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A METRIC CHARACTERIZATION OF
ZERO-DIMENSIONAL SPACES

ludvik janos

Abstract. It is shown that a nonempty separable metrizable

space X is zero-dimensional if and only if there exists a metric p

on X, inducing the given topology of X and such that all nonzero

distances p(x, y) are mutually different.

1. Introduction. Sometimes it is possible to characterize topological

properties of a metrizable space X by claiming that a metric having certain

properties can be introduced on X. J. de Groot [1] gave a characterization

of a metrizable separable space of dim ^ n by means of a totally bounded

metric satisfying certain inequalities. Similar results were obtained by

J. Nagata [2]. The purpose of this note is to show that the metric which

we call strongly rigid characterizes zero-dimensionality.

Definition 1.1. A metric space (X, p) is said to be strongly rigid if all

nonzero distances p(x,y) are mutually different, which means that

p(x, y) = p(u, v) and x ^ y imply that {x, y} = {«, v}.

Remark 1.1. We are using here the modifier "strongly" since under

"rigid metric space" is understood a metric space having no nontrivial

isometry.

Definition 1.2. A metrizable space X is said to be eventually strongly

rigid if there is a strongly rigid metric on X inducing the topology of X.

Remark 1.2. It is evident that any subset Y er x of an eventually

strongly rigid space X is again eventually strongly rigid with respect to

its relative topology.

Theorem. A nonempty separable metrizable space X is zero-dimensional

if and only if it is eventually strongly rigid.

We accomplish the proof of this statement showing that each point in a

strongly rigid space has arbitrarily small spherical neighborhoods with

empty boundary, and that the Cantor set is eventually strongly rigid.
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2. Proof of the Theorem.

Definition 2.1. Let (X, p) be a metric space, r > 0 and xeX, we

denote by S(x, r) the r-sphere about x: S(x, r) = {y | y e X and p(x, y) = r).

It is obvious that, if S(x, r) is empty, then the boundary of the /--ball

about x is also empty.

Lemma 2.1. If (X, p) is a strongly rigid metric space, then for each

x e X and each e > 0 there exists r e (0, 2e) such that S(x, r) is empty.

Proof. First we observe that each sphere in a strongly rigid space

contains no more than one point. If S(x, e) is empty, we are done. If not,

there is a point, say y e S(x, e). If S(x, e/2) is empty, we are done again;

if not, there is a point, say z e S(x, e/2), and we observe that e/2 <

p(y, z) ^ 2e. Putting r = p(y, z), we conclude that S(x, r) must be empty,

since otherwise the distance from x to some point would be the same as

p(y, z) which is impossible, and this accomplishes our proof.

Lemma 2.2.   The Cantor set C is eventually strongly rigid.

Proof. We represent the Cantor set C in the classical form: C =

0 £a A* where A^ = [0, 1]\(J, f), A2 = A^\\(\, f) U (\, £)] and so on.
The components of An we denote by C", C2, • • •, C2„.

Let now 2«=i an De a convergent series of positive numbers an > 0,

having the property that for each n = 1, 2, • • • we have an > 2*T="+i ak-

Such series exist; for example, the geometrical series an = 3~" has this

property. Now we observe the following property of our series 2 an

which will play the crucial role in the construction of the strongly rigid

metric p on C: If k(l) < k(2) < k(3) < • • • and 1(1) < 1(2) < /(3) <
are two different sequences of natural numbers, then the subseries

2n=ia*(B> and 2™=i aiU) nave different values. Arranging our series

2 an in the scheme:

2      2 2
fli, a2, as

a\, a\, a\, a\, a\, a%, a?

al, at, - • •, aS»_!

where a\ = ax, a\ = a2, a\ = a3- ■ • and so on, we define the expressions

pn(x,y) for n = 1, 2, • • • and x, y e C in the following way:

Let x, y e C. If x and y are in the same component of An, we put

pn(x,y) = 0, and if x e C£ and y e C" (assuming for example x < y) we

put pn(x,j/) = a\ + <+1 + • • • + Defining finally p(x,y) by:

p(x, y) = 2«=i Pn(x> j) we see that p(x, y) can be represented as a certain

subseries of 2 «n and that p(x, y) is a metric on C, since its symmetry
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and the triangle inequality follow directly from the definition and if

x 9* y there is evidently an index n such that pn(x,y) > 0. Moreover, the

metric p(x,y) is topologically equivalent to \x — y\ since if {xk}, xeC

and \xk — x\ -> 0, then the minimal index n for which xk and x belong to

different components of A" tends to oo as k -> oo and therefore the first

member a™ appearing in the expression for p(xk, x) tends to zero, thus

the expression p(xk, x) itself tends to zero. Conversely, if p(xk, x) —*■ 0

and if \xk — x\ were not converging to zero, then due to compactness of

C there would be a subsequence {xMn)} of {xn} converging to some

j # i, but then, using the above argument, it would follow that also

p(xktn),y) -> 0, which is impossible. It remains to show that if {x,y} and

{«, v] are two different pairs of distinct points in C, then p(x,y) ^ p(u, v).

It is evident that there exists some n such that pn(x, y) ^ pn(u, v) (assuming

for example x ^ u, x < u, it suffices to choose n such that x and u are

in different components of An). But this implies that p(x, y) and p(u, v)

are represented by different subseries of 2 an and therefore have different

values. Hence, p(x, y) is strongly rigid on C, and C is eventually strongly

rigid, which proves our lemma.

Now we have all we needed to prove our theorem. If X is a nonempty

eventually strongly rigid space, then from Lemma 2.1 follows that

dim X = 0. If on the other hand X is separable, metrizable, and zero-

dimensional, it is known that X can be topologically embedded in the

Cantor set C and from Lemma 2.2 and Remark 2.1 follows that X is

eventually strongly rigid.
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