3.2 we know that S is a Spin(4)-

valued section whose action on I for each q ∈ D, namely

S(q)†I(q)S(q), is a rotation (see Sect. 2.3). We explicit

this rotation.
The 4-dimensional vector subspace of CT (q) isomorphic

to R
1
4,0 by trivialization can be decomposed into two or-

thogonal planes:

i. The plane generated by the luminance and the tem-
perature components, represented by the bivector

e1(q)e4(q) + e2(q)e4(q) + e3(q)e4(q);

ii. The chrominance plane represented by the bivector

e1(q)e2(q) − e1(q)e3(q) + e2(q)e3(q).

From this we deduce that the rotation lets the lumi-
nance and temperature parts of I(q) invariant and acts

on the chrominance plane as a rotation of angle −h(q).
That is, it sends the chrominance vector v(q) on the

vector ‖v(q)‖ρ(q).

Since P1 and P2 are linear maps, we have

d(Pi(ψ)) = Pid(ψ) i = 1, 2

From the definition of ∇̃, it leads to

Pi(∇̃ψ) = ∇̃Pi(ψ)

Then

P1(∇̃ψ) = ∇̃P1(ψ)

= ∇̃( l(e1 + e2 + e3) + te4)
= dl ⊗ (e1 + e2 + e3) + dt⊗ e4
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hence

P1(∇̃ψ)P1(∇̃ψ) = dl ⊗ dl ⊗ (e1 + e2 + e3)
2

+
1

2
(dl ⊗ dt+ dt⊗ dl) ⊗ (e1 + e2 + e3)e4

+
1

2
(dt⊗ dl + dl ⊗ dt) ⊗ e4(e1 + e2 + e3)

+dt⊗ dt⊗ (e4)
2

So, we have

P1(∇̃ψ)P1(∇̃ψ) = dl ⊗ dl ⊗ λ+ dt⊗ dt⊗ η

Simple computations show that ρ = σ/
√
λ with

σ =
√

2e1 −
√

2

2
e2 −

√
2

2
e3

then

P2(∇̃ψ) = ∇̃
(

‖v‖σ√
λ

)

=
(
d‖v‖√

λ

)
⊗ σ + ‖v‖√

λ
∇̃σ

=
(
d‖v‖√

λ

)
⊗ σ

Recall that ‖v‖ =
√

2
3

√
λs to obtain

P2(∇̃ψ) =

√
2

3
ds⊗ σ

which leads to

P2(∇̃ψ)⊗P2(∇̃ψ) = 2
9ds⊗ ds⊗ σ2

= 2
9ds⊗ ds⊗ λ

The section γ can be decomposed as

γ =
v

‖v‖ · ρ+
v

‖v‖ ∧ ρ

Since
v

‖v‖ · ρ = cos(h)

and

v

‖v‖ ∧ ρ = sin(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)

we have then

γ = cos(h) + sin(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)

The expression of ∇̃γ is therefore

∇̃γ = −dh⊗ sin(h) + cos(h)∇̃1

+dh⊗ cos(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)

+
√

3 sin(h)∇̃
(e1e2

λ
− e1e3

λ
+
e2e3
λ

)

However by definition of ∇̃

∇̃1 = ∇̃
(e1e2

λ

)
= ∇̃

(e1e3
λ

)
= ∇̃

(e2e3
λ

)
= 0

and so

∇̃γ = −dh⊗sin(h)+dh⊗cos(h)
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)

This implies that

γ†∇̃γ =
[
cos(h) − sin(h)

( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)]
×

[
(−dh⊗ sin(h) + dh⊗ cos(h)

( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)]

and

γ†∇̃γ = dh⊗
( e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)

Consequently

(γ†∇̃γ)⊗(γ†∇̃γ) = −dh⊗ dh⊗ 1

Let Z1 = (Z11, Z12) and Z2 = (Z21, Z22) be two vector

fields on D, then by definition of χ:

χ(Z1 ⊗ Z2) = dx⊗dx(Z1 ⊗ Z2) + dy⊗dy(Z1 ⊗ Z2)

+P1(∇̃ψ)P1(∇̃ψ) (Z1 ⊗ Z2)

+
9

2
P2(∇̃ψ)⊗P2(∇̃ψ) (Z1 ⊗ Z2)

−κξ(γ†∇̃γ)⊗(γ†∇̃γ) (Z1 ⊗ Z2)

From what we have shown above, we have

χ(Z1 ⊗ Z2) = dx⊗dx(Z1 ⊗ Z2) + dy⊗dy(Z1 ⊗ Z2)

+dl⊗ dl ⊗ λ (Z1 ⊗ Z2) + dt⊗ dt⊗ η (Z1 ⊗ Z2)

+ds⊗ ds⊗ λ (Z1 ⊗ Z2) + κξ dh⊗ dh⊗ 1 (Z1 ⊗ Z2)

Hence,

χ(Z1 ⊗ Z2) = Z11Z21 + Z12Z22 + dl(Z1)dl(Z2)λ

+dt(Z1)dt(Z2)η + ds(Z1)ds(Z2)λ+ κξdh(Z1)dh(Z2)

Taking Z1 = Z2 = X , we get the expression of E.

Similarly, taking Z1 = Z2 = Y , we get the expression

of G, and from Z1 = X,Z2 = Y or Z1 = Y, Z2 = X , we

get the expression of F . ⊓⊔
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3.4 Discretization and parallel transport

In practice, if an image is represented as a two-dimensi-

onal surface S parametrized by a function ϕ on a do-

main D, only the points of S corresponding to integer

coordinates points of D are to be taken into account.

This implies that derivatives of ϕ must be discreted.
For 1D images (i.e. grey level images) Prewitt, Sobel

or Canny-Deriche filters can be used to make the ap-

proximation. This also may be applied more generally

to nD images by computing the discrete derivatives of
each component of ϕ.

However, in the vector bundles setting we consider in

this paper, such methods are irrelevant since they ne-

cessitate to do operations (additions) between objets

(multivectors) which don’t belong to the same space
(they live in different fibers). To solve this problem, we

move these objects using the so-called parallel trans-

port so that they can be considered as living in the

same fiber.

Let us remind the definition of parallel transport. Let

(E, π,M) be a vector bundle endowed with a connec-

tion ∇, γ : J ⊂ R → M a curve in M and v a vector

of π−1(γ(0)). The parallel transport of v along γ is the
solution τγ(t, v) of the following ordinary differential

equation: {
∇γ̇(t)τγ = 0 ∀t ∈ J

τγ(0, v) = v

The parallel transport appears classically when deal-
ing with geodesics on manifolds. More precisely, con-

sider the tangent bundle (TM, π̃,M) of a manifold M

(not necessiraly equipped with a metric) endowed with

a connection ∇. A geodesic is defined as a curve γ : J →
M whose tangent vector field γ̇ : J → TM is parallel

along γ:

∇γ̇(t)γ̇ = 0 ∀t ∈ J

The usual notion of geodesic over surfaces arises from

the Levi-Cevita connection[11] induced by the first fun-

damental form of the surface.

Let us now explain how to compute the coefficients E,

F , and G of Sect. 3.3 when dealing with the integer

coordinates points of D. In what follows, we use the

matricial coordinates system.

We denote

γ
(i,j)

(1,0) , γ
(i,j)

(0,1) , γ
(i,j)

(1,1) , γ
(i,j)

(1,−1)

the classes of curves on D from the point (i, j) that

satisfy:

γ̇
(i,j)

(1,0) (t) = (1, 0), γ̇
(i,j)

(1,0) (t) = (0, 1),

γ̇
(i,j)

(1,1) (t) = (1, 1), γ̇
(i,j)

(1,−1)(t) = (1,−1)

for all t. The corresponding parallel transports (with

respect to ∇̃)

τ
(i,j)

(1,0) (t, .), τ
(i,j)

(0,1) (t, .), τ
(i,j)

(1,1) (t, .), τ
(i,j)

(1,−1)(t, .)

are linear maps from π−1(i, j) to π−1(γ
(i,j)

(1,0) (t)) resp.

π−1(γ
(i,j)

(0,1) (t)), π−1(γ
(i,j)

(1,1) (t)) and π−1(γ
(i,j)

(1,−1)(t)).

By definition of ∇̃, if γ is one of the preceding classes

of curves and w is a vector of π−1(γ(0)), i.e

w = w1e1(γ(0)) + w2e2(γ(0))

+w3e3(γ(0)) + w4e4(γ(0))

then the parallel transport of w at π−1(γ(t)) is the vec-

tor

w1e1(γ(t)) + w2e2(γ(t))

+w3e3(γ(t)) + w4e4(γ(t))

Let us consider the vector

τ1(i, j) =
1

8

{
τ

(i+1,j−1)
(1,−1) (−1, ψ) + 2τ

(i+1,j)
(1,0) (−1, ψ)

+τ
(i+1,j+1)

(1,1) (−1, ψ) − τ
(i−1,j−1)

(1,1) (1, ψ)

−2τ
(i−1,j)

(1,0) (1, ψ) − τ
(i−1,j+1)

(1,−1) (1, ψ)
}

and the scalar

τ2(i, j) =
1

8
{arccos(a · b)+2 arccos(c ·d)+arccos(e · f)}

where

a =
τ

(i−1,j−1)
(1,1) (1, v)

‖τ (i−1,j−1)
(1,1) (1, v)‖

b =
τ

(i+1,j−1)
(1,−1) (−1, v)

‖τ (i+1,j−1)
(1,−1) (−1, v)‖

c =
τ

(i−1,j)
(1,0) (1, v)

‖τ (i−1,j)
(1,0) (1, v)‖

d =
τ

(i+1,j)
(1,0) (−1, v)

‖τ (i+1,j)
(1,0) (−1, v)‖

e =
τ

(i−1,j+1)
(1,−1) (1, v)

‖τ (i−1,j+1)
(1,−1) (1, v)‖

f =
τ

(i+1,j+1)
(1,1) (−1, v)

‖τ (i+1,j+1)
(1,1) (−1, v)‖

These are elements of π−1(i, j).

The vector τ1(i, j) (resp. the scalar τ2(i, j)) is a dis-

crete approximation of ∇̃ψ (resp. dh⊗ 1) in the direc-
tion given by the tangent vector of coordinates (1, 0) at

(i, j). We obtain thus a discrete version of the coefficient

G of the fundamental form I, namely

Gd = 1 + (P1(τ1))
2 +

9

2
(P2(τ1))

2 + κξτ2
2
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Detailing the computation of Gd, Clifford algebras re-

veal all their assets (at least, the three mentionned in

the Introduction). First, we exploit the efficiency of the

geometric calculus to compute τ1 and τ2 in a concise

way. Indeed, we don’t need matrix representation to
compute the rotations S†IS but only algebraic oper-

ations using spinors. The computation is trivial when

remark that, as

(
e1e2 − e1e3 + e2e3
‖e1e2 − e1e3 + e2e3‖

)2

= −1,

we have

S = cos

(
h

2

)
− sin

(
h

2

)
e1e2 − e1e3 + e2e3

‖e1e2 − e1e3 + e2e3‖

From a generalized directional Sobel filter applied to

S†IS using parallel transport, we obtain τ1 that is a
discrete approximation of the vector-valued section

ly(e1 + e2 + e3) + tye4 +

√
2

3
sy σ

Let us remark that the angle between two chrominance
vectors represents the hue difference between the two

corresponding colors. This allows us to compute hue

discrete derivatives efficiently. Let (i, j) ∈ D, we first

compute chrominance vectors of the 3x3 neighborhood
of (i, j) using the rejection operator of geometric calcu-

lus (Sect. 2.1), and we map them into the fiber π−1(i, j)

by parallel transport. Then, computing some angles

from the inner product of the normalized vectors, we

derive a kind of Sobel mask and we obtain τ2(i, j), that
is a dicrete approximation of hy at (i, j). The way we get

this approximation avoids to compute discrete deriva-

tives of the function (that is the problem of measuring

distances on S1).

As a second asset, we see that all the information we

need to compute Gd may be included into a single

multivector-valued section

τ := τ1 + τ2

which contains a scalar and a vector part. Inversely,
from the multivector τ , we get

τ1 =
t(τ) − α(τ)

2

and

τ2 =
t(τ) + α(τ)

2

where t and α are the extensions of the two morphisms

defined in Sect. 2.1 to CT (D).

At last, we use the computability of the orthogonal pro-

jection operator (Sect. 2.1), and the property of Clifford

algebras that a squared vector gives its squared norm in

the associated quadratic vector space. Indeed we may

compute directly Gd from τ and the functions ξ and κ,
where ξ is fixed (Sect. 2.3) and κ has to be determined

(depends on the chosen edge detection) by the following

formula. We have

Gd = 1 + P1

(
t(τ) − α(τ)

2

)2

+
9

2
P2

(
t(τ) − α(τ)

2

)2

+κξ

(
t(τ) + α(τ)

2

)2

In other words, we compute a discrete approximation

of

1 + λl2y + λs2y + κξh2
y + ηt2y

In the same way, we get a discrete version of the coef-

ficients E and F .

4 Applications

We propose three applications of the computation of χ
of Sect. 3.3: First we compare our approach with the

method developed by Di Zenzo, then we focus on de-

tecting edges in color images with respect to a given hue

interval and saturation levels of colors. The third appli-

cation is devoted to detect edges in color-infrared im-
ages with constraints on color and temperature. Finally

we describe briefly further work on color edges analysis,

related to the classification of edges in function of they

are due to shadows, highlights, or transitions between
objects.

4.1 Comparison with the Di Zenzo gradient

In this part, we first show that we obtain the metric of

the Di Zenzo’s approach by derivating the section repre-

senting a color image with the connection ∇̃ and taking

a well-chosen metric on the fiber bundle. Then, we ex-
plicit the difference between the metric of Di Zenzo and

the one given by Proposition 2.

Di Zenzo’s approach of edge detection is to consider
a color image as a 2-dimensional surface parametrized

by

ϕ : (x, y) 7−→ (x, y, r(x, y), g(x, y), b(x, y))
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embedded in (R5, ‖‖2). Coefficients of the first funda-

mental form are therefore given by:

E
DZ

= 1 + (rx)2 + (gx)2 + (bx)2

F
DZ

= rxry + gxgy + bxby

G
DZ

= 1 + (ry)2 + (gy)
2 + (by)2

Let us consider the Clifford bundle (CT (D), π,D) con-

structed from the metric



1/3 0 0 0

0 1/3 0 0

0 0 1/3 0
0 0 0 η




where η is any strictly positive function, so that the

fiber bundle is well-defined.

Remark 1 As we deal with color images, the values of

η will not affect the result of the edge detection. Note

that we could have constructed a Clifford bundle from

a vector bundle of rank 3. In this paper, we have cho-
sen to consider a color image as the color part of a

color/infrared image so that to make our method rel-

evant to deal more generally with nD images edge de-

tection.

Let I(q) = r(q)e1(q)+g(q)e2(q)+b(q)e3(q)+t(q)e4(q) be

a color/infrared image, seen as a section of CT (D), and
let us denote Icol(q) = r(q)e1(q)+ g(q)e2(q)+ b(q)e3(q)

its color part, that is

Icol = I · (e1e2e3)(e1e2e3)−1

Then, we have

∇̃Icol = dr ⊗ e1 + dg ⊗ e2 + db⊗ e3

and the symmetric product of ∇̃ by itself (see Ap-

pendix) is therefore:

∇̃Icol∇̃Icol = dr ⊗ dr ⊗ 1

3
+ dg ⊗ dg ⊗ 1

3
+ db⊗ db⊗ 1

3

So, using the same notations as in Proposition 2, and

considering the symmetric tensor of rank 2 χ
DZ

defined

by

χ
DZ

= dx⊗dx+ dy⊗dy + 3∇̃Icol∇̃Icol

we get

E
DZ

= χ
DZ

(X ⊗X) F
DZ

= χ
DZ

(X ⊗ Y )

G
DZ

= χ
DZ

(Y ⊗ Y )

Furthermore we can split Icol into

(Icol · µ)µ−1 + (Icol ∧ µ)µ−1 = l(e1 + e2 + e3) + v

Since

∇̃Icol = dl ⊗ (e1 + e2 + e3) + ∇̃v
we see that the method of Di Zenzo deals with the

derivative ∇̃v of the chrominance vector which, by def-

inition of ∇̃, corresponds to the usual derivative of the

vector-valued function v. Moreover, since (e1 + e2 + e3)
and v are orthogonal, then

∇̃Icol∇̃Icol = dl ⊗ dl ⊗ 1 + ∇̃v∇̃v

and

χ
DZ

= dx⊗dx+ dy⊗dy + dl ⊗ dl ⊗ 3 + 3∇̃v∇̃v

From simple computations, we have

E
DZ

= 1 + 3(lx)2 + v2
x

F
DZ

= 3(lxly) + vx · vy

G
DZ

= 1 + 3(ly)
2 + v2

y

If we apply now Proposition 2 for ψ = S†IcolS in the

context of this fiber bundle, the corresponding coeffi-

cients are given by

E = 1 + (lx)2 + (sx)2 + κξ(hx)2

F = lxly + sxsy + κξhxhy

G = 1 + (ly)2 + (sy)2 + κξ(hy)2

and variations of the chrominance part are given by

both variations of saturation and hue components.

We conclude that these two methods differ first by the

weight of the luminance part, then by the metric of

the chrominance part, which is Euclidean for the Di

Zenzo’s method, and Riemannian for the method we
propose (the coefficient ξ of the metric associated to

the hue component varies with the saturation).

Let us consider as an example the case where the hue
is locally constant, i.e. dh = 0, then

∇̃v = d(‖v‖) ⊗ v

‖v‖

and

∇̃v∇̃v = d(‖v‖) ⊗ d(‖v‖) ⊗ 1 = ds⊗ ds⊗ 2

9

The coefficients for the Di Zenzo gradient are therefore

E
DZ

= 1 + 3(lx)2 +
2

3
s2x

F
DZ

= 3(lxly) +
2

3
sxsy
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Fig. 1 Original image

Fig. 2 Edge detection in the hue interval Red-Yellow

G
DZ

= 1 + 3(ly)2 +
2

3
(sy)2

while those we have defined are

E = 1 + (lx)2 + (sx)2

F = lxly + sxsy

G = 1 + (ly)2 + (sy)2

We can see in this very particular case that the two

methods differ from the ratio

weight of luminance/weight of saturation

in the measure of the variations of a color image.

However, let us mention the problem of determining

which one of the two metrics is the most perceptual.
A solution to solve this problem could be to compare

these two metrics with the perceptual metric of Lab

pull-backed on RGB.

4.2 Color edge detection with respect to hue intervals

and saturation levels

The aim of this application is to detect edges charac-

terizing transitions between highly saturated colors of

a given hue interval.

Let Icol(q) = r(q)e1(q) + g(q)e2(q) + b(q)e3(q) be a

section of CT (D) corresponding to the color part of a

color/infrared image, where the coefficients of the met-

ric generating CT (D) are defined as follows. As for this
application, we don’t deal with temperature variations,

η can be taken as any strictly positive function again.

Moreover, since we only consider hue variations, the

choice of κ influences the result, and λ doesn’t. There-
fore let us take λ be any strictly positive function, high

enough so that the norm of a vector at each fiber is

numerically computable. Indeed, we only have to com-

pute the part which contains the information about hue

variations. It is given by 1 + κξτ2
2 (see Sect. 3.4). By

definition of τ2, we compute norms of vectors, which

depend on the value of λ.

In the continuous setting, this information is given by

dx⊗dx+ dy⊗dy − κξ(γ†∇̃γ)⊗(γ†∇̃γ)

This latter can be viewed as the first fundamental form
of the surface parametrized by

ϕ : (x, y) 7→ (x, y, h)

embedded in R
3 equipped with the metric




1 0 0
0 1 0

0 0 κ ξ




Let us now detail the construction of the function κ.

In the sequel, for q ∈ D, we consider the domain

Ω(q) = {(x, y), ‖(x, y) − q‖∞ ≤ 1}

Let θ in [0, 2π]. The unit chrominance vector vθ of hue

θ is

vθ = cos(θ)ρ + sin(θ)ρB

where B is the unit bivector coding the chrominance

plane. The angular distance δ between two hues h3

and h4 may be computed using the corresponding unit

chrominance vectors

δ(h3, h4) = arccos(vh3· vh4)

Let us note h1 and h2 the two hues representing bound-
aries of the given hue interval. We set κ(q) = 1 if

max
x∈Ω(q)

(max(δ(h(x), h1), δ(h(x), h2))) ≤ δ(h1, h2)

and extend κ into a derivable function on [0, π] that is

strictly decreasing on [δ(h1, h2), π].
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In the illustration of this application, h1 = 0 is the

red hue, h2 = π/3 is the yellow hue, and κ equals 0 for

any value greater than π/3.

As we can see Fig. 2, we principally detect edges of

Fig. 1 inside petals. Let us explain this result. First,
due to the definition of κ, as soon as there is a pixel

in the neighborhood of a point q in D whose hue is

not in the interval red-yellow, color variations at q are

not detected. That’s why edges involving green color, as
on stems, are not detected. Then, one may find inside

petals variations between yellow and red hues, which

implies that κ dh is maximal. Moreover, these colors

have almost a full saturation, so ξ almost equals 1. In

the same way, variations where one of the colors has low
saturation are not detected, since ξ decreases strongly

when the surrounding saturation declines. This explains

why transitions between colors of yellow or red hue and

colors which look white are not detected.

4.3 Color/infrared images edge detection

We present here an edge detection combining informa-

tion given by both color and temperature variations

of a scene. It seems to be particulary suitable to de-

tect humans. Indeed, humans may be characterized by

their temperature and the color of their skin. Then,
variations of temperature provide transitions between

humans and their environment. Conjointly, color vari-

ations allow us to have a better description of humans,

by detecting edges inside the regions they determine.
Let us consider the following situation: a man is stand-

ing in front of a wall and is handing a cup of hot coffee

(see Fig. 3). We want to detect edges corresponding to

regions of temperature similar to the temperature of

the human body and of color similar to the color of the
skin, that is his face and his arm (see Fig. 3).

First, let us consider this color-infrared image as a func-

tion D −→ R4,0

I(q) = r(q)e1 + g(q)e2 + b(q)e3 + t(q)e4

Let ζ = ζ1e1 + ζ2e2 + ζ3e3 = Icol(x, y) for (x, y) located

on the face or on the arm and chosen arbitrarily. There-
fore ζ is a relevant representant of the color of the skin.

Then, we proceed as follows:

We compute the function ζI, which may be decomposed
as the sum of a scalar and a bivector function:

ζI = ζ · I + ζ ∧ I

From the information given by ζ · I and ζ ∧ I, we con-

struct the metric generating a Clifford bundle CT (D),

and the function κ. Then, we consider the color/infrared

image as a section of this fiber bundle

I(q) = r(q)e1(q) + g(q)e2(q) + b(q)e3(q) + t(q)e4(q)

and compute the tensor χ in this setting. We get then

the coefficients of the first fundamental form of the sur-

face parametrized by

ϕ : (x, y) 7−→ (x, y, l(x, y), s(x, y), h(x, y), t(x, y))

embedded in R
6 equipped with metric

(
1 0

0 1

)
⊕




λ(p) 0 0 0
0 λ(p) 0 0

0 0 κ(p)ξ(p) 0

0 0 0 η(p)




Let us detail how we proceed to construct the metric

generating CT (D).

If we denote by α the function which gives for each q ∈
D the angle between ζ and Icol(q), we have |tan(α)| =

‖ζ‖‖Icol‖|sin(α)|
‖ζ‖‖Icol‖|cos(α)| =

‖ < ζI >2 ·(e1e2e3) (e1e2e3)
−1‖

| < ζI >0 |

From |tan(α)|, we get |α| since −π/2 ≤ α ≤ π/2 (ζ and
Icol(q) are vectors in the RGB cube).

Note that |α| appears to be a suitable measure of sim-

ilarity to skin color. Indeed, we can see on Fig. 3 that

the skin color is darker on the parts corresponding to
the beard and shadow on the arm; luminance and sat-

uration are decreased, hue is almost unchanged. More-

over, in RGB space, decrease or increase of luminance

and saturation with the same scale parameter combined
with unchanged hue is represented by an homothety of

the corresponding color vector. More precisely, simple

computations show that

l(ka) = kl(a) s(ka) = ks(a) h(ka) = h(a)

for k ∈ R and a ∈ RGB such that ka ∈ RGB.

To summarize, we say that color variations located on

the face and the arm may be, roughly speaking, assimi-
lated to homotheties. Then, the choice of |α| to charac-

terize them arises from the invariance of α with respect

to homotheties.

Then, we determine thresholds on |α| and t respectively

α0 and t0 that define regions of interest using the fol-

lowing map (see Fig. 3).



14

Fig. 3 left and center: color and temperature information of the scene - right: regions where g1 = 1 in white

We set g1(q) = 1 if

min
x∈Ω(q)

|α(x)| ≤ α0 and max
x∈Ω(q)

t(x) ≥ t0

and extend g1 into a derivable function on [0, π/2] ×
[0, 255] that is strictly decreasing with respect to the

first variable on [α0, π/2], and with respect to the sec-

ond variable on [0, t0]. Moreover we ask g1 to be strictly

positive since the metric g we take to generate CT (D)
is

g :=




g1 0 0 0

0 g1 0 0

0 0 g1 0

0 0 0 νg1




The role of ν is to control the weight of temperature
variations in the image.

Moreover, we choose κ = 255g1/π so that the hue com-

ponent has the same weight in the measure of variations

of I as the two other color components, that are lumi-
nance and saturation.

Fig. 4 shows the results of edge detections for differ-

ent values of ν, increasing from the left to the right.

On the left, ν is taken small so that the edge detection
is similar to a color edge detection with constraints on

color and temperature. We see that transitions between

the man and his environment are not well detected on

some parts (the region around the nose and the transi-
tion between the hand and the cup of coffee). For the

two pictures at the center, both color and temperature

variations are taken into account. In the case of ν = 10,

we still detect color details as the eye, the beard and

shadow on the arm. Moreover, we see that transitions
between the man and his environment are better local-

ized. Increasing again the weight of temperature varia-

tions (ν = 30), we don’t detect anymore color details,

but only edges characterizing the frontiers of the re-
gions of interest (see Fig. 3). The last picture shows an

edge detection for ν taken high, that is an edge detec-

tion which can be assimilated to a temperature edge

detection with respect to color and temperature con-

straints. We remark that the frontier between face and

hair is not well detected. This comes from the fact that
this region represents small temperature variations, as

we can see on the temperature information of the scene

(Fig. 3).

4.4 One more example of possible applications: color

edge analysis

As mentionned in the Introduction, many other appli-

cations can be considered from the general setting we

have described before. To conclude this section we dis-

cuss one of them. Since the approach is slightly different
and necessitates more mathematical developments, we

only sketch the main steps of the process. Details will

appear elsewhere [2].

The problem is the following one. In [15] Gevers &

al. classify edges of a color image according to they
are due to the presence of different objects, to shadows,

or to highlights, under the assumptions of white illumi-

nation and neutral interface reflection. Their method is

based on color models they introduced in [16] for the
purpose of color objects recognition.

We propose here to show how to obtain similar results

(under the same assumptions) using the mathematical

formalism of Sect. 3. Unlike other edge detections we

have presented in this paper, the metrics we construct
don’t depend on the values of the image, but of the val-

ues of its derivatives.

We proceed in several steps:

First, we consider a nD image as a section of a Clif-

ford bundle (CT 1(D), π1, D) generated by a metric

g =




g1
g2

. . .

gn



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Fig. 4 Color/temperature edge detections for different values of ν. From left to right: ν = 0.001, 10, 30, 100

The main difference with the framework developed in

Sec. 3 is that a nD image takes now the following form

I(q) = I1(q)
e1(q)√
g1(q)

+I2(q)
e2(q)√
g2(q)

+. . .+In(q)
en(q)√
gn(q)

In other words, we choose a trivialization that makes

the fibers isomorphic (as algebras) to the typical fiber.

Therefore we can define a covariant derivative ∇̃ which

is compatible with the Clifford product, i.e

∇̃(MN) = ∇̃(M)N +M∇̃(N) ∀M,N ∈ Γ (CT (D))

For the purpose of this application, we deal with n = 3

for color images.

From I, we derive the section S defined by

S = I +
(
(
e1√
g1

+
e2√
g2

+
e3√
g3

) ∧ I
)
B

where B is a bivector-valued section coding the current

hue.

Then, differentiating S with ∇̃ leads to a 1-form with

values in the Clifford bundle, i.e ∇̃(S) ∈ Γ (T ∗D ⊗
CT 1(D)). It may be written as

∇̃(S) = ∇̃(S)0 + ∇̃(S)1 + ∇̃(S)2

where ∇̃(S)j is an element of Γ (T ∗D⊗CT 1(D)) of de-

gree j. Each of them codes a particular information.

From the scalar and bivector parts, we construct met-

rics hi generating Clifford bundles (CT i(D), πi, D) over

D.
At last, by mapping the vector part into each one of

the bundles (T ∗D ⊗ CT i(D), pi, D) where pi denotes

the projection maps, we can measure the variations of

I with respect to the metrics hi. In this way we obtain
edge detections of Fig. 5.

5 Conclusion

In this paper, we have proposed a new framework for

nD image processing, namely Clifford algebras bundles

Fig. 5 Clockwise from upper left: original image, objects, high-
lights, shadows

where the typical fiber is the Clifford algebra associ-

ated to the Euclidean space of acquisition. A nD image

is then considered as a section. The paper deals in par-
ticular with the reformulation, in this fiber bundle set-

ting, of a well-known method for nD images edge detec-

tion, based on the computation of the first fundamental

form of a surface embedded in a metric space. For this,
we have introduced a connection on the fiber bundle,

and used corresponding covariant derivative and paral-

lel transport on sections derived from the section de-

fined by the image. We have treated the special case

of color/infrared images where the space of acquisition
is RGBT , and the metric space containing the surface

is LSHT . We have used the richness of the structure

of Clifford algebras and the computability of the oper-

ations in two ways detailled as follows. First, we have
recovered the first fundamental form by computations

in RGBT , never computing explicitely derivatives of lu-

minance, saturation, hue or temperature, whereas the
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approach based on surfaces does. Moreover, we have

obtained some geometric information about the images

considered, to determine some particular metrics lead-

ing to detect specific edges. It is therefore natural to en-

visage that this can be done whatever the metric space
considered, whatever the dimension of the images. As

it can be seen in Sect. 4.4, further work is devoted to

develop more connections, sections and metrics to de-

tect other kinds of edges. Note that Clifford algebras
provide a convenient framework to deal with several

geometries [28]. Therefore, our framework may be ex-

tended to Clifford bundles where the typical fiber is

associated to a non-Euclidean vector space, in such a

way that geometric information from which metrics are
constructed should come from non-Euclidean geometric

relations. At last, let us mention that fiber bundle the-

ory generalizes the one of surfaces and manifolds, then

it may be beneficial to regard it more closely, in view
of other applications to image processing.

Appendix

We state more precisely in this Appendix how are de-

fined the tensor product of CT (D)-valued 1-forms and

the symmetric product used in particular in Proposi-

tion 2.

Let (CT (D), D, π) be the fiber bundle introduced in
Sect. 3.2. We denote A the ring of R-valued functions

defined on D and B the ring Γ (CT (D)) of sections of

CT (D).

Proposition 3 The couple

(Γ1, ϕ) := (Γ (T ∗D⊗AT
∗D⊗ACT (D)), ϕ)

is a solution of the universal problem defining the tensor

product of the B-bimodule

Γ0 := Γ (T ∗D ⊗A CT (D))

with itself, where ϕ is the application from Γ0 × Γ0 to

Γ1 defined by

((ω1 ⊗m1), (ω2 ⊗m2)) 7−→ (ω1 ⊗ ω2) ⊗ (m1m2)

Proof Since B a A-algebra, there exists a B-bimodule

structure on Γ0

B × Γ0 −→ Γ0 Γ0 × B −→ Γ0

(b,X ⊗ c) 7−→ X ⊗ bc (X ⊗ c, b) 7−→ X ⊗ cb

We consider the following universel problem:

We search a couple

(Γ0 ⊗B Γ0, φ)

where Γ0 ⊗B Γ0 is a B-bimodule and

φ : Γ0 × Γ0 −→ Γ0 ⊗B Γ0

is left B-linear in the first variable and right B-linear in

the second variable with

φ(xf, y) = φ(x, fy)

for all x and y in Γ0 and f in B such that:

For each B-bimodule N and each map

η : Γ0 × Γ0 −→ N

which is left B-linear in the first variable and right B-

linear in the second variable and satisfies

η(xf, y) = η(x, fy)

for all x and y in Γ0 and f in B, there exists a unique

homomorphism

γ : Γ0 ⊗B Γ0 −→ N

of B-bimodule such that:

η = γ ◦ φ

The solution is unique up to isomorphisms. A construc-

tion may be found in [4].

As above we can show that Γ1 has a B-bimodule struc-

ture. It is a fact that ϕ is bilinear with respect to the

left-module structure in the first variable and the right-

module structure in the second variable and satisfies

ϕ(xf, y) = ϕ(x, fy)

for all x and y in Γ0 and f in B. So there exists a unique

B-bimodule homomorphism γ from Γ0⊗BΓ0 to Γ1 such

that

ϕ = γ ◦ φ

Now γ is defined by

γ : (ω1 ⊗m1) ⊗ (ω2 ⊗m2) 7−→ (ω1 ⊗ ω2) ⊗m1m2

The map δ from Γ1 to Γ0⊗BΓ0 that sends (ω1⊗ω2⊗m)

to (ω1 ⊗m)⊗ (ω2 ⊗ 1) is a B-bimodule homomorphism

and is the inverse of γ.

Finally (Γ1, ϕ) is a solution to our universal problem.

⊓⊔
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From the preceding proposition, Γ0 ⊗B Γ0 is isomor-

phic to the space of CT (D)-valued rank 2 tensors. If

η1 and η2 belong to Γ (T ∗D) and s1 and s2 belong to

B then (η1 ⊗ s1) ⊗ (η2 ⊗ s2) may be identified with

the CT (D)-valued rank 2 tensor that maps (X ⊗ Y ) to
η1(X)η2(Y )s1s2.

We denote

(η1 ⊗ s1)(η2 ⊗ s2) = (η1η2) ⊗ (s1s2)

the symmetric product of (η1 ⊗ s1) and (η2 ⊗ s2). We

extend it by linearity. This symmetric product can be

identified with the CT (D)-valued symmetric tensor of

rank 2 defined by

(X ⊗ Y ) 7−→ 1

2
(η1(X)η2(Y ) + η2(X)η1(Y ))s1s2

Finally we denote (η1⊗s1)⊗(η2⊗s2) the element (η1⊗
s1) ⊗ (η2 ⊗ s2) of Γ0 ⊗B Γ0 to emphasize the fact that

the tensor product is relative to B.
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